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ABSTRACT: Importance sampling is a commonly used variance reduction technique for estimating 

reliability of a structural system. The performance of importance sampling is critically dependent on 

the choice of the sampling density. For the commonly used adaptive importance sampling method, the 

construction of the sampling density relies on the kernel-based density estimation. However, the choice 

of the initial bandwidth of the local windows may heavily affect the accuracy of the kernel method, 

particularly when the number of samples is not very large. To overcome this difficulty, this study de-

velops a new adaptive importance sampling method based on nonlinear wavelet thresholding density 

estimator. The method utilizes the adaptive Markov chain simulation to generate samples that can 

adaptively populate the important region. The importance sampling density is then constructed using 

nonparametric wavelet density to implement the importance sampling. The methods takes advantage of 

the attractive properties of the Daubechies’ wavelet family (e.g., localization, various degrees of 

smoothness, and fast implementation) to provide good density estimations. Compared with the kernel 

density estimator, the nonlinear wavelet thresholding density estimator has a high degree of flexibility 

in terms of convergence rate and smoothness. Moreover, the choice of the initial parameters slightly 

affects the accuracy of the method. Two examples are given to demonstrate the proposed method. 

 

1. INTRODUCTION 

In the structural reliability theory, importance 

sampling method is widely used to calculate the 

probability of failure, expressed as 
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where ( )fx x  is the joint probability density func-

tion of the d -dimensional random variables 

 1= , , dX XX , [ ( ) 0]I g x is the indicator 

function for the failure event ( ) 0g x , and ( )h x

is the importance sampling density func-

tion(Balesdent et al. 2013). There exits an opti-

mal importance sampling density function 

opt ( )h x   (Melchers 1989). 

opt ( ) [ ( ) 0] ( ) fh I g f P  xx x x   (2) 

However, the optimal importance sampling func-

tion is unknown as it involves the unknown fP . 

Therefore nonparametric density estimation 

techniques are adopted to construct opt ( )h x . This 

approach first generates samples that are distrib-

uted asymptotically according to the optimal im-

portance sampling density. Then nonparametric 

density estimation techniques are used to con-

struct the importance sampling density. Ang was 

the first one who simulated samples in the failure 

region by Monte Carlo sampling and used these 

samples to construct the importance sampling 

density based on kernel method (Ang et al. 1992). 

Au and Beck used Markov chain simulation to 

construct a Markov chain whose target distribu-

tion is the optimal importance sampling function. 

Based on the samples generated, the sampling 

density is constructed using the adaptive kernel 
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density estimation (Au and Beck 1999). Kurtz 

and Song proposed to construct the near-optimal 

importance sampling density by using Kullback–

Leibler cross entropy coupled with a Gaussian 

mixture kernel (Kurtz and Song 2013). Dai es-

tablished an adaptive importance sampling 

method on the basis of fast Gaussian transform 

kernel density (Dai et al. 2011). In sum, most of 

the current practice for constructing the im-

portance sampling density relies on the kernel-

based density estimation. And the choice of the 

kernel function and the initial bandwidth of the 

local windows may heavily affect the accuracy 

of the kernel method, particularly when the num-

ber of samples is not very large (Silverman. 

1986).  

As a nonparametric density estimation 

method with good localization and asymptotic 

property, the wavelet density estimation outper-

forms the kernel density estimator in terms of 

global approximation (Hardle et al. 1997). This 

paper presents a new wavelet thresholding densi-

ty-based adaptive importance sampling scheme. 

The proposed method involves the generation of 

samples that can adaptively populate the im-

portant region by the adaptive Markov chain 

simulation, and the construction of importance 

sampling density by nonlinear wavelet threshold-

ing density estimator, followed by importance 

sampling to evaluate fP . Numerical examples are 

given to demonstrate the application and 

efficiency of the proposed method. 

2. SAMPLE GENERATION: ADAPTIVE 

MARKOV CHAIN SIMULATION 

Since the closed-form expression for the optimal 

importance sampling function is unknown, the 

direct Monte Carlo sampling procedure cannot 

be used to generate the samples. Therefore, the 

adaptive Markov chain simulation is proposed to 

generate the samples that cover the region of 

most interest (Metropolis et al. 1953). 

Let ()  be the target distribution density 

function. Suppose that at time 1t   the states 

 0 t-1, ,x x have been sampled, a candidate 

point y  is then sampled from a proposal distri-

bution  0 t-1, ,q  | x x . The candidate point y  is 

accepted with a probability 
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y

x
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and is rejected with the remaining probability 

 1  , i.e., t t-1x = x .  

The proposal distribution can be chosen as a 

multivariate normal distribution with a mean at 

the point t-1x  and a covariance matrix tC  given 

by 

  0 t-1= Cov , , It d d dS S x xC  , (4) 

where the subscript d  represents the dimension 

of the random variable, dS  is a scaling parame-

ter which was suggested as 22.4dS d (Gelman 

AG 1996),   is a positive constant that can be 

chosen very small, Id  denotes a d -dimensional 

identity matrix, and  0 t-1Cov , ,x x is the em-

pirical covariance matrix for the samples

 0 t-1, ,x x (Haario et al. 2001). To start the 

adaptive Markov chain simulation, an arbitrary, 

strictly positive definite initial covariance matrix 

0C  is selected using prior knowledge. Note that 

1tC  and tx satisfy the recursion equations: 
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where  
0

1 1
k

k i
k


   i

x x . 

The aforementioned adaptive Markov chain 

simulation lends itself to simulating a sample 

from ()opth  by assuming ()opth  is the target dis-

tribution of the adaptive Markov chain. Suppose 

that the Markov chain is in state t-1x , then a can-
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didate point y  is generated from the Gaussian 

proposal distribution with a mean of t-1x  and a 

covariance matrix tC , which is computed recur-

sively from Eq.(5). The acceptance probability 

  is given by: 

 
   

 t-1

0
min 1,

g f

f


     
 
 

x

x

1 y y

x
.  (7) 

Note that the evaluation of Eq.(7) only re-

quires the ratio of the target distribution be-

tween consecutive states, and fP is not needed. 

The first sample in the failure domain can 

be generated as a point simulated according to

()opth , or be assigned more efficiently based on 

engineering judgment (Au and Beck 1999). Alt-

hough the adaptive Metropolis algorithm is non-

Markovian, it has been shown that it has the right 

ergodic properties, and converges correctly to the 

target distribution. It has also been shown that 

the adaptive Metropolis algorithm often achieves 

a faster convergence than the classical Metropo-

lis algorithm (Haario et al. 2001).  

3. SAMPLING DENSITY ESTIMATION: 

WAVELET EXPANSION 

3.1. Multiresolution wavelet analysis and Wave-

let density estimation Methodology 

Wavelets involve a new family of basis functions 

that can be used to approximate or express other 

functions. This section gives a brief introduction 

to the basic concept of multiresolution analysis 

and wavelet expansions. Detailed information 

can be found, for example, in (Chui and K. 1992; 

Daubechies 1992) . 

We introduce wavelets using the multireso-

lution framework developed in (Mallat 1989). 

Let  and  denote the set of real numbers and 

integers, respectively.  2L  denotes the set of 

square-integrable one-dimensional function 

( )f x . The wavelet representation approximates 

any function  2f L by a sequence of func-

tions jf  which are smoother than f and which 

can be characterized by their sampling on the 

lattice 
-2 j

. A multiresolution analysis (or ap-

proximation) of  2L  consists of a nested se-

quence  ,jV j  of closed subspaces  2L  

and there also exists a function 0V  such that 

the sequence   ,x k k    is an orthonor-

mal basis of the space 0V . The function  is the 

scaling function. Define 

    2
, 2 2 ,j j

j k x x k     (8) 

The variable j  determines the amount of varia-

ble scaling or dilation, and k  represents shift or 

translation. The family   , ,j k x k   spans 

the thj  scale of the multiresolution analysis and 

forms an orthonormal basis for jV .When the 

scale increases from j  to 1j  , the approxima-

tion at the finer level is obtained by adding some 

details about f . These details can be modeled at 

the scale j  by the orthogonal complement of jV  

in 1jV  . Let jW  be this orthogonal complement 

of jV  in 1jV  , we get another sequence 

 ,jW j  of closed mutually orthogonal sub-

space of  2L .Let 

    2
, 2 2 ,j j

j k x x k     (9) 

then the family   , ,j k x k   is an orthogonal 

basis for jW  and is an orthonormal basis for

 2L . The spaces  ,jW j decompose the 

function into its smooth and detail parts. Any 

function  2f L  can be represented in a 

wavelet series as 

      
0 0

0

, , , , .j k j k j k j k

k j j k

f x c x d x 


  

     (10) 

The range of k  will be discussed later in 

Section 3.3. The first part of Eq. (10) is the pro-

jection of f  on the coarse approximation space 
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0j
V , and the oscillating features are approximat-

ed in fine details by the second part. The scaling 

coefficients ,j kc  and wavelet coefficients ,j kd  

are defined as 
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Let 1, , NX X  be independent identically 

distributed samples from X  with a probability 

density function f . Using an orthogonal wavelet 

basis, the wavelet representation of f  is given  

by Eq.(10) The scaling coefficients ,j kc  and 

wavelet coefficients ,j kd  can be estimated by  
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And one can estimate f  by 

      
1

1 0 0

0

, , , ,
ˆ ˆˆ ,

j

j j k j k j k j k

k j k

f x c x d x     (13) 

where 1 0j j . Nonlinear wavelet thresholding 

density estimator can be yeilded by adopting 

thresholding shrinkage method (Donoho et al. 

1996), 

     
1

0 0

0

, , , ,
ˆ ˆˆ ,

j

j k j k j k j k

k j k

f x c x d x       (14) 

where ,
ˆ

j kd denotes the wavelet coefficients after  

thresholding operation, and the soft thresholding 

function can be chosen as follows(Walter and 

Shen 1994) 

   , , ,
ˆ ˆsignj k j k j kd d d 


    (15) 

where  max ,0x x  , and thresholding value  

is given by(Mallat 1989) 

   ,
,

ˆ0.6 0.8 max j k
j k

d    (16) 

3.2. Multivariate wavelet density estimation 

The one-dimensional multiresolution analysis 

described above can be readily extended to high-

er dimensional case using the tensor product of 

one dimensional multiresolution analysis (Vida-

kovic 1999). The resulting d -dimensional multi-

resolution analysis corresponds to one d -variate 

scaling function 

      1

1

, , ,
d

d ii
i

x x x 


   (17) 

and d -dimensional wavelet functions    l
x  
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1
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d

l
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i
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with    or , but not all   .Any function 

 2f L  can be represented as 
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0
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with    or , but not all   . 

Multivariate wavelet density estimation is 

straightforward generalization of the aforemen-

tioned univariate density estimation. Let 
  : 1, ,
i

i NX be a sample of d -dimensional 

random variables X  with probability density 

function f , and       1 , ,
i ii

dX XX , the wave-

let estimator of f  is 
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where  1, , dx xx ,  1, , dk kk , and 
0 ,j k

and 
 

0 ,

l

j


k
 are given by Eq.(20). The empirical 

scaling coefficient and wavelet coefficient are 

computed as  
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where    or , but not all   . Note that 

the d -dimensional scaling function is the prod-

uct of the scaling functions on each dimension. 

Similar threshold shrinkage operation as Eq.(15) 

can be applied to wavelet coefficients 
 
,

ˆ l

j kd  to ob-

tain the nonlinear wavelet density estimator. 

3.3. Computation of the wavelet estimator 

There are several practical considerations when 

using wavelets for density estimation: (1) select-

ing wavelet family, and (2) finding the range of 

1j and k  for  ,j k x and  ,j k x  in Eq.(10). 1j  

can be determined by the scalogram of the densi-

ty f ,  

 
 

2

,, j k

kf j

f  .  (23) 

The scalogram describes the energy distribution 

at various scale j  of the density f . The scalo-

gram can be obtained by empirical scalogram  

    
2 1 2

,

1

ˆ
d

l

j k

l k

j d




    (24) 

The optimal level 1j  is the smaller one at which 

the energy distribution of the density f  at two 

successive scales increases exponentially. 

Another issue is to determine the range of 

the translation index k  for both of the scaling 

function and the wavelet function. For Db#q, the 

support of    2
, 2 2j j

j k x x k   is  0,2 1q  , 

therefore, 

 
2 1

2 2j j

k q k
x

 
  .  (25) 

Assume that the range of sample is the in-

terval  ,a b , one can calculate the values of k  

for which the support of corresponding functions 

,j k  intersects  ,a b . Therefore, the range of k  

is 

 2 2 1 2j ja q k b      
   

,  (26) 

in which y    denotes the smallest integer which 

is larger than or equal to y  and y    is the larg-

est integer which does not exceed y . For the 

multivariate wavelet density estimator, if the 

range of the data is    1 1, ,d da b a b  , the 

range of  1, , dk kk  is 

 2 2 1 2j j
i i ia q k b      

   
.  (27) 

Likewise, the range of  1, , dk kk for the 

wavelet functions is  

 2 2 1j j
i i ia q k b q       

   
  (28) 

4. NONLINEAR WAVELET THRESHOLD-

ING DENSITY-BASED ADAPTIVE IM-

PORTANCE SAMPLING 

The procedure of the proposed methodology can 

be summarized as follows. 
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Step 1: Generate N samples, whose target distri-

bution is the opt ( )h x , using the adaptive 

Markov chain simulation procedure pre-

sented in Section2. 

Step 2: Based on the samples generated in Step 1, 

construct the wavelet sampling density 

 f̂ x  in Eqs.(10) or (21) by nonlinear 

wavelet thresholding density estimator. 

Step 3: Use the nonlinear wavelet thresholding 

density estimator constructed in Step 2 

as the importance sampling density, and 

perform importance sampling simula-

tion. 

Assuming that N  Markov chain samples 

are generated in Step 1 and M  samples are used 

in the importance sampling process (Step 3), the 

total number of function evaluations of the limit 

state is N M . For most reliability analysis of 

structures of practical interest, majority of the 

computational cost is expended on the multiple 

evaluations of the limit state function. The CPU 

time needed for the wavelet density estimation 

can be negligible in comparison with that of per-

forming multiple limit state analyses. Therefore, 

the total number of function calls of limit state is 

used as the measure of the computational cost. 

5. EXAMPLES 

Two examples from literature were selected to 

demonstrate the proposed method. The multivar-

iate normal distribution was used as the proposal 

distribution for the adaptive Markov chain simu-

lations. The Daubechies wavelet with 4 vanish-

ing moments (Db#4) was used in the wavelet 

density estimation. The efficiency of the wavelet 

density estimation is examined through compari-

son with the classical kernel density-based im-

portance sampling method. In the following dis-

cussion, Wavelet-based IS denotes the proposed 

method, while Kernel-based IS represents the 

importance sampling using the kernel density 

estimation. 

5.1. Example 1: a series system  

The first example is a series system with two 

branches,(Au and Beck 1999; Dubourg et al. 

2013) 
42

1 1
2

1 2

3 exp
( ) min 10 5

8

X X
X

g

X X

    
           

 
 

x  

where 1X  and 2X  are independent standard 

normal variables. The system has two design 

points,  0,4  and  2.83,2.83 , respectively.  

 
(a) Kernel sampling density 

 
(b) Wavelet sampling density 

Fig. 1 Importance sampling density for Example 1 

Fig. 1(a) and (b) plot the contours of the 

sampling density constructed by the nonlinear 

wavelet and kernel method, respectively, using 

300 samples generated by the adaptive Markov 

chain simulation. The generated samples are 

clustered around the region that contributes most 

to the probability of failure. Using these points, 

both methods can construct the sampling density 

that reveals the import regions near the limit state 

surface. This example suggests that the wavelet 

thresholding density can be used as an alternative 
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to the kernel density for importance sampling. 

Since the constructed wavelet density has a 

shape similar to the optimal sampling density, a 

failure region of almost any shape can be han-

dled without performing preliminary component 

reliability analysis for each limit state. 

 Table 1 compares the failure probabilities 

from Wavelet-based IS and Kernel-based IS. In 

both methods, 300 samples ( 300N  ) were gen-

erated by the adaptive Markov chain simulation, 

and another 500 samples ( 500M  ) were used 

in the subsequent importance sampling simula-

tion. Therefore, the computational costs of the 

two methods are comparable. The ‘exact’ proba-

bility of failure was found to be 56.81 10 using 
610 Monte Carlo simulations. It can be seen that 

the Wavelet-based IS is more accurate than the 

Kernel-based IS, due to high degree of flexibility 

and adaptivity of the nonlinear wavelet thrshold-

ing density estimator and the dependence on the 

choice of initial parameters of the kernel-based 

IS. 

Table 1 Reliability results of example 1 

Methods No. samples Pf Error(%) 

Monte Carlo 10
6
 6.8110

-5
 - 

wavelet N=300, M=500 7.4110
-5

 8.81 

kernel N=300, M=500 7.7410
-5

 13.66 

Table 2 Reliability results for different choices of N  

No. samples 
Wavelet-based IS 

Pf        Error(%) 

Kernel-based IS 

   Pf         Error(%) 

N=100,M=500 55.39 10   20.85 
58.55 10   25.55 

N=200,M=500 55.94 10   12.78 
55.48 10   19.53 

N=300,M=500 57.41 10    8.81 
57.74 10   13.66 

N=400,M=500 57.26 10    6.61 
57.60 10   11.60 

N=500,M=500 57.19 10   5.58 
56.24 10   8.37 

The results of two importance sampling 

methods with different values of N , while keep-

ing that 500M   unchanged, are tabulated in 

Table 2. It can be seen that the proposed method 

is more accurate than the kernel method, particu-

larly when the number of adaptive Markov chain 

samples is relatively small, which can be at-

tributed to the fast convergence rate of the non-

linear wavelet thresholding density estimator. 

With the increasing number of the Markov chain 

samples (i.e., 500N  ), the performance of the 

kernel method is improved. This suggests that 

the kernel method has a relatively high demand 

to the number of pre-samples, resulting in the 

computational inefficiency. 

5.2. Example 2:Noisy limit state function 

A system with noisy limit state function was 

chosen to investigate the robustness of the pro-

posed method (Kurtz and Song 2013). The limit 

state function is defined by 
22

2 1 1
( )= ( ) 0.001 sin(100 )ii

g b X X e X


    x  

where iX  are independent standard normal vari-

ables. Parameters ,b  and e  are constants, with 

5b  , 5  and 0.1e  . This limit state corre-

sponds to two design points and the noisy term 

makes it difficult to search the design points ac-

curately.  

Table 3 compares the failure probabilities 

from Wavelet-based IS and Kernel-based IS. Re-

sults show that the proposed method is relatively 

insensitive to the noisy term and the relative er-

ror is about half of the traditional Kernel method, 

demonstrating the noisy reduction effect of the 

nonlinear thresholding rules.  

Table 3  Reliability results of example 2 

Methods No. samples Pf Error(%) 

Monte Carlo 3.610
5
 3.0710

-3
 - 

wavelet N=500,M=500 3.3310
-3

 8.47 

kernel N=500,M=500 2.5110
-3

 18.24 

Comparison between the nonlinear Wave-

let-based IS and the Kernel-based IS with differ-

ent combination N and M ( 500N M  )is giv-

en in Table 4. It is shown that the nonlinear 

Wavelet-based IS is more accurate than the ker-

nel method, particularly when the number of 

adaptive Markov chain samples is relatively 
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small, illustrating the advantage of the efficiency 

of the wavelet thresholding estimator. It's should 

be noted that too small M (number of IS samples) 

may reduce the accuracy of the proposed method, 

even if the constructed sampling density is ap-

proaching to the optimal sampling density.  

Table 4 Reliability results for different choices of N  

and M  

No. samples 
 Wavelet-based IS 

    Pf          error(%) 

Kernel-based IS 

   Pf        error(%) 

N=100,M=400 3.9610
-3

   28.99 4.4610
-3

  45.82 

N=200,M=300 3.8310
-3     

24.76 1.9810
-3

  35.55 

N=300,M=200 2.4410
-3

   20.52 2.0610
-3

  32.90 

N=400,M=100 1.8710
-3

   39.09 4.1210
-3

  34.20 

6. CONCLUSIONS 

A new adaptive importance sampling method has 

been developed using adaptive Markov chain 

simulation and nonlinear wavelet density estima-

tion. Wavelet density estimator has remarkable 

advantages, including different degrees of 

smoothness, localization, and fast implementa-

tion; it may approximate the near-optimal sam-

pling density more efficiently than the classical 

kernel method. Two examples have been ana-

lyzed to demonstrate the efficiency and accuracy 

of the proposed method. In both examples, the 

proposed method gave good results with reason-

able computational effort. The error is less than 

or about 10% when 1000 samples (including 

both Markov chain samples and subsequent im-

portance sampling samples) were used. It was 

also found that the proposed method is more ac-

curate than the conventional kernel density-based 

importance sampling method.  
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