
12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 
Vancouver, Canada, July 12-15, 2015 

 1 

Identification Uncertainty of Close Modes in Operational Modal 
Analysis 

Yi-Chen Zhu 
Graduate Student, School of Engineering, University of Liverpool, Liverpool, UK 

Siu-Kui Au 
Professor, School of Engineering, University of Liverpool, Liverpool, UK 

Steve Jones 
Senior Lecturer, School of Engineering, University of Liverpool, Liverpool, UK 

ABSTRACT: Operational modal analysis has attracted a lot of attention in both theory development 
and field applications for its high economy in implementation. It allows the modal properties (natural 
frequencies, damping ratios, mode shapes, etc.) to be identified based on ‘output’ vibration data only. 
In the absence of information about the input loading, the uncertainty associated with the identified 
modal parameters is a significant concern. Among the challenging situations encountered in practice, 
close modes (i.e., modes with similar frequencies) are significantly more difficult to identify than well-
separated modes. The possible interaction of modes with similar frequencies complicates the 
identification model and in many cases reduces the identification precision, or even renders the 
situation unidentifiable. Using a Bayesian modal identification approach, this paper investigates the 
identification uncertainty of closely-spaced modes, which are identified using a multi-mode model with 
FFT (Fast Fourier Transform) data on the same frequency band. In this context, the identification 
uncertainty is investigated through the posterior covariance matrix, which can be computed for a given 
set of data. A series of numerical studies will be performed, where synthetic data in different specially 
designed situations are generated. Based on these data the modal properties in different situations are 
identified and their resulting posterior uncertainties are investigated. The effects of the proximity of 
close mode frequencies and mode shapes will be investigated. It is anticipated that this work will 
provide significant insights on the identification uncertainty in operational modal analysis for closely-
spaced modes encountered in practice. 

1. INTRODUCTION 
Operational modal analysis aims at identifying 
the modal parameters (e.g. natural frequency, 
damping ratio and mode shapes) of the structure 
based on the measured response data (Ewins 
2000; Hudson 1977). The ambient vibration test 
is gaining popularity as it can be economically 
conducted without knowing the actual loading 
but assumes the loading as statistically random 
(Brincker et al. 2001; Peeters and De Roeck 
2001).  However, the uncertainty of the 
identified modal parameters is significantly 
higher compared to forced or free vibration tests 
because of the absence of input loading 

information. The situation becomes even more 
complex when identifying closely-spaced modes 
(i.e. modes with similar frequencies), which are 
commonly encountered in tall buildings.  It will 
be useful to know the identification accuracy 
beforehand based on the given test 
configurations and the prediction of the mode 
properties when identifying close modes. 
Compared to the identification uncertainty of 
well separated modes (Au 2014), it may be very 
difficult and tedious to develop the leading order 
behavior of the identification uncertainties (i.e. 
uncertainty law) for close modes mathematically 
at this stage. The objective of this paper is to 
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assess the possible factors which have effects on 
the identification uncertainties of close modes 
based on numerical studies, where synthetic data 
under different situations is generated. A 
proximity index (PI) is first proposed and 
discussed in order to quantify the proximity of 
two modes. Using a Bayesian modal 
identification approach (Au 2012a; b; Yuen and 
Katafygiotis 2003), the influence of signal-to-
noise ratio and the similarity of two mode shapes 
on the identification uncertainties of close modes 
are investigated. 

2. BAYESIAN MODAL IDENTIFICATION 
THEORY 

A fast Bayesian modal identification approach 
(Au 2012a; b; Yuen et al. 2002) is used in this 
paper to identify modal parameters and evaluate 
identification uncertainties. The method is briefly 
explained in this section. Let the measured 
acceleration data at n degrees of freedom (DOF) 
of a structure be { }NjRn

j ...2,1:ˆ =∈x , where N is 
the number of samples per channel. It can be 
modelled as ( ) jjj εθxx += ̂ , which consists of the 
model response ( )θx j  (depends on the set of 
modal parameters θ  to be identified) and 
prediction error jε (due to noise and modelling 
error). The scaled FFT of { }jx̂  is defined as: 

( )( )∑
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where 12 −=i and t∆ is the sampling interval. 
Here, kF  corresponds to frequency 

tNkfk ∆−= /)1(  for k=1,..,Nq, where 
Nq=int[N/2]+1(int[.] denotes the integer part) is 
the index corresponding to the Nyquist frequency. 
The sample power spectral density (PSD) matrix 
can be calculated by multiplying the FFT by its 
conjugate transpose. The scaling factor is defined 
such that the PSD is one-sided with respect to 
frequency in Hz. In practice, only the kF within 
the selected frequency band containing the 

modes of interested is used for identification. Let 
θ  denote the modal parameters to be identified: 

 { }Φθ ,,,, eSSf ζ=  (2) 

where f and ζ are the natural frequency and 
damping ratio respectively; S and eS are the PSD 
of modal excitation and prediction error 
respectively; mn

m R ×∈= ],..,,[ 21 φφφΦ is the 
mode shape matrix with ( )mii ,..,1=φ being the i-
th mode shape confined to the measured DOFs. 
Let n

kkk R2]Im;[Re ∈= FFZ  , where kFRe and 

kFIm  denote the real and imaginary part of kF . 
Let such collection be denoted by { }kZ . Using 
Bayes’ theorem, the posterior PDF of θ given the 
measured data is: 

 { }( ) { }( ) ( )
{ }( )k

kk p
ppp

Z
θθZZθ =  (3) 

where ( )θp  is the prior PDF that reflects one’s 
knowledge about θ in the absence of data; 
{ }( )kp Z   is a normalizing constant and it does 

not depend on θ . Assuming no prior information, 
the posterior PDF is directly proportional to the 
‘likelihood function’ { }( )θZkp .  For large N  and 
small t∆ , it can be shown that { }kZ  are 
asymptotically independent at different 
frequencies and kZ is a zero mean Gaussian 
vector with covariance matrix given by: 
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where n
n R2

2 ∈I  denotes the identity matrix, 
mm

k R ×∈H is the transfer matrix whose ( )ji,  
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and kiik ff=β ; if  is the natural frequency of 
the i-th mode; kf is the frequency in the selected 
FFT frequency band. ijS  is the cross spectral 
density of the i-th and j-th modal excitation. The 
posterior PDF now becomes: 

 
{ }( ) { }( )
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For convenience in analysis and computation, the 
posterior PDF is expressed in terms of the 
negative log-likelihood function ( )θL  so that: 

 { }( ) [ ])(exp θZθ Lp k −∝  (7) 

 ( ) ]det[ln
2
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T
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The MPV (most probable value) of the modal 
parameters are determined by maximizing 

{ }( )kp Zθ  (which means minimizing ( )θL ). 
Comparing to non-Bayesian methods, one major 
advantage of the Bayesian identification method 
is that it can also provide a rigorous quantitative 
evaluation of the uncertainties of the identified 
modal parameters. The posterior covariance 
matrix can be approximated by the inverse of the 
Hessian of the ( )θL  function. In this paper, the 
uncertainties of the identified modal parameters 
are discussed based on the ‘coefficient of 
variation’ (c.o.v.), which can be calculated as the 
ratio of the square root of variance to the MPV 
value. The variance is given by the 
corresponding diagonal element of the posterior 
covariance matrix. 

3. SYNTHETIC DATA SIMULATION 
Using the Bayesian approach explained in the 
previous section, the identification uncertainties 
of close modes under different conditions will be 
evaluated using synthetic data. The properties of 
the structure simulated will be explained. A 
proximity index will then be proposed in order to 
quantify the proximity of two close modes. The 

influence of the signal-to-noise (s/n) ratio and the 
modal assurance criterion (MAC) on the 
identification uncertainties will be discussed 
using the simulated data afterwards. 

The synthetic data simulates the acceleration 
response of a 3DOF structure with two modes 
which have an average frequency of 1Hz and the 
same damping ratio of 1%. The mode shapes of 
these two modes are assumed to be 
[ ] 14/321 T and [ ] 11/131 T respectively. 
The structure is subjected to two i.i.d. 
(independent and identically distributed) white 
noise modal excitations with the same PSD of

Hzg /10 28− . The acceleration response of the 
structure is collected at a sampling rate of 100Hz 
for a duration of 1000s. The data is contaminated 
by i.i.d. channel noise with a PSD of

Hzg /105.2 28−× . Modal identification of these 
two modes is based on the selected frequency 
band of [ ]Hz5.15.0 . Different situations are 
performed to investigate the effect of different 
attributes. 

3.1. Proximity Index 
To quantify how close two modes are, a 
proximity index (PI) is proposed and discussed 
in this section. A well-separated mode can be 
defined as one where there is a frequency band 
around its natural frequency without significant 
contribution from other modes. Conversely, if 
the resonance bands of two modes significantly 
overlap, then they are considered close. The 
dynamic amplification factor between the PSD of 
the acceleration response and the modal 
excitation is (Au 2011): 

 ( ) ( )[ ] 1222 21
−

+−= kkkD ζββ  (9) 

where kk ff=β . For modes with the same 
damping ratio, the shape of the modes at high 
frequencies will have wider spread over the 
frequency band. On the other hand, modes with 
small damping will have a sharper peak in the 
frequency domain compared to ones with large 
damping. For simplicity, considering two modes 
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with the same damping ratio, a proximity index 
(PI) is proposed in this case as: 

 
ζ×

=
f
ΔfPI  (10) 

where f∆ is the difference of the natural 
frequencies between two modes; f is the average 
frequency and ζ  is the damping ratio. For well-
separated modes, the frequency band for modal 
identification is commonly symmetrically 
centered about the resonance peak of the mode 
with bandwidth of fκζ2 . Here, κ  is defined as 
the bandwidth factor. For example, the half-
power band is ( )ζ±1f , κ in this case equals to 1. 
Typically, the band with 6=κ may account for 
90% of the contributions of one mode (Au 2014). 
In real application, the bandwidth factor is 
chosen depending on the trade-off between the 
amount of information used for identification and 
the modelling error included within the band.  
Considering two modes with the same damping 
ratio and the same κ  used for frequency band 
selection, PI is equal to κ2 when these two 
frequency bands is connected with each other. 
This means two modes can be considered as 
close modes when their PI is smaller than κ2  
given certain κ  used for frequency band 
selection. 

In this paper, the uncertainty of two modes 
with PI ranging from 0.2 to 10 will be assessed.  
An example using synthetic data is presented to 
demonstrate how close two modes are in 
frequency domain when PI equals 0.2 and 10.  

Figure 1(a,b) shows that when the PI of two 
modes is 10, these two modes can be 
distinguished visually in the frequency domain 
but they already have a small overlapped area. In 
this case, it is possible to select the frequency 
bands separately for these two modes or select 
them in one frequency band and consider them as 
two close modes. This mainly depends on how 
the bandwidth factor κ  is selected. Figure 1(c,d) 
shows that when PI is 0.2, the two modes are 
extremely close to each other and they can only 
be inferred from the singular value spectrum. 

This means they can only be selected in one 
frequency band.  

 

 
Figure 1: root PSD and Singular Value Spectrum 
(SVS) for PI=10(a,b) and PI=0.2(c,d). 

 
Now the PI value of two close modes will 

be evaluated using an application example. The 
demonstrated structure is a tall building in Hong 
Kong, which is 320m tall and 50m by 50m in 
plan. The building has two close modes shown in 
Table 1 which were identified by Au et al  (2012) 
using the fast Bayesian FFT method. 

 
Table 1: Identified modal parameters of the tall 
building 

Mode Frequency (Hz) Damping Ratio (%) 
 1 0.175 0.9 
2 0.176 1.7 

 

 
Figure 2: Singular Value Spectrum of the tall 
building 
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The singular value spectrum in Figure 2 
shows that these two modes are extremely close 
to each other.  The PI of these two close modes 
can be calculated as 0.438 based on the identified 
frequency results. 

From the two examples above, it can be 
seen that the proximity index provides a good 
reference for describing the proximity of two 
close modes and the PI range researched in this 
paper (from 0.2 to 10) also has a practical 
meaning in practice. 

3.2. Signal-to-noise Ratio 
The signal-to-noise (s/n) ratio is defined as the 
ratio of the PSD of the modal response to the 
PSD of the prediction error at the resonance peak 
for each mode (Au 2011): 

 24 ζ
γ

eS
S

=  (11) 

where the PSD of the modal response S  is the 
intensity of the modal excitation at the natural 
frequency; the PSD of prediction error eS
consists of the channel noise and the modelling 
error in the selected frequency band and ζ is the 
damping ratio of the mode. The s/n ratio reflects 
the uncertainty level in the collected data, which 
depends on the quality of measurement 
equipment used (e.g. sensor, cable) and 
modelling error in the excitations. 

In this section, the identification uncertainty 
of the frequency and damping ratio under 
different s/n ratios is investigated using synthetic 
data. Considering the structure discussed in 
Section 3, the PSD of the channel noise is 
modified based on the required s/n ratio. The 
natural frequencies of two modes approach each 
other from 0.95Hz and 1.05Hz to 0.995Hz and 
1.005Hz so that the corresponding PI ranges 
from 0.2 to 10. 

 

 
Figure 3: C.o.v. of identified frequency and damping 
ratio against PI (solid line—uncertainty law for well 
separated modes) 

 
Figure 3 shows that although there is some 

slight increase in c.o.v. when PI becomes small, 
the posterior c.o.v. of the identified frequency 
and damping ratio is insensitive to the PI value 
overall. Compared to the uncertainty law for well 
separated modes, the c.o.v. of frequency and 
damping ratio are still acceptable. The 
uncertainty of identified modal parameters 
decreases with the s/n ratio. This is further 
explained in Figure 4, which plots the posterior 
c.o.v. of the frequency and damping ratio against 
different s/n ratio when PI equals 4 as an 
example.  

When the s/n ratio is low, a small increase 
in s/n ratio can effectively reduce the posterior 
uncertainty. This effect diminishes when the 
modal s/n ratio is high.  Note that the two modes 
have the same order of identification 
uncertainties, and so the following figures will 
only plot the identification uncertainties of mode 
1 to simplify discussion. 
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Figure 4: C.o.v. of identified frequency (a) and 
damping ratio (b) against s/n ratio when PI=4 (solid 
line--uncertainty law for well separated modes) 
 

3.3. Modal Assurance Criterion 
The modal assurance criterion (MAC) is used to 
measure the degree of linearity between two 
modes shapes which is defined as: 

 
ji

j
T
iMAC
φφ
φφ

=  (12) 

where iφ and jφ is the mode shapes of two 
modes. The MAC takes on values from zero 
(clearly linearly independent) to one (linearly 
dependent). In this paper, it is used to describe 
the similarity of the mode shapes for two modes. 
Based on the simulated structure, the mode 
shapes of the two modes are set as 
[ ] 25/21 xx T + and [ ] 25/12 xx T +−  
respectively, where the parameter x  is adjusted 
to have MAC values ranging from 0.1 to 0.98. 
The identification uncertainty results simulated 
by synthetic data are shown in Figure 5.  

 

 
Figure 5: C.o.v. of identified frequency (a) and 
damping ratio (b) for mode 1 against MAC (solid 
line--uncertainty law for well separated modes) 

 
This shows that for clearly linearly 

independent mode shapes (MAC less than 0.9), 
the identification uncertainties are insensitive to 
the MAC. For two mode shapes with high 
similarity (MAC larger than 0.9), there will be an 
increase in the identification uncertainties.  
However, high s/n ratios can effectively restrain 
the increase of identification uncertainties. The 
influence of the s/n ratio on the identification 
uncertainty with different MACs is further 
investigated as shown in Figure 6. 

 

 
Figure 6: C.o.v. of identified damping ratio for mode 
1 against s/n ratio (solid line--uncertainty law for 
well separated modes) 
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It can be seen from Figure 6 that the c.o.v. 
of the damping ratio under different MAC values 
all converges to the uncertainty law for well 
separated modes when the s/n ratio is high. At 
the same time, it shows that the MAC of the 
close modes to be identified does not affect the 
uncertainty law for the close modes identification.  
 

4. CONCLUSIONS 
This paper has investigated the identification 
uncertainty of close modes modal properties 
using the fast Bayesian ambient modal 
identification method. A proximity index (PI) 
has been proposed which provides a quantitative 
way to reflect the proximity of two close modes. 
Synthetic data simulations demonstrated that 
with high s/n ratio and clearly linearly 
independent modes, the posterior c.o.v. of 
frequency and damping ratio is insensitive to the 
proximity of two modes. In this case, the 
posterior uncertainty for close modes is similar 
to that of well-separated modes. Increasing the 
s/n ratio can decrease the posterior uncertainties 
of both frequency and damping ratio. However, 
the s/n ratio just needs to be high enough for 
identification. Further increase has little effect on 
improving the accuracy of the identified modal 
parameters. For high s/n ratios, the identification 
uncertainty under different MAC values 
converges to the uncertainty law of well 
separated modes, which means the similarity of 
the mode shapes do not have an effect on the 
uncertainty law for close modes in this case. This 
paper provides significant insights on the 
uncertainty of closely-spaced modes, which can 
help estimate the identification accuracy 
beforehand based on the test configurations. 
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