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ABSTRACT: Studying failure scenarios allows one to gain insights into their cause and consequence,
providing information for effective mitigation, contingency planning and improving system resilience.

A new efficient algorithm is here proposed to solve applications where an expensive-to-evaluate computer
model is involved. The algorithms allows to generate the conditional samples for the Subset simulation
by representing each random variable by an arbitrary number of hidden variables. The resulting algorithm
is very simple yet powerful and it does not required the use of the Markov Chain Monte Carlo method.

The proposed algorithm has been implemented in a open source general purpose software, OpenCossan
allowing the solution of large scale problems of industrial interest by taking advantages of High Per-
formance Computing facilities. The applicability and flexibility of the proposed approach is shown by

solving a number of different problems.

1. INTRODUCTION

Rare failure events of safety critical systems (such
as in Nuclear and Aviation industry) can have huge
impacts as shown by recent accidents (e.g. Tohoku
Earthquake and the consequent Fukushima-Daiichi
accident).

Assessing risk quantitatively requires the quan-
tification of the probability of occurrence of a spe-
cific event by properly propagating the uncertainty
through the model that predicts the quantities of in-
terest. In principle, rare failure events can be in-
vestigated through Monte Carlo simulation (see e.g.
Liu (2001)). However, this is computationally pro-
hibitive for complex systems because it requires a
large number of samples to obtain one failure sam-
ple. Checking whether each sample fails requires
evaluating of the model and the calculation of out-
put quantities, which is generally computationally
expensive for complex systems.

Advanced Monte Carlo methods aim at estimat-
ing rare failure probabilities more efficiently than
direct Monte Carlo (see e.g. Schuéller (2009)). Un-
fortunately, high dimension and model complexity
make it extremely difficult to improve the efficiency
of Monte Carlo algorithms purely based on prior

knowledge, leaving algorithms that adapt the gener-
ation of samples during simulation the only choice.
The estimation of small probabilities of failure from
computer simulations is a classical problem in engi-
neering, and the Subset Simulation algorithm pro-
posed by Au and Beck (2001) has become one of
the most popular method to solve it thanks to its
significant savings in the number of simulations to
achieve a given accuracy of estimation, with respect
to many other Monte Carlo approaches.

In this paper, a new efficient algorithm for Sub-
set simulation is proposed to generate conditional
samples without using Markov Chain Monte Carlo.
This allows to simplify the Subset simulation and
to remove one of the main sequential components
of Subset simulation. The proposed algorithm has
been implemented in a open source general pur-
pose software, OpenCossan (Patelli et al., 2014).
The computational framework allows the applica-
tion of the novel algorithm to solve large scale ex-
amples of practical interest and taking advantages
of High Performance Computing facilities. A num-
ber of academic examples and real applications of
industrial interest are solved and presented to show
the applicability of the proposed approach.
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2. SUBSET SIMULATION

In this section a short description of the original
Subset algorithm and the proposed algorithm is pre-
sented.

2.1. Original algorithm: Subset-MCMC

Subset simulation (Au and Beck, 2001) is an ad-
vanced Monte Carlo method aimed at estimating
rare failure probabilities more efficiently than di-
rect Monte Carlo. The method has been already
applied efficiently to a wide range of applications
(e.g. Alvarez et al. (2014); Chiachio et al. (2014);
Ching and Hsieh (2007)) since it is not based on
any geometrical assumption about the topology of
the failure domain.

The key idea of Subset simulation is to decom-
pose the failure event F into a sequence of nested
failure events: F =F, € F, 1€ ---€ F| . F =
N;F;. The probability of failure is expressed as the
product of P(F}) and the conditional probabilities
P(Fk+1/Fk),k: {1,...,1’/1— 1}2

m—1

P(F) =P(niF;) = P(F) [ P(Fis1 /Fo)-
i=1

(1

During subset simulation the threshold values,
O1,...,0m, are adaptively generated so that the
conditional failure probabilities F; are sufficiently
large. Hence, by choosing m and F; appropriately,
the conditional probabilities can be evaluated effi-
ciently by direct simulation.

The challenging part of the Subset algorithm is
the realization of the conditional samples X that are
distributed according the conditional probabilities
P(x|F;). In the original implementation of Subset,
the generation of conditional samples are obtained
adopting a independent-component Markov Chain
Monte Carlo (MCMC) algorithm. Using a mod-
ified Metropolis algorithm Metropolis and Ulam
(1949), the chains are generated in two steps. First
a next state is sampled from a proposal distribu-
tion x' < m(x). Then, the candidate solution is
accepted if its associated performance function is
greater than the intermediate threshold level & oth-
erwise the candidate sample is rejected.

In general, controlling the MCMC algorithm is
not a trivial task. Furthermore, the generation of the
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conditional samples based on Markov Chains repre-
sents the bottleneck for the parallelization and scal-
ability of the algorithms on cluster and grid com-
puting.

2.2.  Proposed algorithm: Subset-oo

The main idea of the proposed algorithm (hereafter
indicated as Subset-o0) is to define an equivalent
problem where each random variable X; is repre-
sented by an arbitrary number of hidden variables.
In fact, Gaussian variables can be represented by an
infinite number of Gaussian variables since a lin-
ear combination of Gaussian variables is still Gaus-
sian. In addition, any problem can be represented
in the so-called Standard Normal Space by means
of a transformation (see e.g. (Nataf, 1962)) where
each input variable is represented by an indepen-
dent Gaussian distribution with 0 mean and unitary
standard deviation.

Studying the limiting behaviour of the
independent-component MCMC, Au (2015)
has demonstrated that the conditional distribution
of the candidate samples is a Gaussian distri-
bution with mean and variance that depends on
the proposal distribution. Thanks to this result,
conditional samples can be directly sampled from
an appropriated Gaussian distribution without
resorting to the MCMC algorithm and the selection
of the proposal distribution.

2.2.1. Numerical implementation

The main advantage of the Subset-co algorithm
relies on its simplicity and scalability. In fact,
the Subset-oo does not require the construction of
Markov Chains but only the capability to generate
realizations in the standard normal space from nor-
mal distributions.

The following pseudo-algorithm generates sam-
ples distributed as the target conditional distribution
of failure F(x|F) in the Standard Normal space:

1. assume a sample X() is distributed as F (x|F)

2. Calculate a = /1 —s? where s = [s1,...,5,]
represents the vector of chosen variances for
each component of the candidate X,

Generate the candidate X’ ~ N(a- X s)
4. The new sample X+ = X' if X’ € F, other-
wise X+ = X0 if X ¢ F

(98]
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5. Repeat for all samples

6. Repeat for all Subset level
The proposed algorithm is generally applicable for
any finite dimensional problem that can be repre-
sented in standard normal space.

The proposed algorithm has been implemented
in OPENCOSSAN software (Patelli et al., 2014).
OPENCOSSAN is a collection of open source algo-
rithms, methods and tools released under the LGPL
license (Free Software Foundation, 2007), and un-
der continuous development at the Institute for Risk
and Uncertainty at the University of Liverpool, UK.
The source code is freely available upon request
at the web address http://www.cossan.co.uk.
Thanks to the modularity and structure of the soft-
ware organized in classes, i.e. data structures con-
sisting of data fields and methods together with
their interactions and interfaces, the implementa-
tion of the Subset-co algorithm has required the im-
plementation of only few lines of code.

2.2.2. Parallelization and scalability

Generally, reliability analysis requires to evaluate
of the model a large number of time. Although Sub-
set simulation allows a significant reduction of the
number of model calls, the wall clock time required
by the analysis can only be further reduced resort-
ing to the parallel execution of the code. Multiple
independent instances of the solver are executed si-
multaneously for different realizations of the input,
allowing for a reduction of the analyses time with-
out any loss of accuracy.

MCMC is an inherently serial algorithm and
hence it requires complex algorithms to parallelize
the samples generation such as e.g. the specu-
lative computing approaches (Pellissetti, 2009) or
partitioning and weight estimation scheme (Van-
Derwerken and Schmidler, 2013). In contrast, the
proposed oo-algorithm is easily paralellelizable and
two types of parallelization can be used. The first
type of parallelization is used to speed-up the anal-
ysis in case the solver (i.e. the model to be eval-
uated) is a coded in Matlab. In this case, a spe-
cial job on a pool of MATLAB workers is cre-
ated on each multi-core machine, connecting the
MATLAB client to the parallel pool (e.g. using
the command parpool). Features from the MAT-
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LAB parallel toolbox e.g., parfor, can be used to
distribute the tasks on the MATLAB clients. This
type of parallelism can be implemented on each
single computational node. In case the analysis
requires the call of an external solver (such as a
FE/CFD analysis) the multi-thread, shared mem-
ory parallelism capabilities of the external software
need to be adopted. The second level of paralleliza-
tion exploits cluster and grid computing, i.e. the
availability of machines connected in an heteroge-
neous network. In this case, the total number of
simulations is slitted in a multiple number of inde-
pendent batch jobs. The jobs are then submitted
to the job scheduler/manager and distributed effi-
ciently on the available machines of the grid/cluster.

Using OPENCOSSAN framework, the paral-
lelization of the analysis is straightforward. Inde-
pendent multiple stream and sub-stream are gen-
erated by combined multiple recursive generator
(mrg32k3a). Then, OPENCOSSAN creates inde-
pendent jobs by compiling portion of OPENCOS-
SAN using mcc and then distribute the compiled
code to the node of the cluster (workers). Hence,
it is possible to execute jobs in parallel without
the necessity to install MATLAB on each compu-
tational node of the cluster, but only accessing the
MATLAB runtime libraries.

3. NUMERICAL EXAMPLES

In this Section different numerical examples are
presented to show the applicability of the Subset-
oo algorithm.

3.1.

The purpose of this first numerical example is to
show the applicability of the new proposed algo-
rithm using a very simple problem. Although, it is
a very simple example and consider only one input,
it represents an extreme case for the proposed ap-
proach since it has been designed to be efficient for
high dimensional problems. Nevertheless, it allows
to show the applicability of the methods and clearly
visualize and compare the conditional samples ob-
tained using the Subset-oo algorithm with samples
obtained by means of the standard Subset-MCMC
approach.

Simple synthetic model


http://www.cossan.co.uk
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In this example the reliability problem is defined
as the probability of the random variable X; to ex-
ceed a constant threshold. The limit state function
is defined as:

g1(X)=X1-3 2)
where X; is a normally distributed variable with
0 mean and 1 standard deviation. The estimation
of the probability of failure has been computed by
means of the Subset simulation adopting the stan-
dard MCMC implementation and the proposed oo-
algorithm, respectively. The results are summa-
rized in Table 2. The Subset-MCMC simulations
have been performed using an target conditional
failure probability of 0.1, a uniform proposal distri-
bution with width 0.4 while Subset-oo simulations
have been performed using a variance s = 0.5. The
main Subset parameters are summarized in Table 1.

Table 1: Parameters of the Subset algorithm used for
solving the numerical example simple synthetic model.

Parameter Value
Initial samples size 100

Target cond. failure probability 0.1
Proposal dist. (Subset-MCMC) U(-0.2,0.2)
Variance s (Subset-oo) 0.5

Table 2: Estimated failure probability of the simple
synthetic problem.

Analytical MCMC Subset-co
Pr 13-107° 1.32-107° 1.6107°
Std - 9.53-107* 1.08-1073
Samples - 440 160

Figures 1-2 show the values of the computed
performance function g as a function of the sub-
set level using MCMC and oo algorithm, respec-
tively. The horizontal lines represent the identified
threshold values, 6y, ...,0,,; the stars represent re-
jected samples while circles show the accepted con-
ditional samples.

Figure 3 shows the effect of the proposed vari-
ance s for the Subset-co algorithm on the estimation
of the failure probability. For each value of s 20
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Figure 1: Performance function estimated by means of
the Subset-MCMC algorithm.
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Figure 2: Performance function estimated by means of
the Subset-oo algorithm.
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Figure 3: Effect of the proposed variance s of the esti-
mation of ﬁf using the Subset-oo algorithm.
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independent runs of Subset simulation have been
performed. The red dashed line represents the an-
alytical solution, the yellow dots the 15f estimation
performed by the Subset-co.

3.2.  Simple synthetic model in high-dimension

In order to test the performance of the proposed ap-
proach, the dimensionality of the simple problem
presented in Section 3.1 has been incremented up
to 2500 variables. The same limit state function of
the previous model has been used (i.e. Eq. (2)).
Hence, only the input X; controls the failure proba-
bility.

Subset simulations have been repeated 10 times
and the minimum, median and maximum of the
failure estimation is summarized in Table 3 using
MCMC algorithm with a uniform proposed distri-
bution of width 0.4 (in standard normal space) and
in Table 4 using the canonical algorithm with a
proposed variance of s = 0.5, respectively. Fig-
ure 4 shows the estimation of the failure probabil-
ity for different number of input variables using the
Subset-MCMC and Subset-oo, respectively. As ex-
pected, both algorithms show similar results. They
seem to be insensitive to the dimensionality of the
problem.

Table 3: Estimation of the failure probability computed
using Subset-MCMC for different number of input vari-
ables. Subset simulation has been repeated 10 times.

Dimension Min Median Max

10 237-107° 8.13-107% 3.1-1073
100 2.88-107% 2.17-1073 6.3-1073
1000 8.48-10 1.20-1073 4.5.1073

Table 4: Estimation of the failure probability computed
using Subset-oo algorithm for different number of in-
put variables. Subset simulation has been repeated 10
times.

Dimension Min Median Max

10 280-100% 1.35-107° 4.5.107°
100 1.50-10~% 1.15-1073 5.6-1073
1000 24107 545.-107* 4.7-1073
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Figure 4: Estimation of the failure probability, ﬁf,
for the simple synthetic model estimated by means of
Subset-MCMC and Subset-o simulation for different
number of input variables, respectively.

Figure 5 shows the computational time (wall
clock time) required by the Subset simulations as
a function of the number of variables. The compu-
tational time has been calculated using OpenCossan
revision 769 on a quad-core Intel Core 15-4590T
CPU @2.00GHz. As shown in Figure 5, the Subset-
oo algorithm is one order of magnitude faster than
the standard Subset-MCMC procedure.
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Figure 5: Computational time required by the Subset-
MCMC and Subset-oo as a function of the number of
input variables, respectively.

3.3.  Simple frame

In this numerical example applies the reliabil-
ity analysis of a simple structural frame system
sketched in Figure 6 and originally presented in



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12

Schuéller et al. (1989) is presented. The structural
parameters are summarized in Table 5.

Figure 6: Simple structural frame.

The structural failure criterion is defined by the
development of any of the 3 possible collapse
mechanisms as illustrated in Figure 7. Hence, the
limit state function for the structure is the combina-
tion of the 3 limit state functions that describe each
collapse mechanism. This can be represented as a
systems with components in parallel where the fail-
ure of a single component produce the failure of the
entire system. Hence the performance function of
the system is:

82(X) = min(g24, 825, 82¢) (3)

where
224(X) = X1 +2X3 +2X4 + X5 — 5Xs — 5X7  (4)
8(X) = X1 +2Xo + X4+ X5 —5Xs  (5)
22:(X) =X +2X3+ X4 —5Xs  (6)

Figure 7: Possible failure modes of the simple struc-
tural frame.

Subset simulation has been used to estimate the
failure probability using the parameters shown in
Table 1. The results of the reliability analysis are
summarized in Table 6. The results show that the
proposed Subset-oo approach is able to handle multi
non linear limit state functions (in Standard Normal
Space).
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Table 5: Input variables of the simple structural frame.
All the inputs are considered uncorrelated.

Variable Distribution Mean Std
Xi—(1:5y Lognormal 60 6.0
Xs Type I - largest 20 6.0
X7 TypeI-largest 20 7.5

Table 6: Estimated failure probability of the simple
structural frame.

MC SS-MCMC Subset-co
Pr 1.27-107* 3.18-107° 1.26-10~*
CoV 8.87-1072 6.43-107' 4.87-107!
Samples 1-10° 2.07-10°  1.8-10°

3.4. A multi-storey building model

The applicability of the Subset simulation for solv-
ing problems of industrial interest is showing by
performing the reliability analysis of a multi-storey
building modelled with ABAQUS. The FE-model
of the structure as shown in Fig. 8, involves approx-
imately 8,200 elements and 66,300 DOFs, where
solid elements (C3D8I) are used for the foundation,
the mesh of the floors consists solely of quadrilat-
eral elements (S4) and each of the 16 columns of
all floors are modelled with 2-node beam elements
(B31).

Figure 8: FE-model of a multi-storey building with
indication of the loading and the observed column of
interest. The FE model has been adapted from Ref. ?.

The load case under investigation is the combi-
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nation of self weight and simplified lateral wind
load modelled by deterministic concentrated static
forces acting on the nodes of one edge of each floor
and on the upper part of the staircase where the
magnitudes increase with the height of the build-
ing. Failure is defined as the exceedance of the
yield stress in a bar element of the column of the
5th floor indicated by the arrow in Fig. 8. Hence,
the performance function is defined by

g(9> = Gmax_c(e); (7
where 0, defines the maximum stress level toler-
ated by the column (i.e. the resistance) and ¢(0) is
the element stress as extracted from the output file
of the FE-analysis (i.e. the demand). 6 represents
the vector of 244 uncertainty structural parameters
summarized in Table 7.

Table 7: Random variables used for modelling the un-
certainties within the multi-storey building.

Value
N(7.5¢7,1.0¢7) Pa
U[0.36,0.44] m
LN(3.5¢10,3.5¢9) Pa
LN(2500,250) kg/m?
LN(0.25,0.025)

Parameter

Column Resistance
Columns section
E-modulus
Density

Poisson ratio

The reliability analysis has been performed us-
ing Subset simulation. The estimation by means
of Monte Carlo simulation is infeasible due to the
large sample size needed to trustworthy identify the
failure region and the computational cost associ-
ated to the analysis of this large FE-model. Subset
simulations have been run with 100 initial samples,
intermediated failure probability of 0.1 and a uni-
form proposal distribution with a width of 0.4 for
standard Subset-MCMC and a proposal variance of
s = 0.5 for Subset-co. The results are summarized
in Table 8.

Figures 9 and 10 show the computed column re-
sistance versus the maximum of the element stress
in the column as extracted from the output file of the
FE-analysis for different levels during Subset sim-
ulation. The Subset-MCMC and Subset-c provide
similar results. They are both applicable to solve
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Table 8: Reliability analysis of a FE multi-story build-
ing by means of Subset simulation.

Subset-MCMC Subset-co

Py 8.58-107° 2.4-1077
CoV 1.24 1.06
Samples 550 600

large scale problems of practical interest. As al-
ready pointed out, the Subset-co algorithm is com-
putational faster and more parallelizable than the
classic Subset-MCMC and hence it allows to re-
duce the wall-clock time required by the analysis.

5 X 107 Subset-MCMC
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T T
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Figure 9: Samples generated by the Subset-MCMC
simulation. The lines represent the identified threshold
levels.
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Figure 10: Samples generated by the Subset-oo simula-
tion. The lines represent the identified threshold levels.
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4. CONCLUSIONS

In this paper, a new efficient algorithm for rare fail-
ure event simulation has been presented. In the
proposed algorithm, denoted as Subset-oo, each ran-
dom variable is represented by an large number of
hidden (Gaussian) variables. As a consequence, the
conditional samples can be obtained directly form
an appropriate Gaussian distribution without resort-
ing to the Markov Chain Monte Carlo method.

The proposed algorithm has been implemented
in OPENCOSSAN. A number of different numeri-
cal examples have been presented to show the flex-
ibility and applicability of the approach. In fact,
Subset-oo shows the same accuracy and efficiency
of the classic Subset-MCMC. However, Subset-oo is
much simple and faster. In addition, the approach is
fully scalable on parallel machines since it does not
have the drawback of the sequential Markov Chain
Monte Carlo.
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