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ABSTRACT: This study develops a decision model to assist bridge authorities in determining a preferred 

maintenance prioritization schedule for a degraded bridge network in a community that optimizes the 

performance of transportation systems within budgetary constraints at a regional scale. The study utilizes 

network analysis methods, structural reliability principles and meta-heuristic optimization algorithms to 

integrate individual descriptive parameters such as bridge capacity rating, condition rating, traffic 

demand, and location of the bridge, into global objective functions that define the overall network 

performance and maintenance cost. The performance of the network is measured in terms of travel time 

reliability between all possible origin/destination (OD) pairs. In addition to the global budgetary 

constraint, the optimization is also conditioned on local constraints imposed on traffic flow by 

insufficient load carrying capacity of deficient bridges. Uncertainties in traffic demands, vehicle weights 

and maintenance costs are also considered in the problem formulation. This decision model is illustrated 

with a hypothetical bridge network. 

1.  INTRODUCTION 

Highway bridges deteriorate in service as a result 

of a wide variety of events (e.g. floods, heavy 

truck traffic, aggressive environmental 

conditions, industrial action, and inadequate 

maintenance), making bridges the vulnerable 

nodes in transportation networks.  Resources 

allocated to the maintenance of transportation 

infrastructure in the United States (and societies 

worldwide) typically are limited, and seldom are 

sufficient to maintain in-service performance 

levels required for the infrastructure.  As stated in 

the 2013 ASCE Infrastructure Report Card, every 

year over $12 billion has been spent on the 

maintenance and rehabilitation of the nation’s 

bridges, while the annual investment that would 

be necessary to improve the current condition of 

existing highway bridges has been estimated to be 

$20 billion.  Bridge managers are facing ever-

increasing challenges in prioritizing expenditures 

to maintain safety and functionality of 

deteriorating bridge systems. A decision-making 

framework that maximizes the functionality of a 

regional transportation system while ensuring that 

individual bridges conform to the minimum safety 

requirements stipulated by Association of State 

Highway and Transportation Officials 

(AASHTO) (2012) is essential. 

2. BACKGROUNDS 

Bridge maintenance programs in the past usually 

have been developed to optimize the life-cycle 

cost (LCC) of individual bridges without 

considering the interaction between the bridges in 

making the transportation system functional.  For 

instance, the condition of one bridge, e.g. 

deterioration, failure, maintenance priority and 

the timing of expenditure, may very well affect 

the performance and maintenance scheduling of 

the neighboring bridges.  Finite resources for 

renewal/replacement of bridges within a 
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transportation system must be distributed among 

the bridges to optimize the performance of the 

system as a whole.   

In the past decade, several research studies 

have investigated bridge maintenance strategies 

considering bridges collectively as integral parts 

of a network.  Frangopol and his co-researches 

have made number of important contributions to 

the bridge network maintenance planning.  Liu 

and Frangopol (2005a; 2005b; 2006a) introduced 

a bridge reliability importance factor that relates 

individual bridge reliability to the reliability of the 

bridge network, and proposed a comprehensive 

mathematical model for evaluating the overall 

performance of a bridge network based on 

probabilistic analyses of network connectivity, 

user satisfaction, and structural reliability of the 

critical bridges in the network.  Their later study 

(Liu and Frangopol, 2006b) optimized bridge 

network maintenance based on a multi-objective 

approach using genetic algorithms.  A thorough 

review of their work can be found in Frangopol 

(2011).  Orcesi and Cremona (2010) proposed a 

bridge network management approach using 

visual inspection data and Markov chains. The 

above studies have based maintenance and project 

prioritization decisions on bridge LCC analysis of 

their projected service life.  

Rather than using LCC as a criterion for 

decision, several studies have attempted to obtain 

optimal bridge maintenance strategies by 

maximizing the operational performance of a 

transportation network.  Connectivity reliability 

and travel time reliability often have been 

proposed to assess the transportation network 

performance. Previous studies on connectivity 

reliability (e.g. Bocchini and Frangopol, 2011) 

and travel time reliability (e.g. Asakura and 

Kashiwadani, 1995) are useful for providing a 

basis to analyze network traffic equilibrium, but 

in these studies the links (bridges) of the network 

were modeled as either fully functional or 

completely closed.  In reality, however, many 

structurally deficient bridges are in neither status; 

rather, they continue to operate with a reduced 

load capacity imposed by lane closures or posting 

limits.   

In this paper, we develop a methodology for 

bridge network management and project 

prioritization that maximizes the operational 

performance of a transportation system measured 

in terms of travel-time reliability under budgetary 

constraints.  The study utilizes network analysis 

methods, structural reliability principles and 

meta-heuristic optimization algorithms to 

integrate individual descriptive parameters such 

as bridge capacity rating, condition rating, traffic 

demand, and location of the bridge, into global 

objective functions that define the overall network 

performance and maintenance cost. The 

performance of the network is measured in terms 

of travel time reliability between all possible 

origin/destination (OD) pairs. In addition to the 

global budgetary constraint, the optimization is 

also conditioned on local constraints imposed on 

traffic flow by insufficient load carrying capacity 

of deficient bridges. Uncertainties in traffic 

demands, vehicle weights and maintenance costs 

are also considered in the problem formulation.  

3. BRIDGE NETWORK SAFETY AND 

FUNCTIONALITY 

3.1. Safety Criteria for Individual Bridges-

Bridge Condition Rating and Capacity 

Rating 

Safety is the first priority among all bridge 

performance objectives. In current engineering 

practice, bridge condition rating (on the scale of 0 

to 9), assigned according to National Bridge 

Inspection Standard (NBIS), is widely used in 

bridge condition assessment in the US and is an 

overall measure of bridge’s condition. Bridge 

engineers assign condition ratings to existing 

bridges based on inspection data, traffic survey 

and highway types.  The NBIS stipulates that a 

bridge with a condition rating less or equal to 4 

must be repaired, replaced or closed to operation.  

Bridges in good physical condition could still 

pose a threat to the functioning of the 

transportation system if they were designed 

according to archaic standards because they may 
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not have adequate load carrying capacity for 

modern traffic demands.  Therefore, in addition to 

condition rating, the AASHTO Manual for Bridge 

Evaluation (2011) utilizes the bridge live load 

capacity rating factor (RF), calculated using 

bridge design strength minus dead load effect, 

divided by the live load effect, to reflect the 

bridge’s live load capacity with respect to its 

traffic demand.  If the resulting RF ≥1.0, the 

bridge is deemed to have adequate load carrying 

capacity, while if RF < 1, the bridge is required to 

be strengthened, replaced or posted.  If the bridge 

is posted, vehicles that are heavier than the weight 

limit suggested by the bridge’s RF are restricted 

from passing the bridge.   

Accordingly, either a low condition rating or 

a low capacity rating factor can trigger 

maintenance activities for a given bridge.  If 

closure of a bridge due to either severe 

deterioration (i.e. condition rating ≤4) or posting 

(i.e. RF<1) creates intolerable adverse impacts on 

the performance of the transportation system, the 

bridge should be scheduled for 

renewal/replacement.  The priority of the 

renewal/replacement project should be based on 

the level of impact that the bridge’s operational 

status (e.g. fully functional, posting, or closure) 

has on the efficiency of the transportation system 

as a whole, which is reflected in the network travel 

time reliability discussed in the next section. 

3.2. Bridge Network Functionality Measure - 

Travel Time Reliability 

In addition to the safety concerns regarding 

individual bridges discussed in section 3.1, it is 

important that appropriate system performance 

measures are introduced in order to improve the 

performance efficiency of the transportation 

network as a whole. In this study we use travel 

time reliability to evaluate network performance 

for degraded transportation networks.  We define 

the travel time reliability as the probability that the 

total travel time of all vehicles in the network 

between all possible origin-destination (O/D) 

pairs is less than a prescribed threshold.  The 

travel time reliability therefore is a function of 

traffic supply/demand in the network, distance 

between O/D pairs, the shortest time paths 

between each O/D pair for vehicles of different 

weight, and other network properties such as its 

topology, speed limit on links, and deterioration 

condition and load capacities of the bridges in the 

network.   

Let 𝜙  denote the service metric, computed 

by summing up all the fastest paths travel time for 

all vehicles traveling between network O/D pairs. 

The network travel time reliability,  𝑅𝑇 , is then 

defined as: 

 𝑅𝑇 = P[
𝜙

𝜙𝑝
< 𝛼] (1) 

in which 𝑃[ ∙ ] = probability of the statement in 

the bracket;  𝜙𝑝 = the minimum travel time (or 

service value) for an existing bridge network in 

its designed (“new”) condition; 𝛼 = the threshold 

for acceptable service value, which is set larger 

than 1.   If a network cannot transfer vehicles 

from their origins to destinations, 𝜙 approaches 

to infinity and 𝑅𝑇 to 0.   

4. MATHEMATICAL FORMULATION AND 

SOLUTION PROCEDURE 

4.1. Travel Time Optimization 

We define the network topology 𝐺 = (𝑁, 𝐴) as a 

set of nodes 𝑁  and set of arcs  𝐴 .  The nodes 

represent origins, destinations, and transition 

nodes.  The set of arcs, each denoted by a distinct 

node pair (𝑖, 𝑗) where 𝑖, 𝑗 ∈ 𝑁 for 𝑖 ≠ 𝑗, represent 

all existing roadways and bridges in the 

transportation system.  Let 𝐾  denote the total 

number of vehicles in the network and 𝑡 ∈ 𝐾 

identify each vehicle.  Let 𝑊 denote the set of all 

O/D pairs in 𝐺.  𝑇𝑂(𝑡)𝐷(𝑡)
𝑡

 is the total travel time of 

vehicle 𝑡 from its origin, 𝑂(𝑡), to its destination 

𝐷(𝑡) , where (𝑂(𝑡), 𝐷(𝑡)) ∈ 𝑊 , and can be 

obtained by modifying the classical shortest path 

method (Ahuja et al, 1993).  The network service 

value 𝜙 represents the sum of all vehicle travel 

times:  

 𝜙(𝐺) = ∑ ∑ 𝑇𝑂(𝑡)𝐷(𝑡)
𝑡

(𝑂(𝑡),𝐷(𝑡))∈𝑊𝑡∈𝐾  (2) 

Let 𝑑𝑖𝑗 and 𝑣𝑖𝑗 denote the distance and speed limit 
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on arc(𝑖, 𝑗) ∈ 𝐴 , respectively, 𝐵 ⊆ 𝐴  denote the 

set of network bridges, 𝑙𝑖𝑗 denote the posted load 

limit of bridge(𝑖, 𝑗) ∈ 𝐵 on arc(𝑖, 𝑗). Let 𝑟𝑖
𝑡 denote 

the traffic supply/demand at node 𝑖  of vehicle 𝑡 

(i.e. 𝑟𝑖
𝑡 = 1 if 𝑖 is the origin of vehicle 𝑡; 𝑟𝑖

𝑡 = −1 

if 𝑖 is the destination of vehicle 𝑡; and 𝑟𝑖
𝑡 = 0 if 𝑖 

is a transition node of vehicle 𝑡).  Flow variable 

𝑥𝑖𝑗
𝑡  denotes the flow of vehicle 𝑡 on arc(𝑖, 𝑗). 𝑥𝑖𝑗

𝑡 =

1 if arc(𝑖, 𝑗) is on the fastest path of vehicle 𝑡 from 

𝑂(𝑡)  to 𝐷(𝑡) , and 𝑥𝑖𝑗
𝑡 = 0  if otherwise.  The 

shortest travel time of all vehicles between all O/D 

pairs can be computed as the following: 

𝜙(𝐺) = min ∑ ∑
𝑑𝑖𝑗

𝑣𝑖𝑗
𝑥𝑖𝑗

𝑡
(𝑖,𝑗)∈𝐴𝑡∈𝐾  (3) 

 s. t.  ∑ 𝑥𝑖𝑗
𝑡

{𝑗:(𝑖,𝑗)∈𝐴} − ∑ 𝑥𝑗𝑖
𝑡

{𝑗:(𝑗,𝑖)∈𝐴} =

{
    1, 𝑖 = 𝑂(𝑡)

      −1,         𝑖 = 𝐷(𝑡)
         0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

∀𝑖 ∈ 𝑁 , ∀𝑡 ∈ 𝐾 (4) 

 0 ≤ 𝑥𝑖𝑗
𝑡 ≤ 1, ∀(𝑖, 𝑗) ∈ 𝐴  ∀𝑡 ∈ 𝐾 (5) 

Eq. (4) ensures that the inflow and outflow satisfy 

the traffic supply/demand at node 𝑖 of vehicle 𝑡. 

A posted load limit of structurally deficient 

bridges will certainly affect the path choice of 

many heavy trucks which, in turn, will impact the 

travel time of those trucks from their origin to 

destination. These effects are integrated in the 

calculation of the travel time by prohibiting 

vehicle 𝑡 from passing bridge (𝑖, 𝑗) if the vehicle 

weight,  𝜔𝑡 
, exceeds the posting limit of that 

bridge,   𝑙𝑖𝑗 , where 𝑙𝑖𝑗 =  𝑓𝑖𝑗 ∙ 𝑧
𝑖𝑗

⋅ 𝑙𝑖𝑗
𝑝

; 𝑙𝑖𝑗
𝑝

 = design 

(as “new”) load capacity of bridge  (𝑖, 𝑗) ;  𝑧𝑖𝑗 = 

capacity rating factor (RF) of the bridge(𝑖, 𝑗); and 

 𝑓𝑖𝑗 = 0  when bridge condition rating is less or 

equal to 4 and  𝑓𝑖𝑗 = 1 if otherwise.  It is assumed 

that the load capacities of roads (arcs without 

bridges) are much larger than the weight of any 

vehicle.  It is further assumed that the load 

capacity of any bridge that is renewed or replaced 

will be brought to 𝑙𝑖𝑗
𝑝

 (as “new” condition).  Let 

𝑦𝑖𝑗 denote the binary maintenance decision 

variables, where 𝑦𝑖𝑗 = 1 if bridge (𝑖, 𝑗) is selected 

for renewal/replacement and  𝑦𝑖𝑗 = 0  otherwise. 

The local constraints imposed on traffic flow by 

posting limits of deficient bridges are:  

𝜔𝑡𝑥𝑖𝑗
𝑡 ≤ max(𝑙𝑖𝑗, 𝑦𝑖𝑗𝑙𝑖𝑗

𝑝 ) , ∀(𝑖, 𝑗) ∈ 𝐵, ∀𝑡 ∈ 𝐾 (6) 

 𝑦𝑖𝑗 = {0,1}, ∀(𝑖, 𝑗) ∈ 𝐵 (7) 

Let 𝑐𝑖𝑗  denote the maintenance cost for 

bridge (𝑖, 𝑗) ∈ 𝐵  , which is assumed to be a 

function of both posting limit and deck area of the 

bridge and let Θ denote the total annual budget 

available for maintenance of the entire network.  

The cost constraint can then be expressed as: 

 ∑ 𝑐𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)∈𝐵 ≤ Θ (8) 

The optimal maintenance strategy and project 

prioritization will be obtained by minimizing the 

network travel time [as calculated using Eqs. (2)-

(5)] considering local constraints imposed by the 

reduced load capacity of deficient bridges [as 

expressed by Eqs. (6)-(7)] within a prescribed 

(global) budget limit [as expressed by Eq. (8)].   

 In this study we use Binary Particle Swarm 

Optimization (BPSO) to provide optimal 

solutions.  BPSO was designed to solve discrete 

optimization problems (Eberhart and Kennedy 

1995) and has been proved to perform better than 

Genetic Algorithms in several research studies 

(Elbeltagi, et al 2005, Hassan et al. 2005, Tudu et 

al. 2011, Chiu et al. 2012). In BPSO, each state 

variable is modeled as a particle; all possible 

positions of particles define the feasible solution 

space; BPSO iteratively updates the positions of 

all “particles” to search for a better solution 

according to its mathematical formulations.  For 

our problem, each “particle” is a vector of 

maintenance decision variables.  The maintenance 

cost and the network parameters (i.e. traffic 

demand and vehicle weight) are considered as 

random variables in this study, making the travel 

time reliability [as defined in Eq.(1) and 

computed in Eqs. (2)-(8))] stochastic in nature.  

Monte Carlo Simulation (MCS) coupled with 

Latin Hypercube Sampling (LHS) (Iman and 

Conover, 1980) is employed to account for the 

uncertainties in these variables in the optimization 
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process.  

4.2. Project Priority Indices 

Due to budget consideration and limited available 

resources, often only a portion of deficient bridges 

can be scheduled for renewal or replacement. 

Bridges that have a larger impact on the overall 

network performance should be prioritized for 

maintenance activities.  In this section, we 

introduce two priority indices for individual 

bridge project - static priority index (SPI) and 

dynamic priority index (DPI). 

The static priority index, SPI, is defined as a 

function of the difference in network travel time 

reliability between block running (with reduced 

load carrying capacity before repair) and smooth 

running (design-level load carrying capacity after 

repair) of the bridge considered, and can be 

calculated as: 

 SPI𝑖𝑗 =
𝐸[𝜙0]−𝐸[𝜙𝑖𝑗]

𝐸[𝜙0]−min{𝐸[𝜙𝑖𝑗]}
 (9) 

 

where 𝐸[∙]  is the mean operator; 𝜙0  = service 

value of the network without any 

renewal/replacement activities (i.e. the network is 

in its as-is condition); 𝜙𝑖𝑗 = service value of the 

network when only bridge(𝑖, 𝑗) ∈ 𝐵 is selected for 

renewal/replacement; min {𝜙𝑖𝑗}  = the minimum 

of all 𝜙𝑖𝑗. The priority index defined by Eq (9) 

reflects the net (or “absolute”) impact of the 

renewal of bridge(𝑖, 𝑗) on the network efficiency. 

SPI𝑖𝑗 will take on values between 0 to 1, with 1 

being the top priority. We denoted this measure 

the static priority index because it can be viewed 

as an “absolute” importance measure of the bridge 

within the network. 

In contrast, the dynamic priority index, DPI, 

is defined as a function of the likelihood of a 

bridge being selected for repair for a given overall 

maintenance budget when the uncertainties in the 

transportation network are considered. It can be 

calculated as:  

 𝐷𝑃𝐼𝑖𝑗|Θ = {
∑ 𝑦𝑖𝑗|𝑠𝜙𝑠

𝑆
𝑠=1

∑ 𝜙𝑖𝑗|𝑠
𝑆
𝑠=1

|Θ} (10) 

where S is the total sample size used in the LHS 

for MC simulation; s denotes the sample ID. 

𝑦𝑖𝑗|𝑠 are binary variables, where 𝑦𝑖𝑗|𝑠 = 1  if 

bridge (𝑖, 𝑗) is selected for renewal/replacement 

in the optimization with the sample set s and the 

fixed budget Θ  and 𝑦𝑖𝑗|𝑠 = 0 otherwise; 𝜙𝑠 = 

service value of the network resulting from the 

optimization with the sample set s and the fixed 

budget Θ.  In contrast to the SPI, DPI depends not 

only on the characteristics of the network, but also 

on the available budget and on which other 

bridges are selected under this budget; in this 

sense, it is a “dynamic” bridge importance 

measure which ensures that the selected bridges 

collectively maximize the network performance 

for a given budget.  When decision makers have a 

clearly determined budget limit to work with, the 

DPI is likely to result in bridge selections and 

prioritizations that will improve in the network 

performance beyond what SPI would provide.  

Comparison of these two ranking mechanisms 

will be further illustrated in Section 5 through an 

example. 

5. NUMERICAL APPLICATION 

A hypothetical bridge network is used in this 

section to illustrate the application of the proposed 

methodology and priority ranking measures.     

5.1. Hypothetical Bridge Network 

A hypothetical bridge network is generated, in 

which the nodes in the network represent origins, 

destinations, and transition nodes.  Links between 

nodes are roads, with or without bridges.  There 

are 600 roads in the network; 160 of them have 

one bridge on their road path.  We divide the 

network into nine equal-area regions and 

randomly select one node from each region to 

represent the regional business hub with assumed 

mean traffic supply/demand as listed in Table 1.   

A capacity rating factor less than 1.0 is 

assigned to 22% of the bridges randomly selected 

in the network; these bridges would be posted if 

not renewed or replaced. In addition, a condition 

rating less than or equal to 4 is assigned to another 

3% of the bridges which, if no maintenance 

activities were performed, would be closed due to 
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severe deterioration.  Accordingly, 40 out of the 

total of 160 network bridges require repair if the 

budget for network maintenance is sufficient.  The 

weight of vehicles in the highway network is 

modeled using a normal distribution (Nowak, 

1999). The renewal cost for each individual 

bridge is also modeled with a normal distribution, 

with the mean assumed to be positively 

proportional to its capacity rating factor and its 

deck area (Fragkakis and Lambropoulos 2004).  

The statistics of the network variables used in the 

analysis are summarized in Table 2. 

 
Table 1: Mean traffic demand/supply at O/D nodes. 

Node 

(City) 

Traffic 

supply (O) 
Traffic demand (D) 

3 2000  1400 

11 1700 3000 

19 1000 1500 

28 600 900 

30 4500 3600 

35 800 400 

37 1000 700 

41 1200 1800 

49 1600 1100 

Total 14400 14400 

 
Table 2: Statistics of the network variables. 

Parameter Symbol Distribution Mean COV 

Capacity 

rating factor 

RF Discrete 

[0.4, 0.5, 0.6, 

0.7, 0.8,. 0.9]  

0.65 0.20 

Speed limit 𝑣𝑖𝑗 Uniform 

[50,60,70,80]
mph 

65 0.13 

Traffic 

supply/dema

nd 

𝑟𝑖
  Normal Table 3 0.06 

Vehicle 

weight 

𝑤 Normal 65 kips 0.17 

Renewal cost 𝑐𝑖𝑗 Normal 16.6 

units* 

0.15 

*The mean cost assumed to be a function of the deck area and RF of the 

bridge. The unit is hypothetical for ranking purpose. 

5.2. Project Selection and Prioritization 

We apply BPSO to this hypothetical network, 

using LHS with 30 samples to account for the 

uncertainties in maintenance cost, vehicle weight 

and traffic supply/demand for each O/D pair.  It 

was found that the mean service value for the “as-

designed” network (all bridges are “new” without 

deterioration or weight posting), 𝜙𝑝, and that for 

the “as-is” network (degraded network without 

maintenance), 𝜙0, are 123,968 and 297,095 hours, 

respectively.  In other words, the network travel 

time in its current “as-is” condition, 𝜙0, is 2.39 𝜙𝑝.  

Assuming the total maintenance budget limit Θ is 

150 units, the mean total travel time of the 

network after the optimized repair projects,  𝜙 , 

will improve to 1.63 𝜙𝑝. The COV of 𝜙 is 1%, 

which is quite small because in each sample the 

algorithm searches the optimal solution and 𝜙 is 

always the minimum travel time.   

To further investigate the relation between 

the budget limit and the service metric, multiple 

budget values are tested with the same network. 

Figure 1 indicates that the normalized service 

value decreases as the available budget for 

maintenance increases.  As the budget increases 

to a certain level, approximately 400 unit in this 

case, the service metric of the network became 

1.0  𝜙𝑝 , meaning that the network performance 

recovers to its “as-new” condition. At this point, 

the budget is no longer a constraint for network 

maintenance activities and all deficient bridges 

can be scheduled for renewal/replacement.   

The number of selected bridges for repair 

will increase with the growth in the budget, but 

this increases is not simply due to adding more 

bridges to the selected group associated with a 

lower budget.  As shown in Figure 2, the 

likelihood of some bridges being selected, such as 

bridge (31,42), increases as Θ increases.  Other 

bridges that are critical to network performance 

are always selected, regardless of the budget limit, 

such as bridge (23,31).  Finally, for bridges such 

as bridge (4,7), the likelihood of being selected 

decreases initially because a neighboring bridge 

on an alternative road path might become a more 

effective candidate for improving the network 

performance as budget limit increases;  however, 

when the budget become essentially sufficient, 

they would be selected again.  The DPI, as a 
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function of the likelihood of being selected (as 

defined in Eq. (10)), can reflect such dynamics of 

the selection process encapsulated in the 

formulation of the optimization.  As an example, 

Figure 3 shows the comparison between DPI and 

SPI for selected bridges for a fixed budget Θ =
150. Obviously the DPI and SPI result in different 

project selections and priority rankings.  While 

the maintenance strategy using the SPI resulted in 

a mean normalized travel time of 1.946, the 

strategy using the DPI led to a normalized mean 

travel time of 1.630, representing a 32% 

improvement over the SPI for Θ equal to 150. 

 

 
Figure 1: Normalized mean network travel time as a 

function of budget.  

 

Figure 2: The likelihood of bridge being selected for 

renewal as budget increases. 

6. CONCLUSIONS 

This paper presented a framework for optimizing 

bridge maintenance decisions under budget 

constraints, which integrates uncertain traffic 

demand within the network, bridge condition 

ratings, bridge capacity ratings, and network 

characteristics (e.g. topology, vehicle speed limit, 

etc.).  It was found that weight posting of deficient 

bridges collectively will impact the operational 

performance of the transportation network 

significantly and must be taken into account in 

making maintenance decisions to maximize the 

network performance;  binary particle swarm 

optimization is efficient for solving mixed binary 

programming problems involved in optimizing 

maintenance schedules of large transportation 

networks; and the dynamic priority index (DPI) is 

a more effective ranking measure than the static 

priority index (SPI) when the available budget for 

network maintenance is fixed. 

 

 
Figure 3: Comparison of SPI and DPI (𝛩 = 150 

units) 
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