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ABSTRACT: Finite Element Reliability Analysis (FERA) has been used to evaluate the reliability of 

structures. Mean and variance of the structural response is often estimated with the use of approximate 

methods, while structural response distribution is approximated based on Monte Carlo simulation 

(MCS). In this paper, FERA is applied in an efficient manner with the use of a Multiplicative form of 

Dimensional Reduction Method (M-DRM), which can estimate accurately the statistical moments and 

the probability distribution of the structural response, e.g., drift of a structure. The proposed approach is 

combined with OpenSees FE software and illustrated through the nonlinear pushover and nonlinear 

dynamic analysis of a steel frame. MCS is also performed for comparison of the proposed method. 

1. INTRODUCTION 

Finite element analysis (FEA) has become a 

widely used tool for the numerical analysis of the 

structural response. But, uncertainties associated 

with input parameters such as material 

properties, geometry and loads may have to be 

accounted for in FEA. Finite element reliability 

analysis (FERA) can overcome this challenge by 

considering the input parameters as random 

variables, thus evaluating the reliability of large 

and practical multi degrees of freedom 

structures. 

In a large multi degree of freedom problem, 

the following issues are usually encountered; (1) 

to minimize the number of function evaluations, 

especially when the deterministic evaluation of 

the model takes a long time, (2) to estimate 

accurately the probability distribution of the 

structural response function, especially in finite 

element analysis where the structural response 

function is in an implicit form, (3) to connect a 

general FEA software with a reliability platform, 

especially when knowledge on advanced 

programing languages is required. 

At this time there is not any available 

commercial software in the market that includes 

in its interface both FEA and reliability. In order 

to apply FERA is required to link a general 

purpose FEA program, e.g., ABAQUS, with an 

existing reliability platform, e.g., NESSUS or 

ISIGHT, but the analyst has to purchase 

separately these reliability platforms. More 

information with respect to the connection 

between FEA software and structural reliability 

can be found in literature (Pellissetti and 

Schuëler 2006). 

On the other hand, the analyst can take 

advantage of the free and open-source FE 

software OpenSees (McKenna et al. 2000), 

which already contains reliability capabilities 

(Der Kiureghian et al. 2006). OpenSees interface 

supports the use of Tcl programming language, 

thus in this paper Tcl programming is used for 

automating both MCS and M-DRM. The only 

disadvantages here is that writing source code for 

large scale structures is a tedious task which 

requires prior knowledge and enough experience 

in computer programming, which can be 

prohibited for researchers to apply FERA. 

 The objective of this paper is to present a 

Multiplicative form of Directional Reduction 

Method (M-DRM) for FERA of structures, 

which can overcome potential limitations as they 
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were introduced in previous paragraphs. Monte 

Carlo simulation (MCS) is also applied for 

comparison and validation of the M-DRM 

results. Thus, M-DRM and MCS are both 

implemented on a structure selected from 

literature and analyzed with the use of the free, 

open-source code and object-oriented software 

framework OpenSees.  

2. MUTIPLICATIVE DIMENSIONAL 

REDUCTION METHOD (M-DRM) 

2.1. General Description 

In the reliability analysis a system’s response is 

frequently modeled as a function of numerous 

input variables. For instance, the lateral 

displacement of a structural frame can be 

described as a function of several input variables 

such as the strength of materials, the structural 

dimensions and the applied loads.  

Mathematically this is denoted as 

 𝑌 = ℎ(𝐱) (1) 

where 𝑌 is a scalar output random variable 

and (𝐱)  is a vector of input random variables 

𝑥1, … , 𝑥𝑛. If the structural failure is defined by a 

simple condition such as 𝑌 > 𝑦𝑐, the probability 

of failure (𝑝𝑓)  can be obtained from the 

cumulative distribution function (CDF) of the 

response, 𝐹𝑌(𝑦), as 

 𝑝𝑓 = 1 − 𝐹𝑌(𝑦𝑐) (2) 

where 𝑦𝑐  corresponds to a safety limit. 

Numerical approach using Monte Carlo 

simulation (MCS) provides an easy to implement 

alternative for reliability computation, but the 

computational cost can be prohibited for the 

reliability analysis, especially when it comes to 

complex and/or large scale structures. For that 

reason a multiplicative dimensional reduction 

method (M-DRM) is proposed for reliability 

analysis. 

2.2. Integer Moments of Response using M-DRM 

In literature, the high dimensional model 

representation (HDMR) method (Rabitz and Aliş 

1999; Li et al. 2001) uses an additive form to 

approximate a scalar function as 

 ℎ(𝐱) ≈∑ℎ𝑖(𝑥𝑖)

𝑛

𝑖=1

 − (𝑛 − 1)ℎ0 (3) 

where 𝑛 is the number of random variables, 

ℎ𝑖(𝑥𝑖) is a unidimensional cut function defined 

as 

 ℎ𝑖(𝑥𝑖) = ℎ(𝑐1, … , 𝑐𝑖−1, 𝑥𝑖 , 𝑐𝑖+1, … , 𝑐𝑛) (4) 

and ℎ0  represents the system response 

which is evaluated at the cut point (Li et al. 

2001) and  is calculated when all input random 

variables are set equal to their mean values 

(𝑐1, 𝑐2, … , 𝑐𝑛) as 

 ℎ0 = ℎ(𝑐1, 𝑐2, … , 𝑐𝑛) = 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (5) 

Alternate to the additive form, a 

multiplicative DRM method is developed to 

simplify the evaluation of both integer and 

fractional moments of the response. In this 

approach, the structural response is approximated 

as 

 ℎ(𝐱) ≈ ℎ0
(1−𝑛)

×∏ℎ𝑖(𝑥𝑖)

𝑛

𝑖=1

 (6) 

Using the above representation, a 𝑘𝑡ℎ 

product moment of the response function (𝑌) can 

be approximated as 

 𝐸{[ℎ(𝐱)]𝑘} ≈ 𝐸 {[ℎ0
(1−𝑛) ×∏ℎ𝑖(𝑥𝑖)

𝑛

𝑖=1

]

𝑘

} (7) 

where 𝐸[ ] denotes the mathematical 

expectation operation, which for 𝑘 = 1  is the 

mean value. Considering all random variables as 

independent, Eq. (7) can be written as 

 𝐸{[ℎ(𝐱)]𝑘} ≈ ℎ0
𝑘(1−𝑛)

∏𝐸 [(ℎ𝑖(𝑥𝑖))
𝑘
]

𝑛

𝑖=1

 (8) 

Then is defined the mean and mean square 

of a 𝑘𝑡ℎ  cut function as 𝜌𝑘 = 𝐸𝑘[ℎ𝑘(𝑋𝑘)]  and 

𝜃𝑘 = 𝐸[(ℎ𝑘(𝑋𝑘))
2
], respectively, and using Eq. 

(8) the mean of the response is approximated as 
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 𝜇𝑌 ≈ ℎ0
(1−𝑛)

×∏𝜌𝑘

𝑛

𝑘=1

 (9) 

and the mean square is approximated as 

 
𝜇2𝑌 ≈ ℎ0

(2−2𝑛)
×∏𝜃𝑘

𝑛

𝑘=1

 
 

(10) 

The variance is expressed as a difference 

between the mean square and the square of the 

first product moment (Ang and Tang 2007). 

Thus, using Eqs. (9) and  (10), the variance of 

the response can be estimated as 

 
𝑉𝑌 ≈ (𝜇𝑌)

2 × [(∏
𝜃𝑘

𝜌𝑘
2

𝑛

𝑘=1

) − 1] 
 

(11) 

The evaluation of any 𝑘𝑡ℎ product moment 

of response requires one dimensional integration 

of all the cut functions using the scheme of 

Gauss quadrature, for which more details can be 

found in Zhang and Pandey (2013). For example, 

a 𝑘𝑡ℎ  moment of an 𝑖𝑡ℎ  cut function can be 

approximated as a weighted sum as 

 

𝐸{[ℎ𝑖(𝑥𝑖)]
𝑘} ≈∑𝑤𝑗[ℎ𝑖(𝑥𝑗)]

𝑘
𝐿

𝑗=1

 

 

(12) 

where 𝐿 is the number of evaluation points 

of the Gauss quadrature, 𝑥𝑗  and 𝑤𝑗  are the 

coordinates and weights, respectively, of the 

Gauss quadrature points (𝑗 = 1,… , 𝐿),  ℎ𝑖 
(𝑖 = 1,2, … , 𝑛)  is the response of the system 

when 𝑖𝑡ℎ  cut function is set at 𝑗𝑡ℎ  Gauss 

quadrature point and 𝑛 is the number of random 

variables. 

2.3. Fractional Moments of Response using M-

DRM 

After calculating the first two integer moments 

of the response, i.e., mean and variance 

respectively, the problem that arises is the 

estimation of response probability density 

function (PDF). Here, is used the maximum 

entropy (MaxEnt) principle (Jaynes, 1957) with 

fractional moment constraints, i.e., 𝐸[𝑋𝛼] = 𝑀𝑋
𝛼 

where 𝛼  not an integer, where the fractional 

moments (𝑀𝑋
𝛼)  are derived from M-DRM 

method. The fractional moment of a positive 

random variable 𝑥  is defined as (Inverardi and 

Tagliani 2003) 

 
𝐸[𝑋𝛼] = 𝑀𝑋

𝛼 = −∫ 𝑥𝛼𝑓𝑋(𝑥)
𝑋

𝑑𝑥 
 

(13) 

where 𝛼  is a real number. Fractional 

moments have the important property of being 

capable of characterizing completely the 

probability distribution of a positive random 

variable (Pandey and Zhang 2012). Using the M-

DRM as defined in Eq. (8), an 𝛼𝑡ℎ Moment 

calculation of the response can be approximated 

as  

 
𝑀𝑋
𝛼 ≈ [ℎ0

(1−𝑛)]
𝛼
× 𝐸{[ℎ1(𝑥1)]

𝛼} × …

× 𝐸{[ℎ𝑛(𝑥𝑛)]
𝛼} 

(14) 

where ℎ0 represents the system response as 

shown in Eq. (5) and each expected value 𝐸[ ] 
is calculated as shown in Eq. (12). 

 The benefit here is that we do not need to 

specify the fractions 𝛼𝑖 (𝑖 = 1,2, … ,𝑚) a priory, 

as they will be determined during the entropy 

optimization procedure (Inverardi and Tagliani 

2003). The true entropy (𝐻[𝑓]) of a continuous 

positive random variable 𝑥 is defined in terms of 

its PDF (𝑓𝑋(𝑥)) as 

 
𝐻[𝑓] = −∫ 𝑓𝑋(𝑥)

𝑋

𝑙𝑛[𝑓𝑋(𝑥)]𝑑𝑥 
 

(15) 

The Lagrangian function associated with the 

MaxEnt problem is given as 

 ℒ[𝜆, 𝛼; 𝑓𝑋(𝑥)]

= −∫ 𝑓𝑋(𝑥)
𝑋

𝑙𝑛[𝑓𝑋(𝑥)]𝑑𝑥

− (𝜆0 − 1) [∫ 𝑓𝑋(𝑥)
𝑋

𝑑𝑥 − 1]

−∑𝜆𝑖 [∫ 𝑥𝛼𝑖𝑓𝑋(𝑥)𝑑𝑥 − 𝑀𝑋
𝛼𝑖

𝑋

]

𝑚

𝑖=1

 

 

(16) 
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where 𝜆 = [𝜆0, 𝜆1, … , 𝜆𝑚]
𝑇 are the Lagrange 

multipliers and 𝛼 = [𝛼0, 𝛼1, … , 𝛼𝑚]
𝑇  are the 

fractions associated with the fractional moments. 

For optimal solution the following key condition 

is applied as 

 𝜕 ℒ[𝜆, 𝛼; 𝑓𝑋(𝑥)]

𝜕𝑓𝑋(𝑥)
= 0 

 

(17) 

which leads to the estimated PDF (𝑓𝑋(𝑥)) 

of the true PDF (𝑓𝑋(𝑥)) as 

 
𝑓𝑋(𝑥) = exp(−∑𝜆𝑖𝑥

𝛼𝑖

𝑚

𝑖=0

) 
 

(18) 

For 𝑖 = 0, 𝛼0 = 0 and 𝜆0 is derived  as 

 
𝜆0  = log [∫ exp (−∑𝜆𝑖𝑥

𝛼𝑖

𝑚

𝑖=1

)
𝑋

𝑑𝑥] 
 

(19) 

based on the normalization condition that 

the integration of the PDF must be equal to one.  

Then MaxEnt optimization procedure with 

constraints in term of fractional moments is 

applied, contrary to the traditional MaxEnt 

method which uses integer moments (Ramírez 

and Carta 2006). The reason is that as the order 

of the integer moment increases, the estimation 

error increases too (Pandey and Zhang 2012). 

In order to implement the idea of MaxEnt 

optimization with fractional moments, an 

alternate formulation is proposed based on the 

minimization of the Kullback-Leibler (K−L) 

divergence, also called cross-entropy, between 

the true PDF and the estimated PDF as 

 𝛫[ 𝑓, 𝑓 ]

= ∫ 𝑓𝑋(𝑥)
𝑋

𝑙𝑛[𝑓𝑋(𝑥)  𝑓𝑋(𝑥)⁄ ]𝑑𝑥

= ∫ 𝑓𝑋(𝑥)
𝑋

𝑙𝑛[𝑓𝑋(𝑥)]𝑑𝑥

− ∫ 𝑓𝑋(𝑥)
𝑋

𝑙𝑛[𝑓𝑋(𝑥)]𝑑𝑥 

 

(20) 

Taking into account Eq. (13) and 

substituting 𝐻[𝑓] from Eq. (15) and 𝑓𝑋(𝑥) from 

Eq. (18) into Eq. (20), the K−L divergence 

(𝛫[ 𝑓, 𝑓 ]) can be rewritten as 

 
𝛫[ 𝑓, 𝑓 ] = −𝐻[𝑓] + 𝜆0 +∑𝜆𝑖𝑀𝑋

𝛼𝑖

𝑚

𝑖=1

 
 

(21) 

where 𝛫[ 𝑓, 𝑓 ]  is the divergence measure 

of the distance between the true PDF and the 

estimated PDF. Here it can be noticed that the 

entropy (𝐻[𝑓]) of the true PDF does not depend 

on 𝜆 and 𝛼, so the K−L minimization implies the 

minimization of the following function 

 
𝛫[ 𝑓, 𝑓 ] + 𝐻[𝑓] = 𝜆0 +∑𝜆𝑖𝑀𝑋

𝛼𝑖

𝑚

𝑖=1

 
 

(22) 

Therefore, the MaxEnt parameters, i.e., the 

Lagrange multipliers (𝜆𝑖)  and the fractional 

exponents (𝛼𝑖), can be obtained by applying the 

following optimization 

 

{
 
 

 
 

𝑭𝒊𝒏𝒅: {𝛼𝑖}𝑖=1
𝑚     {𝜆𝑖}𝑖=1

𝑚

 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆: 𝐼(𝜆, 𝛼) = 𝜆0 +∑𝜆𝑖𝑀𝑋
𝛼𝑖

𝑚

𝑖=1

 

 

(23) 

which is implemented in MATLAB by 

using the simplex search method (Lagarias et al. 

1998). 

2.4. Computational Efficiency using M-DRM 

M-DRM combined with the rules of Gaussian 

quadrature requires a magnitude of 𝑛𝐿 trials for 

the evaluation of the structural response. 

Considering the Gauss-type integration scheme, 

the total number of functional evaluations can be 

assessed as 𝑀𝐷𝑅𝑀𝑡𝑟𝑖𝑎𝑙𝑠 = 1 + (𝑛𝐿), where 1 

represents the case when all random variables are 

fixed to their mean values, i.e., cut point, 𝑛 is the 

number of the random variables and 𝐿  is the 

order of the Gaussian quadrature. Further details 

regarding Gaussian quadrature can be found in 

Zhang and Pandey (2013). 
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3. NUMERICAL EXAMPLE 

3.1. General Description 

In order to illustrate the applicability and to 

examine the efficiency of the proposed M-DRM, 

FERA is applied on a steel frame (Figure 1) 

taken from Haukaas and Scott (2006). Each 

frame member is discretized in 8 displacement-

based finite elements. Gravity load of 50 kN and 

100 kN is applied at the external and internal 

connections, respectively. In additional to the 

gravity loads, the frame is subjected; (1) to static 

pushover analysis and (2) to dynamic analysis. 

For the pushover analysis, lateral loads of 400 

kN, 267 kN and 133 kN are applied on nodes 13, 

9 and 5, respectively.  

For the dynamic analysis, the Imperial 

Valley earthquake ground motion is used, taken 

from the PEER Strong Motion Database 

(http://peer.berkeley.edu/smcat/). The Magnitude 

of the earthquake was 6.53, with a PGA (g) 

equals to 0.143 at 10.84 sec, as it was recorded 

from Station USGS 931 El Centro Array #12 

(1979/10/15, 23:16). Pushover analysis gives a 

total reaction force at the supports equals to 800 

kN, and the accelerogram of the earthquake was 

scaled so as to produce the same reaction force at 

the time of the PGA.  Both analyses performed 

by using the open source FE software OpenSees, 

where Tcl programming is also used in order to 

automatically update the random variables in 

each trial for both M-DRM and MCS. This idea 

of the parameter updating functionality is further 

described in Scott and Haukaas (2008). 

The material properties of the steel frame 

are considered as independent random variables, 

forming 21 members x 3 parameters = 63 

random variables in total (Table 1). The 

objective here is to estimate the mean, variance 

and distribution of the response, i.e., maximum 

lateral displacement of node 13 (𝑢13). 
 

Table 1: Statistical properties of random variables. 

Parameter Distribution Mean COV 

E (MPa) Lognormal 200,000 
 

5.0% 

fy (MPa) Lognormal 300  10.0% 

b Lognormal 0.02 10.0% 

 

 
Figure 1: Steel frame showing node numbers, 

member numbers (in parenthesis) and gravity loads.  

 

  
Figure 2: Steel cross 

section (bf =d=250 mm, 

tf =tw=20 mm). 

Figure 3: Steel material 

model. 

3.2. Mean and Variance of Response 

Based on M-DRM and using the five point 

Gauss-Hermite integration scheme, the response 

of the steel frame is a product of 63×5+1 = 316 

cut functions, since the problem involves 63 

random variables. Thus, an input grid is created 

(Table 2) and FEA is performed. For instance, 

for the first five trials the modulus of elasticity 

(E) of member 17 changes, while the rest of 62 

random variables remain fixed to their mean 

values. This input grid is used for both pushover 

and dynamic analysis, and the response 𝑢13 

obtained for each one is shown on Table 3. 

Then, the mean of each cut function is 

calculated as 𝜌𝑖 = ∑ 𝑤𝑗𝑢13𝑖𝑗
𝐿
𝑗=1  (𝑖 = 1,2, … , 𝑛) 

where 𝑢13𝑖𝑗  is the lateral displacement of 

thirteenth node when 𝑖𝑡ℎ cut function is set at 𝑗𝑡ℎ 

quadrature point, and 𝑤𝑗  is the Gauss weights of 

the five order rule (𝐿 = 5)  of Gauss-Hermite 

quadrature. Similarly the mean square of cut 

http://peer.berkeley.edu/smcat/
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functions is calculated as 𝜃𝑖 = ∑ 𝑤𝑗(𝑢3𝑖𝑗)
2𝐿

𝑗=1 . 

The overall response mean and variance is then 

approximated by Eq. (9) and Eq. (11), 

respectively, for both pushover (Table 4) and 

dynamic analysis (Table 5). 

 
Table 2: Input grid for M-DRM. 

Input  

RV 
Trial E (N/mm

2
) … 

fy 

(N/mm
2
) 

E  

(member 

17)  

1 173,176 … 300 

2 186,667 … 300 

3 199,750 … 300 

4 213,750 … 300 

5 230,402 … 300 

… … … … … 

fy  

(member 

16) 

311 200,000 … 224 

312 200,000 … 260 

313 200,000 … 298 

314 200,000 … 341 

315 200,000 … 396 

Fixed 

Mean 

Values 

316 200,000 … 300 

 
Table 3: Output response based on input grid for M-

DRM. 

Trial 
𝑢13 (mm) 

Pushover  Dynamic 

1 226.33 145.94 

2 225.59 145.42 

3 224.94 144.95 

4 224.315 144.47 

5 223.64 143.93 

… … … 

311 247.64 144.94 

312 233.56 144.94 

313 225.11 144.94 

314 223.51 144.94 

315 223.50 144.94 

316 224.93 144.94 

 
Table 4: Output response statistics: Pushover 

Analysis. 

Pushover 

Analysis 

Max lateral displacement (𝑢13) 
MCS  M-DRM  Relative 

(10
5
 

Trials) 

(316 

Trials) 

Error 

(%) 

Mean 

(mm) 
237.32 238.47 0.48 

Stdev 

(mm) 
22.36 21.62 3.33 

COV 0.0942 0.0906 3.80 

 
Table 5: Output response statistics: Dynamic 

Analysis. 

Dynamic 

Analysis 

Max lateral displacement (𝑢13) 
MCS  

(10
4
 

Trials) 

M-DRM 

(316 

Trials) 

Relative 

Error 

(%) 

Mean 

(mm) 
149.06 146.21 1.92 

Stdev 

(mm) 
10.05 13.19 31.21 

COV 0.0674 0.0902 33.77 

Note: Stdev = Standard Deviation; COV = 

Coefficient of Variation; Relative Error = 

|𝑀𝐶𝑆 −𝑀𝐷𝑅𝑀|/𝑀𝐶𝑆. 

 

The numerical results obtained from M-

DRM and MCS are compared. M-DRM method 

requires 316 trials, whereas simulation results are 

based on 10
5
 and 10

4
 trials for pushover and 

dynamic analysis, respectively. For pushover 

analysis, mean and standard deviation 

estimations based on M-DRM have a very small 

error compared to MCS results (Table 4). For 

dynamic analysis, M-DRM estimates have a 

larger error, but still are in a good agreement 

with the MCS results (Table 5). 

3.3. Probability Distribution of Response 

The distribution of maximum lateral 

displacement (𝑢13)  is estimated based on the 

maximum entropy (MaxEnt) principle. The 

MaxEnt algorithm provides the Lagrange 

multipliers (𝜆𝑖) and the fractional exponents (𝛼𝑖) 
(𝑖 = 1,2, … ,𝑚)  defining the probability 

distribution in Eq. (18). Usually, three fractional 

moments (𝑚 = 3) are sufficient for the analysis, 

as entropy converges rapidly (Table 6).  
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Table 6: Entropy. 

Fractional 

Moments 

Entropy 

Pushover Dynamic 

m=1 -0.852 -0.012 

m=2 -2.435 -2.915 

m=3 -2.434 -2.915 

m=4 -2.434 -2.914 

 
Table 7: MaxEnt distribution parameters for 3 

fractional moments. 

m=3 Pushover Dynamic 

i 𝜆𝑖 𝛼𝑖 𝑀𝑋
𝛼𝑖  𝜆𝑖 𝛼𝑖 𝑀𝑋

𝛼𝑖  

0 35.51 - - 365 - - 

1 39.39 0.72 0.35 
-4E-

05 
2.53 

0.01 

2 -33.6 -0.4 1.79 1125 1.42 0.07 

3 0.03 -3.95 311 -695 0.23 0.64 

 

PDF of lateral displacement at node 13 

obtained from M-DRM and MCS (simulations) 

are in fairly close agreement (Figure 4). Three 

fractional moments can accurately model the 

distribution, as shown from the probability of 

exceedance (POE) curves (Figure 5, Figure 6). 

 
Figure 4: Probability distribution of the maximum 

lateral displacement at node 13: Pushover Analysis.  

 

For instance, if the maximum allowable 

lateral displacement of node 13 is 0.36m (3% of 

the frame height), the probability of exceeding 

this limit (or probability of failure) is estimated 

by M-DRM as 9.18 × 10−5  and by MCS as 

8.99 × 10−5  (Figure 5). This result confirms 

high accuracy of M-DRM achieved by a 

relatively small number of structural analyses 

(316 trials) contrary to MCS (10
5
 trials). 

 
Figure 5: Probability of Exceedance of the maximum 

lateral displacement at node 13: Pushover Analysis. 

 
Figure 6: Probability of Exceedance of the maximum 

lateral displacement at node 13: Dynamic Analysis. 

3.4. Computational Time 

M-DRM provides an enormous saving of 

computational time. Using a personal computer 

with Intel i7-3770 3rd Generation Processor and 

16GB of RAM, for the pushover analysis MCS 

with 100,000 FE simulations takes 5.84 hours 

and for the dynamic analysis MCS with 10,000 

FE simulations takes 14.02 hours. M-DRM 

approximation based on 316 FE analyses, for the 

pushover analysis takes 0.76 minutes and 

MaxEnt optimization requires 0.34 minutes, and 

for the dynamic analysis takes 32.46 minutes and 

MaxEnt optimization requires 1.03 minutes. 

Thus, total time taken by M-DRM is merely 

0.31% and 3.99% of the time taken by MCS for 

the pushover and dynamic analysis, respectively. 

Note that as the complexity of the problem 

increases, the computational cost is relatively 

reduced. 
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4. CONCLUSIONS 

In this paper is presented a Multiplicative form 

of Dimensional Reduction Method (M-DRM), 

which can be used efficiently for finite element 

reliability analysis (FERA) of structures. Based 

on Gauss quadrature scheme, an input grid is 

created and response moments (mean and 

variance) are calculated. Then the MaxEnt 

algorithm is applied to compute the distribution 

parameters of the response. Here, M-DRM is 

implemented in OpenSees FE software with the 

aid of Tcl programming language 

The proposed method provides a robust and 

computationally viable method for full 

probabilistic analysis of practical problems, as 

requires relatively small FE simulations based on 

a specified input grid. The main benefit of M-

DRM is large computationally economy with a 

high accuracy comparing to simulations, as 

illustrated in this paper. Nonlinear pushover and 

nonlinear dynamic analysis of a steel frame with 

63 random variables illustrates this point very 

well, as M-DRM with 316 FE simulations 

provides close results to 100,000 and 10,000 

simulations for the pushover and dynamic 

analysis, respectively, while M-DRM is merely a 

fraction (0.31%, 3.99%) of that of the Monte 

Carlo simulations.  
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