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ABSTRACT: The application of hierarchical models for assessing the compressive strength of structural
masonry is investigated. Based on current codified models the distribution of compressive strengths
within an ensemble of masonry wall specimens is related to the statistical properties of the populations of
brick units and mortar used. The parameters of this relation are calibrated with test data acquired at ETH
Zürich. This approach allows for heterogeneous material modeling, consistent uncertainty management
and optimal information processing. Costly compression tests of full-size masonry and inexpensive tests
of brick and mortar samples are jointly utilized for learning about the masonry wall characteristics.

1. INTRODUCTION

Structural masonry is a composite material that
consists of brick units and mortar. The mechani-
cal key characteristic of masonry is the compressive
strength perpendicular to the bed joints. Estimating
or predicting this material property are thus issues
of central importance to assessing the reliability
of masonry structures. These problems are there-
fore addressed in current standards (EN 1996-1-
1, 2005; JCSS, 2001) and numerous enhancements
(Dymiotis and Gutlederer, 2002; Glowienka and
Graubner, 2006; Schueremans and Van Gemert,
2006; Mojsilovic and Faber, 2009; Sýkora and
Holický, 2010; Garzón-Roca et al., 2013; Sykora
and Holicky, 2014; Sykora et al., 2014).

The motivation of this research study is twofold.
Firstly, we observe a systematic discrepancy be-
tween measured data and predictions of the ma-
sonry compressive strength according to EN 1996-
1-1 (2005). This suggests a recalibration of the
model code parameters. Secondly, it is noticed that
current approaches either suffer from their semi-

probabilistic character or their unsatisfactory treat-
ment of the emerging uncertainties. Thus the goal
of this paper to develop a fully probabilistic exten-
sion of current codified models for assessing the
compressive strength of unreinforced masonry. We
will rely on hierarchical models (Nagel and Sudret,
2015, 2014) and Bayesian networks (Sankararaman
et al., 2012; Urbina et al., 2012). This approach
will allow for heterogeneous modeling of structural
masonry, quantification of various types of uncer-
tainty and acquisition of information from diverse
sources.

More specifically it is aimed at analyzing the
compressive strength of structural masonry with
system-level data, i.e. measurements that are taken
from full-scale masonry specimens, component-
level data, i.e. results from testing brick units and
mortar samples individually, and prior or expert
knowledge. Compression tests of masonry speci-
mens are rather costly, whereas data associated to
component-specific material characteristics are rel-
atively inexpensive to acquire. Hierarchical models
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enable the joint processing of information from dif-
ferent levels of the overall system. This way the
information is optimally utilized. Moreover a pre-
dictive relationship is established that connects the
masonry compressive strength with the component-
level compressive strengths.

The remainder of this document is organized as
follows. Previous approaches of assessing the com-
pressive strength of structural masonry will be re-
viewed in Section 2. Hierarchical models will be
introduced in Section 3. In Section 4 the acquired
data will be discussed and Section 5 will show the
results of Bayesian updating. Lastly we will sum-
marize and conclude in Section 6.

2. CURRENT MODELS

In EN 1996-1-1 (2005) it is tried to relate the com-
pressive strength of masonry to the resistances of
its brick and mortar components. The relationship
is realized as a power function

fw = k′ f α ′
b f β ′

m . (1)

On the one hand, the compressive strength of ma-
sonry is summarized by the characteristic value fw,
i.e. a 5%-quantile. On the other hand, fb denotes
the normalized mean compressive strength of the
units and fm denotes the mean compressive strength
of the mortar. Estimates of the constants (k′,α ′,β ′)
are given for different types of masonry. In JCSS
(2001) the empirical relation Eq. (1) is interpreted
similarly. Here fw, fb and fm represent the mean
values of the corresponding distributions. Differ-
ent prior estimates of the coefficients (k′,α ′,β ′) are
provided. The coefficients are often set so that they
(approximately) satisfy α ′+ β ′ = 1. This choice
can be justified for reasons of the physical dimen-
sion in Eq. (1).

Ensuing from these semi-probabilistic models, a
variety of extensions have been proposed in the lit-
erature. There are probabilistic reinterpretations of
Eq. (1) based on lognormal distributions (Schuere-
mans and Van Gemert, 2006; Sýkora and Holický,
2010; Sykora and Holicky, 2014; Sykora et al.,
2014). In other studies the model uncertainty of
Eq. (1) is quantified (Dymiotis and Gutlederer,

2002; Glowienka and Graubner, 2006). A conju-
gate Bayesian updating approach based on Gaus-
sian distributions is presented in Mojsilovic and
Faber (2009). Another idea is to establish a con-
nection between the compressive strengths of ma-
sonry and its components via artificial neural net-
works (Garzón-Roca et al., 2013).

These previous approaches suffer from the fact
that they either do not clearly distinguish between
epistemic and aleatory shares of uncertainty or they
neglect material heterogeneity. Fitting the parame-
ters of a probabilistic extension of Eq. (1) is a prob-
lem that has hardly been satisfactorily solved as yet.

3. HIERARCHICAL MODELS
In the following hierarchical Bayesian modeling is
introduced as a tool for distinguishing and handling
uncertainty in codified models of the form Eq. (1).
The aim of this section is to establish a Bayesian
model and updating strategy for the following ex-
perimental situation. The compressive strength is
measured for a number of clay block masonry spec-
imens. Specimens can be grouped according to
the ensembles of brick units and mortar that were
used for their construction. Here ensembles of clay
bricks are characterized by the same ingredients
used and the same manufacturing procedure. Simi-
larly in every ensemble of mortar samples identical
constituents were used for mixing. In this modeling
approach material heterogeneity is accounted for by
distinguishing between brick and mortar samples
used in constructing the masonry wall systems. The
final goal is the assessment and prediction of the
compressive capacity of structural masonry by uti-
lizing system- and component level information.

3.1. Aleatory Model
Within an ensemble of masonry wall specimens, the
compressive strength of the masonry wall is repre-
sented as a random variable

Fw = kFα
b Fβ

m . (2)

This is a probabilistic extension of the codified
model in Eq. (1). We remark that the coefficients
(k,α,β ) of the relation Eq. (2) are not immediately
identified with the ones of Eq. (1).
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The compressive strengths of the bricks and the
mortar are modeled as lognormal random variables
Fb∼L N ( fb|µb,σ

2
b ) and Fm∼L N ( fm|µm,σ

2
m).

Their distributions are determined by hyperparam-
eters θθθ b = (µb,σb) and θθθ m = (µm,σm) that are
the mean and standard deviation of log(Fb) and
log(Fm), respectively. Consequently the masonry
wall compressive strength in Eq. (2) is a random
variable that follows a lognormal distribution

Fw ∼L N
(

fw|µw,σ
2
w
)
, (3a)

with µw = αµb +β µm + logk, (3b)

and σ
2
w = α

2
σ

2
b +β

2
σ

2
m. (3c)

The distribution Eq. (3a) represents the variability,
i.e. the frequency distribution, of the masonry com-
pressive strengths within the population of speci-
mens. It is parametrized by hyperparameters θθθ w =
(µw,σw) that are determined by the statistical prop-
erties of component populations due to Eqs. (3b)
and (3c).

The mean value and the variance of the dis-
tribution L N

(
fw|µw,σ

2
w
)

in Eq. (3) are simply
given as E[Fw] = exp(µw + σ2

w/2) and Var[Fw] =
(exp(σ2

w)− 1)exp(2µw + σ2
w), respectively. The

5%-quantile of L N
(

fw|µw,σ
2
w
)
, e.g. for compar-

ison with Eq. (1), follows as Qw,5% = exp(µw −
1.645σw).

3.2. Epistemic Model
If the coefficients (k,α,β ) of Eqs. (2) and (3)
are not perfectly known, one can represent their
epistemic uncertainty as prior random variables
(K,A,B) ∼ π(k,α,β ). In the following we will
confine the analysis to the case β = 1−α . We con-
sider mutually independent prior random variables

K ∼ π(k), A∼ π(α). (4)

Their joint prior uncertainty π(k,α) = π(k)π(α)
can be reduced by Bayesian data analysis of exper-
imental measurements. In the following two dif-
ferent updating approaches are outlined for exper-
imental situations where the assumption of known
hyperparameters, i.e. the distributional parameters
of the ensembles of masonry wall components, is
either justified or rather unfounded.

3.3. Known Hyperparameters
Let us consider experiments of the following type.
In each batch of experiments i = 1, . . . ,n the ma-
sonry compressive strength fw,i j is measured for a
number of different specimens j = 1, . . . ,Ji from
an ensemble. We use 〈 fw,i j〉 = ( fw,11, . . . , fw,nJn)
to denote the set of these measurements. The
hyperparameters θθθ b,i and θθθ m,i are measured for
the bricks and the mortar used in experiment i,
too. This can be accomplished by a statisti-
cal analysis of data 〈 fb,ik〉 = ( fb,11, . . . , fb,nKn) and
〈 fm,il〉 = ( fm,11, . . . , fm,nKn) with k = 1, . . . ,Ki and
l = 1, . . . ,Li. These data must be numerous and they
must be observed for the ensembles of brick units
and mortar used. The Bayesian multilevel model
for this scenario can be written as

(Fw,i j |k,α)∼ π( fw,i j |k,α), (5a)
(K,A)∼ π(k)π(α). (5b)

Here the conditional distributions Eq. (5a) are given
by Eq. (3), where batch-specific knowns θθθ b,i and
θθθ b,i are plugged in. The epistemic prior uncertainty
of the coefficients (k,α) is encoded in Eq. (5b). As
long as not indicated otherwise, all random vari-
ables in Eq. (5) are assumed to be (conditionally)
independent. A directed acyclic graph (DAG) as
in Fig. 1 serves as an intuitive visualization of the
model Eq. (5).

Figure 1: Known hyperparameters. Nodes symbolize
known ( ) or unknown ( ) quantities. Arrows represent
deterministic ( ) or probabilistic ( ) relations.
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As usual, Bayesian updating is accomplished
by conditioning the prior distribution π(k,α) =
π(k)π(α) on the acquired data 〈 fw,i j〉. One obtains

π(k,α |〈 fw,i j〉) ∝ π(k)π(α)
n

∏
i=1

Ji

∏
j=1

π( fw,i j |k,α).

(6)
Note that Eq. (6) is based on exact values the hy-
perparameters θθθ b,i and θθθ m,i for every batch i.

3.4. Unknown Hyperparameters

The requirement of known hyperparameters θθθ b,i
and θθθ m,i restricts the applicability model Eq. (5) to
situations that are rarely met in practice. Therefore
we consider the situation when only prior knowl-
edge π(θθθ b,i,θθθ m,i) = π(θθθ b,i)π(θθθ m,i) about the hy-
perparameters is available. Additionally in each
batch of experiments i a variable number of mea-
surements fb,ik and fm,il for k = 1, . . . ,Ki and l =
1, . . . ,Li are taken of the brick unit and the mor-
tar compressive strength, respectively. The corre-
sponding hierarchical Bayesian model reads

(Fw,i j |k,α,θθθ b,i,θθθ m,i)∼ π( fw,i j |k,α,θθθ b,i,θθθ m,i),

(Fb,ik|θθθ b,i)∼ π( fb,ik|θθθ b,i), (7a)
(Fm,il |θθθ m,i)∼ π( fm,il |θθθ m,i),

(ΘΘΘb,i,ΘΘΘm,i)∼ π(θθθ b,i)π(θθθ m,i),

(K,A)∼ π(k)π(α).
(7b)

While Eq. (7a) summarizes the aleatory uncertain-
ties, Eq. (7b) contains the epistemic uncertainties.
The model Eq. (7) is visualized as the DAG in
Fig. 2. We remark that the observations 〈 fb,ik〉 and
〈 fm,il〉 inform about the statistical properties θθθ b,i
and θθθ m,i of the component ensembles. This way
they give information about the unobservable prop-
erties of the brick and mortar samples used for con-
structing the masonry wall i.

Bayesian analysis proceeds by updat-
ing the joint prior π(k,α,〈θθθ b,i〉,〈θθθ m,i〉) =
π(k)π(α) ∏

n
i=1 π(θθθ b,i)π(θθθ m,i). Conditioned

on the data (〈 fw,i j〉,〈 fb,ik〉,〈 fm,il〉) one obtains for

Figure 2: Unknown hyperparameters. The batch-
specific hyperparameters θθθ b,i and θθθ m,i are unknown.
They can be inferred from the data 〈 fb,ik〉 and 〈 fm,il〉.

the joint posterior

π(k,α,〈θθθ b,i〉,〈θθθ m,i〉|〈 fw,i j〉,〈 fb,ik〉,〈 fm,il〉)

∝ π(k)π(α)
n

∏
i=1

π(θθθ b,i)π(θθθ m,i)

·
Ji

∏
j=1

π( fw,i j |k,α,θθθ b,i,θθθ m,i)

·
Ki

∏
k=1

π( fb,ik|θθθ b,i)
Li

∏
l=1

π( fm,il |θθθ m,i).

(8)

Notice that the posterior Eq. (8) gathers information
from both system- and component-level data.

4. EXPERIMENTAL DATA
In the years 2009-2012 and 2014 the compres-
sive strength of clay block masonry was measured
for a variable number of specimens in a series of
compression tests. In addition, the compressive
strengths of bricks and mortar were recorded for re-
alizations from the same ensembles that were later
used for the construction of the masonry wall. The
tests were performed at the laboratories of the De-
partment of Civil, Environmental and Geomatic En-
gineering of ETH Zürich. In Table 1 the experimen-
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Table 1: Experimental data. Data are shown for tests of clay block masonry that were performed in the years
2009-2012 and in 2014. Blocks from the same ensemble were used in 2009 and 2010. Thus the corresponding
rows show duplicate data entries.

2009 batch 1

fw [MPa] 9.41 5.53 7.98 8.86 6.67 7.17 7.92
fb [MPa] 33.58 34.55 37.1 39.21 39.63 36.1 35.46 37.61 35.6 36.26 35.2 32.7 36.6
fm [MPa] 15.8 16.1 14.4 14.8 16.1 15.4 13.9 14.6 14.6 14.4 16.8 16.1

2010 batch 2

fw [MPa] 6.67 6.12 5.91 8.3 6.44 5.32 6.7
fb [MPa] 33.58 34.55 37.1 39.21 39.63 36.1 35.46 37.61 35.6 36.26 35.2 32.7 36.6
fm [MPa] 12.5 12.94 12.43 13.33 12 12.32

2011 batch 3

fw [MPa] 4.32 3.71 6.06 4.95 4.29 2.8 6.28 4.22 5.23
fb [MPa] 23.8 26.8 25.7
fm [MPa] 14.9 14.7 14.9 15.4 14.7 14.6

2012 batch 4

fw [MPa] 8 7.87 8.1 7.53 8.14 6.99 7.82 9.13 5.87 7.71
fb [MPa] 37 39.9 38
fm [MPa] 26.9 28.1 17 16.2 18.7 21.1

2014 batch 5

fw [MPa] 6.53 7.01 6.12 5.94 7.14 5.69 5.82 6.34 5.96
fb [MPa] 28.15 27.74 28.05 27.20 26.25 23.15 26.69 28.04 27.69 26.73
fm [MPa] 11.73 12.19 12.13 10.49 10.34 10.44

tal data are summarized. Five batches of experi-
ments were performed in total. At the system- and
the component level the available data is generally
scarce. Especially in the years 2011 and 2012 the
number of component-level tests was very limited.
Moreover, in the years 2009 and 2010 brick units
from the same ensemble were used.

We observe that the empirical relation Eq. (1)
generally overpredicts the masonry wall compres-
sive strength. In Fig. 3 the actually acquired data for
i = 1, i.e. for the year 2009, is shown together with
the correspondingly predicted characteristic value.
The values k′ = 0.45, α ′ = 0.7, β ′ = 0.3 provided
in EN 1996-1-1 (2005) were used. Brick unit data
〈 fb,ik〉 have been normalized according to their ge-
ometry. Moreover a lognormal distribution of the
form Eq. (2) is shown, where α = α ′ and β = β ′

have been identified with the corresponding coeffi-
cients from EN 1996-1-1 (2005). The remaining
coefficient k = k′ · exp(1.645

√
α2

i σ2
b,i +β 2

i σ2
m,i +

αi[σ
2
b,i/2]+βi[σ

2
m,i/2]) has been set in order that the

5%-quantile equals Eq. (1). Note that the above-
mentioned identification/transformation of the co-
efficients establishes another way of extending
Eq. (1) and comparing it to Eq. (2). In this paper
we do not pursue this approach, though.
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Figure 3: Data & predictions for 2009. The data, its
expected 5%-quantile and a corresponding lognormal
distribution are shown. The data are overpredicted.
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Of course, the unexpected code/measurement
discrepancy raises important questions. Anticipat-
ing our results it is said that we will not able to sat-
isfactorily explain this discrepancy. Instead we will
calibrate the coefficients k and α in a way that leads
to better predictions. Those predictions are valid
for the testing machine and the materials used in
our laboratory. Using the predictions outside their
scope of applicability is questionable and should
only be done with utmost caution.

5. BAYESIAN ANALYSIS
The Bayesian framework discussed in Section 3
is now applied to analyze the experimental data
that was presented in Section 4. More specifically
we use the first two batches of experiments that
were conducted in 2009 and 2010 to calibrate the
unknown coefficients of the model Eq. (5). For
those batches the amount of component-level data
is deemed sufficient to fit the hyperparameters and
to treat them as knowns subsequently. Moreover the
first four batches will be analyzed with the model
Eq. (7) that allows to treat the hyperparameters as
unknowns. Especially in the years 2011 and 2012
the small amount of component-level data does not
allow to proceed in another way. The fifth batch of
experiments from 2014 will be used as an indepen-
dent test set.

Since the coefficients in Eqs. (2) and (3) cannot
be identified with those of Eq. (1), it is not pos-
sible to elicit informative priors about the former
by exploiting expert knowledge or code informa-
tion about the latter. Hence uninformative priors
are used. Specifically we assign uniform prior dis-
tributions π(k) = U (0,1) and π(α) = U (0.5,1).
Due to β = 1− α the latter assignment enforces
α ≥ β . This reflects the intuition that, regarding the
masonry compressive strength, the brick units are
more influential than the mortar. For the Bayesian
model in Eq. (7) priors π(θθθ b,i) = π(µb,i)π(σb,i)
and π(θθθ m,i) = π(µb,i)π(σb,i) have to be elicited
for the unknown hyperparameters. We use indepen-
dent uniform hyperprior distributions with reason-
able bounds for the means and standard deviations.

The posteriors Eqs. (6) and (8) can be sam-
pled by means of Markov chain Monte Carlo
(MCMC) techniques (Brooks et al., 2011). In

Figs. 4 and 5 the resulting posterior marginals
of k and α are depicted. It can be seen that
π(k,α |〈 fw,i j〉,〈 fb,ik〉,〈 fm,il〉) contains a higher de-
gree of posterior uncertainty than π(k,α |〈 fw,i j〉).
Since more data has entered the former posterior,
at first sight this seems to be surprising. This fact
can be attributed to the differences of the models
Eqs. (5) and (7) in treating the hyperparameters and
their uncertainties, though.
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Figure 4: Posterior of k. The posteriors π(k|〈 fw,i j〉)
and π(k|〈 fw,i j〉,〈 fb,ik〉,〈 fm,il〉) are shown. It can be
seen that the latter is broader than the former.

α

0.7 0.75 0.8 0.85 0.9 0.95 1

p
ro
b
ab

il
it
y
d
en
si
ty

0

10

20

30

40

50

60

prior
π(α|〈fw,ij〉)
π(α|〈fw,ij〉, 〈fb,ik〉, 〈fm,il〉)

Figure 5: Posterior of α . Both the posterior marginals
π(α |〈 fw,i j〉) and π(α |〈 fw,i j〉,〈 fb,ik〉,〈 fm,il〉) peak at
their upper boundary.

Specifically the modes k̂ = 0.21 and α̂ =
1 are found for the posterior π(k,α |〈 fw,i j〉)
that represents the situation that hyperparame-
ters are assumed to be known. The posterior
π(k,α |〈 fw,i j〉,〈 fb,ik〉,〈 fm,il〉), for the scenario that
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hyperparameters are treated as unknowns, features
the modes k̂ = 0.22 and α̂ = 1.

The fact that the posterior of α in Fig. 5 peaks
at the upper bound of its prior is somewhat sur-
prising. As a consequence of β̂ = 1− α̂ = 0, the
influence of mortar occurs to be negligible. More-
over, such a behavior may indicate that the inverse
problem is improperly solved, e.g. the true parame-
ter value was accidentally excluded a priori. It was
therefore tried to relax the assumption β = 1−α

by permitting arbitrary values α > 0 and β > 0. To
that end independent priors π(α) and π(β ) were as-
signed. We had to conclude that the limited amount
of available data is not sufficiently informative in
order to calibrate this extended model.

Plugging the point estimates k̂ and α̂ in Eq. (3)
establishes a predictive relation of the frequency
distribution of structural masonry. For that purpose
one has to specify the values or estimates of the
hyperparameters θθθ b and θθθ m for the ensembles of
bricks and mortar used in the construction of the
masonry wall. The predicted distributions, that are
obtained this way for the actually analyzed batches
of experiments, describe the masonry wall resis-
tances adequately well. Since the estimations of the
coefficients were informed by the very same data,
this does not seem to be very surprising. Yet this
signifies that the representation Eq. (3) is adjustable
enough to match the data. In turn this may indicate
that Eq. (3) is indeed a suitable representation of the
masonry wall compressive strength.

When applied to the fifth batch of experiments
the procedure described above can serve as a vali-
dation test, i.e. the data collected in 2014 are used
as an independent test set. In Fig. 6 the measured
masonry wall compressive strengths are shown to-
gether with the their predicted distribution. The
plot is supplemented with the corresponding 5%-
quantile. Here the point estimates k̂ = 0.22 and
α̂ = 1 that were obtained by analyzing the previ-
ous four batches are used on one side. On the other
side component-level data 〈 fb,5 j〉 and 〈 fm,5 j〉 for the
fifth batch are used to estimate θθθ b,5 and θθθ m,5. The
predictive distribution captures the data fairly well.
Obviously it is of higher quality than the poor code-
forecast shown in Fig. 3.
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Figure 6: Data & predictions for 2014. The gathered
data, the predicted distribution and its 5%-quantile are
shown. Predictions conform to data tolerably well.

6. SUMMARY & CONCLUSION
It was demonstrated how hierarchical Bayesian
models can serve the purpose of assessing the com-
pressive strength of structural masonry. This estab-
lishes a fully probabilistic alternative to the exist-
ing semi-probabilistic approaches. The hierarchi-
cal framework offers versatile and powerful tools of
uncertainty quantification and information aggrega-
tion at multiple system levels. Different types of
uncertainty, i.e. ignorance and variability, are thor-
oughly managed, while heterogeneous types of in-
formation, e.g. data and expert knowledge, are con-
sistently utilized. This way the analysis of the ma-
sonry wall resistance can be based on large-scale
compression tests as well as on inexpensive tests of
brick unit and mortar samples.

Our hope is that this possibility will encourage
experimenters in entirely publishing their collected
data. In fact it seems to be commonplace to quote
statistical data summaries only, e.g. sample means
or characteristic values. The proposed methodol-
ogy, however, allows to process the acquired data
as a whole.

A number of questions have arisen. It is queried
if Eq. (3) is an adequate representation of the distri-
bution of masonry compressive strength in terms of
distributional parameters of the components. With
regard to the complexity of structural masonry, its
failure modes and their dependency on the qual-
ity of workmanship, the relations Eqs. (1) and (2)
are oversimplifying. They were inspired by the
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structure of current models but lack a solid phys-
ical foundation. For future studies this motivates
the introduction of model uncertainty in addition
to the emerging parameters uncertainties. Beyond
that future work will also involve the construction
and objective selection of better system-level mod-
els of aleatory variability. A more fundamental
question concerns the general suitability of empiri-
cal relations for any probabilistic extension what-
soever. Another raised issue relates to the ob-
served mismatch between measurements and code-
predictions. We were not able to explain this dis-
crepancy.

7. REFERENCES

S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, eds.
(2011). Handbook of Markov Chain Monte Carlo.
Handbooks of Modern Statistical Methods. Chapman
& Hall/CRC.

Dymiotis, C. and Gutlederer, B. M. (2002). “Allowing
for uncertainties in the modelling of masonry com-
pressive strength.” Constr. Build. Mater., 16(8), 443–
452.

EN 1996-1-1 (2005). “Eurocode 6: Design of masonry
structures. Part 1-1: General rules for reinforced and
unreinforced masonry structures. European Commit-
tee for Standardization (CEN), Brussels, Belgium.

Garzón-Roca, J., Obrer Marco, C., and Adam, J. M.
(2013). “Compressive strength of masonry made of
clay bricks and cement mortar: Estimation based on
neural networks and fuzzy logic.” Eng. Struct., 48,
21–27.

Glowienka, S. and Graubner, C.-A. (2006). “Probabilis-
tic modelling of the load carrying capacity of mod-
ern masonry.” Proc. 4th Int. Probabilistic Symposium,
Berlin, Germany (October 12-13).

JCSS (2001). “Probabilistic model code. Joint Commit-
tee on Structural Safety (JCSS), Zürich, Switzerland.

Mojsilovic, N. and Faber, M. H. (2009). “Probabilistic
assessment of masonry compressive strength.” Proc.
10th Int. Conf. on Structural Safety and Reliability
(ICOSSAR2009), Osaka, Japan (September 13-17).

Nagel, J. B. and Sudret, B. (2014). “A unified framework
for multilevel uncertainty quantification in Bayesian
inverse problems. Probab. Eng. Mech. (submitted for
publication).

Nagel, J. B. and Sudret, B. (2015). “Bayesian multilevel
model calibration for inverse problems with perfect

data in the presence of epistemic and aleatory uncer-
tainty. J. Aerosp. Inf. Syst. (in press).

Sankararaman, S., McLemore, K., and Mahadevan, S.
(2012). “Bayesian methods for uncertainty quantifi-
cation in multi-level systems.” Topics in Model Val-
idation and Uncertainty Quantification, Volume 4,
T. Simmermacher, S. Cogan, L. G. Horta, and R.
Barthorpe, eds., Conference Proceedings of the So-
ciety for Experimental Mechanics Series, Springer,
New York, 67–74.

Schueremans, L. and Van Gemert, D. (2006). “Probabil-
ity density functions for masonry material parameters
– a way to go ?.” Proc. 5th Int. Conf. on Structural
Analysis of Historical Constructions: Possibilities of
Numerical and Experimental Techniques, New Delhi,
India.

Sykora, M., Cejka, T., Holicky, M., and Witzany, J.
(2014). “Probabilistic model for compressive strength
of historic masonry.” Safety, Reliability and Risk
Analysis: Beyond the Horizon, R. D. J. M. Steen-
bergen, P. H. A. J. M. van Gelder, S. Miraglia, and
A. C. W. M. Ton Vrouwenvelder, eds., CRC Press,
2645–2652.

Sýkora, M. and Holický, M. (2010). “Probabilistic
model for masonry strength of existing structures.”
Eng. Mech., 17(1), 61–70.

Sykora, M. and Holicky, M. (2014). “Evaluation of com-
pressive strength of historic masonry using measure-
ments.” Adv. Mater. Res., 923, 213–216.

Urbina, A., Mahadevan, S., and Paez, T. L. (2012). “A
Bayes network approach to uncertainty quantification
in hierarchically developed computational models.”
Int. J. Uncertainty Quantification, 2(2), 173–193.

8


	INTRODUCTION
	CURRENT MODELS
	HIERARCHICAL MODELS
	Aleatory Model
	Epistemic Model
	Known Hyperparameters
	Unknown Hyperparameters

	EXPERIMENTAL DATA
	BAYESIAN ANALYSIS
	SUMMARY & CONCLUSION
	REFERENCES

