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ABSTRACT: Risk to persons caused by gravitationally driven site-specific natural hazards along 
traffic routes is frequently reduced with Early Warning Systems (EWS). To identify an optimal risk 
reduction strategy, decision-makers should be able to quantify the effectiveness and costs achieved 
with EWS and compare both to alternative mitigation measures. A recognized framework approach for 
quantifying the effectiveness of EWS is currently lacking. We provide such a framework approach, 
which includes six steps that enable a structured quantification of the effectiveness, from the reliability 
of the EWS. To this end, site specific EWS are distinguished in two classes and the reliability analyses 
are conducted according to specific needs with Bayesian Networks (BN). 

 
 

1. INTRODUCTION 
Damages to infrastructures and fatalities caused 
by natural disasters are on the rise (SwissRe, 
2014). It is expected that climate change, 
economic growth and social shifts will reinforce 
this development in the future (Lall & 
Deichmann, 2011). The damages caused by 
hurricanes, tornados and tsunamis will continue 
to increase as long as populations and assets in 
coastal regions grow. In mountain regions, 
climate change will in many locations lead to 
more intense precipitation, melting permafrost 
and deglaciation, fostering gravitationally driven 
hazard processes such as flash floods, debris 
flows, snow avalanches and rockfall.  

Associated losses due to business 
interruptions and shortages of supply can be 
large even for small events. Recently, a 3000m3 
rockfall at Gurtnellen caused one casualty, the 

closure of a major Swiss railway line for one 
month and losses between 10-20 Millions CHF 
(Tagesanzeiger, 2012). 

To protect persons, buildings and transport 
routes from natural hazards, structural and design 
related risk mitigation measures are frequently 
applied and building codes have been established 
in civil engineering. For the management of 
natural hazards, framework approaches have 
been established to support decision-makers in 
identifying optimal mitigation measures (Dai et 
al., 2002, Fell et al., 2005, Bründl et al., 2009, 
Safeland, 2011). These frameworks focus on the 
evaluation of the risk reduction achieved with 
structural mitigation measures such as dams, 
galleries and nets installed to protect against 
floods and mass movements. 

During the last decade, Early Warning 
Systems (EWS) have undergone a rapid technical 
development and are applied as cost-effective 
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measure to reduce natural hazard risks (ISDR, 
2007). They provide timely information and 
allow to take preventive measures that avoid 
damage (UNISDR, 2007). Site-specify EWS are 
installed to reduce the exposure probability of 
persons on endangered transport route sections or 
in infrastructure facilities. However, their effect 
on risk reduction is rarely quantified and an 
acknowledged framework approach is lacking.  

In the present contribution, we provide a 
framework approach and associated methods for 
quantifying the effectiveness of site-specific 
EWS. First, a generic classification for site-
specific EWS is presented, enabling a structured 
identification of factors influencing the 
effectiveness. Second, a framework approach for 
quantifying the effectiveness based on reliability 
analysis of site-specific EWS is presented. 
Methods used in the framework approach were 
tested on active systems of each class in two case 
studies.    

2. CLASSIFICATION 
Site-specific EWS for natural hazards can be 
classified into warning and alarm systems 
(Sättele et al., 2012). The assignment of an EWS 
to one of these classes depends on the underlying 
monitoring strategy, which determines the 
available lead time and the system design.  

2.1. Monitoring strategies  
In general, EWS can monitor either precursors or 
parameters that can be measured after the start of 
the natural hazard process (Fig. 1). Precursors 
can be events that trigger the hazard, such as 
intense rainfall or other associated changes in the 
disposition. 

If the EWS monitors process parameters of 
already ongoing hazard events, the information 
content of the measured data is high, but the 
associated lead time is short. EWS that detect 
already ongoing events are classified as alarm 
systems and are mainly installed to detect 
spontaneous events such as flash floods, debris 
flows, snow avalanches, spontaneously triggered 
slope failures, earthquakes and tsunamis.  

Other EWS monitor precursors before a 
hazard event starts. Here, the information content 
of the monitored data is lower, but the lead time 
is extended. Systems installed to predict hazard 
events before they start are classified as warning 
systems and are operated for processes that 
evolve slowly such as static river floods, slope 
failures such as mid- and high-magnitude 
rockfalls/-slides and deep-seated landslides. 
 

 
Figure 1: Monitoring strategies: a) Warning systems 
monitor precursors and provide longer lead times. b) 
Alarm systems monitor processes parameters and 
provide short lead times. 

 

2.2. System design 
The design of an EWS depends on the class and 
can be described with three main units: 
monitoring, interpretation and dissemination unit 
(Sättele et al., 2012). Fig. 2 summarizes essential 
components of alarm and warning systems 
grouped into these units. In practice, EWS 
include additional components for power supply, 
data storage, analyses and control.    

To deal with short lead times, alarm systems 
are fully automated. The sensors monitor process 
parameters close to the release area. The alarm 
decision is based on predefined thresholds and 
associated intervention measures are taken 
automatically, e.g. in form of optical signals or 
sirens.  

The extended lead times provided by warning 
systems allow a partly-automated data 
interpretation in two levels. Sensors monitor 
precursors to detect relevant changes in advance. 
At the first level, thresholds are used to generate 
automated and timely information. At the second 
level, experts and decision-makers apply models 
to predict the event magnitude and timing. The 
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intervention of warning systems is mainly based 
on organized evacuations and/or closures of e.g. 
roads and railway sections.  

A generic framework approach for 
quantifying the effectiveness of site-specific 
EWS has to deal with varying characteristics and 
needs associated with each system class. The 
effectiveness of an alarm system depends mainly 
on the threshold and the availability of 
automated technical procedures. Warning 
systems are subject to additional uncertainties 
caused by models and human decision-making. 

 

 
Figure 2: Essential system components. a) Alarm 
systems are automated and incorporate one decision 
level; b) Warning systems are partly automated and 
include two decision levels. 

 

3. FRAMEWORK 
To compare EWS in cost-benefit analyses with 
alternative measures for risk reduction, their 
effects on risk and system life cycle costs have to 
be compared (Penning-Rowsell E., 2005, 
SafeLand, 2012, Špačková & Straub, in print). If 
the costs associated with the hazard and its 
consequences are not explicitly measured in 
monetary terms, the effectiveness of EWS can be 
used as an evaluation criterion.  

In our framework approach, the effectiveness 
is quantified as the reduced exposure probability 
of persons in a hazard scenario and is determined 
based on reliability analyses (Fig. 3). The effects 
of EWS on the risks to assets are typically small 
for gravitational hazards, hence they are not 
considered.  

Within the present framework approach, 
complex human decision-making and the 
accuracy of models are not addressed.  
Therefore, automated alarm systems can be 
evaluated entirely and warning systems up to the 
point when experts receive automated 
information by the system.   

 

 
Figure 3: The reliability is quantified in six steps. 

 

3.1. Reliability analysis 
An EWS is reliable, if it detects dangerous 
events timely and leads to measures that prevent 
damage. In reliability analyses, both the technical 
and the inherent reliability should be addressed. 
The technical reliability of an EWS depends on 
failure probabilities of system components and 
their configuration within the system. The 
inherent reliability is the general ability of the 
EWS to distinguish between hazard and noise, in 
analogy to the signal-to-noise ratio of classical 
signal detection theory (Swets, 1996).  It is 
common practice to quantify the reliability of 
EWS through the Probability of Detection (POD) 
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of a hazard event and the Probability of False 
Alarms (PFA) (Sättele et al., under review).  

Our framework approach includes six steps to 
quantify the reliability (Fig. 3). The first four 
steps are associated with the quantification of the 
technical reliability. In the last two steps sensor 
data and thresholds are integrated to assess the 
inherent reliability. Within the framework 
approach the reliability is probabilistically 
modeled with Bayesian Networks (BN) that may 
be implemented using free software programs 
such as Genie [DSL, 2014].  

3.1.1. Draw system sketch 
A system sketch is an essential basis to 
understand the system design and the 
dependencies among the components. It can be 
constructed according to the three main units of 
an EWS: monitoring, data interpretation, 
information dissemination.  

Fig. 4 illustrates an exemplary system sketch 
describing the essential components of an alarm 
system for snow avalanches.  

 

 
Figure 4: System sketch of an alarm system for 
avalanche detection. 

 
The alarm system for snow avalanches 

includes two redundant sensors, here trigger 
lines. The data logger controls the sensors, issues 
an alarm when at least one trigger line is pulled-

out and is powered by a battery charged from a 
solar panel. Alarm information is transmitted via 
radio connection and used to activate an optical 
signal supplied by the power network. 

Similar system sketches can be constructed 
for warning systems. Typically, they end in the 
interpretation unit, where the warning 
information is transmitted to decision-makers. 

3.1.2. Design Framework BN 
The framework BN is constructed according to 
the system sketch and consists of arcs and three 
different node types, shown as black, white and 
grey in Fig. 5.  

 

 
Figure 5: The BN of an alarm system for avalanche 
detection consists of three node types.  

 
Grey nodes describe the causal chain from 

the hazard event to the warning. The node 
"warning" is used to model the reliability of the 
EWS, as a measure of POD and PFA (details see 
Chapter 3.1.6). Dependencies between the nodes 
are described by the arcs and in the Conditional 
Probability Tables (CPTs) of grey nodes (details 
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see Chapter 3.1.4). Redundant system parts, 
which are duplications in the form of identical or 
different system components fulfilling the same 
function, require redundant nodes in the causal 
chain. Black decision nodes are added in the 
causal chain to incorporate the inherent 
reliability into the BN (details see Chapter 3.1.5). 
The technical failure probabilities of individual 
components are specified in the CPTs of white 
nodes (details see Chapter 3.1.3).  

3.1.3. Incorporate technical failure probability  
The CPTs of white nodes describe binary random 
variables, i.e. the component performance that 
can be either "functioning" or "failed" with 
associated probabilities (Table 1). 

 
Table 1: CPT of white nodes include probabilities to 
specify component performance (functioning/ fail). 

 
sensor functioning 0.9995 

failure 0.0005 
 

 
The probability of failure for individual 
components at time t can be calculated following 
(Straub, 2012): 

 
 𝑃𝑃�𝐹(𝑡)� =  𝜆 × 𝐸[𝑇] (1) 

where 𝜆  is the failure rate of the system 
component and 𝐸[𝑇] is the expected time it takes 
to detect and repair a failure. Eq. (1) is an 
approximation that is valid for small Pr(𝐹(𝑡)), 
as they are commonly found in EWS. The failure 
rate includes both the internal failure rate and the 
rate of failures caused by external influences 
such as lightning, animals, extreme temperatures 
and humidity. Usually, the internal failure rate 
can be adopted from specified mean time to 
failure (MTTF) and mean time between failure 
(MTBF) values.  External failure rates are 
derived from repair records or estimated by 
experts.  

3.1.4. Determine causal relation of components 
Dependencies among individual system 
components are specified with arcs and in the 
CPTs of grey BN nodes. They are typically 
modeled deterministically as AND or OR 
relations.  

OR relations are used to model 
redundancies. E.g. the avalanche alarm system 
will issue a warning when either trigger line 1 or 
2 are pulled out (Table 2a).  

AND relations are used to specify serial 
connections in which the failure of a single 
component leads to a failure in the subsequent 
child node and to an overall system failure in 
non-redundant system parts. E.g. a warning can 
only be released by the avalanche alarm system 
if the power supply and the optical signal in the 
non-redundant dissemination unit are both 
functioning (Table 2b).  

 
Table 2: System configurations of EWS can include 
a) parallel (OR) and b) serial (AND) connections. 

 
a) 

event indicated yes no 
event indicated yes no yes no 
warning 
issued 

yes 1 1 1 0 
no 0 0 0 1 

 
b) 

optical signal yes no 
power network yes no yes no 
warning 
released 

yes 1 0 0 0 
no 0 1 1 1 

 
 

3.1.5. Incorporate sensor data and threshold 
Black decision nodes, named "threshold" in Fig. 
5, are added in the BN to model the ability of 
each sensor to distinguish between hazard and 
noise. To this end, black decision nodes are 
added to the "event indicated" nodes. 

In the CPT of nodes "data measured" one 
specifies the probabilities of sensor signal 
exceeding the alarm threshold, conditional on 
whether or not an event occurs during that day 
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(Table 3).  These probabilities are first described 
as Probability Density Functions (PDFs). To 
obtain PDFs conditional on an event occurring, 
probability distributions are fitted to data 
measured on days with events. Similar fits are 
generated for sensor data measured on days 
without events. To include the probabilities in 
the CPT, they are discretized according to the 
threshold.  

The example avalanche system is equipped 
with trigger lines. Their outcome space is binary, 
as they can either be pulled out or not. In this 
case, the probability of a pull-out conditional on 
the occurrence of an event is specified in the 
CPT of the node "data measured" (Fig. 5). 

 
Table 3: CPT of node "data measured" includes 
probabilities for a pull-out conditional on the 
occurrence of an event. 

 
hazard event  
data 
measured 

not pulled-out 0.9995 
pulled-out 0.0005 

 
 
In many instances measured sensor data are 

not available, e.g. during the design phase of an 
EWS. In this case, data from similar sites and/or 
expert estimates can be used to determine the 
probabilities conditional on the thresholds.  

 

3.1.6. Quantify reliability with BN 
In the last step, the BN is operated to 
probabilistically model the reliability. Values for 
POD and PFA can be obtained by changing the 
status of the top node and running the BN.  To 
compute the POD in the node "warning", the top 
node "hazard event" can be set to the state "true"; 
likewise, the PFA is obtained by setting the top 
node to the state " false". 

  The same BN allows one to model the 
technical or inherent reliability separately. The 
technical reliability can be modeled if the status 
of all nodes "event indicated" is set to "yes"; the 
inherent reliability is modeled if the status of all 

white nodes describing "technical components" 
is set to the state "functioning". 

3.2. Effectiveness of EWS 
The risk reduction achieved with an EWS is 
referred to as the effectiveness 𝐸𝑤. The 
effectiveness can be calculated in terms of the 
relative reduction of the overall risk. With 𝑅 
being the overall risk without the warning system 
and 𝑅(𝑆)  the risk with the warning system 
installed, the effectiveness is defined as (Sättele 
et al., under review): 

 𝐸𝑤 = 1 −
𝑅(𝑆)

𝑅
 (2) 

For the case where EWS only reduce the 
presence probability of exposed persons, the 
effectiveness of Eq. (2) can be calculated as a 
function of POD and Probability of Compliance 
(POC) alone, following Eq. 3 (Sättele et al., 
under review): 

 
 
 𝐸𝑤 = 𝑃𝑃𝑃 × 𝑃𝑃𝑃 (3) 

The POC, i.e. the degree to which alarms 
are followed in practice, is strongly dependent on 
the PFA. A high number of false alarms reduces 
the POC to an issued warning, due to a loss of 
trust that is known as the cry-wolf syndrome 
(Breznitz, 1989, Dejoy et al., 2006). In Sättele et 
al. (under review), we calculate the POC as a 
result of a basic compliance probability and a 
compliance reduction factor due to false alarms. 
Others address the available lead time, when 
quantifying the effectiveness (Paté-Cornell, 
1986). The lead time must be long enough that 
those willing to comply are able to comply. 

4. CONCLUSION 
The presented framework approach allows the 
quantification of the effectiveness of automated 
site-specific EWS. This framework can support 
decision-makers in evaluating and optimizing 
EWS. BN can easily be used to assess the 
effectiveness of alternative designs. Moreover, 
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decision-makers can compare EWS with 
alternative measures to identify cost-effective 
strategies for the protection of persons and 
mobile objects. 

The present framework approach is not able 
to cover all factors that influence the reliability 
of warning systems. The prediction accuracy and 
human decision-making (second decision level) 
are not considered here, although they do have a 
significant influence on the effectiveness and 
cost associated with EWS. Wrong predictions of 
the event timing can e.g. create unnecessary long 
evacuation periods. Nevertheless, the presented 
framework approach allows quantifying the 
ability of the warning system to inform experts 
about relevant changes and contributes 
significantly to decision-making critical for 
safety.   
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