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ABSTRACT: A seismic loss estimation model is incorporated into a multi-objective community-level 

optimization for identifying the optimal retrofit plan for the woodframe building stock with the 

intention of improving a community’s resiliency to earthquakes.  The framework of the loss estimation 

model and multi-objective optimization considers five damage states based on potential morbidity 

rates, repair costs, relocation costs, and repair times. A community-level case study is conducted for 

Los Angeles County, California considering a maximum considered earthquake (MCE) seismic hazard 

using a simplified design space.  The framework provides the pareto-optimal set of retrofit solutions for 

the community allowing for decision makers to apply community preferences in selecting the 

“optimal” resiliency plan. 

1. INTRODUCTION 

Thousands of earthquakes occur globally each 

year.  To protect against seismic hazard, 

engineers have developed new performance-

based seismic design methods, which have been 

implemented in some contexts but are still being 

refined.  Traditionally, performance-based 

seismic design has been associated with 

performance objectives to meet the goals of 

building owners or other stakeholders. These 

goals often include collapse prevention, life 

safety, or immediate occupancy. Most recently, 

new ways to improve seismic resiliency have 

been introduced as part of a second generation of 

performance-based seismic design.  In that case, 

the performance objectives often considered 

include: reducing economic loss, downtime, and 

casualties, while increasing quality of life 

indicators.      

In the United States, the 1971 San Fernando 

earthquake, the 1989 Loma Prieta earthquake, 

and the 1994 Northridge earthquake are still 

widely considered the most destructive 

earthquake events in recent history. In all three 

cases, these earthquakes caused significant 

damage (on the order of billions of dollars) to 

woodframe structures.  These historical losses 

are of concern because in the United States, 

approximately 90% of all residential buildings 

are of light-frame wood construction; and in 

California this estimate exceeds 98%.  Therefore, 

improving the seismic resilience of the 

woodframe building stock would clearly have 

widespread economic and societal benefits.    

The intention of a loss model is to predict 

and therefore prevent loss (economic and quality 

of life) and to identify the most vulnerable areas 

in order to improve immediate recovery effects.  

The present study incorporates a seismic loss 

estimation model into a community-level seismic 

retrofit optimization conducted over a 

community’s woodframe building stock. The 
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ultimate goal is to improve the community’s 

disaster resiliency.  Within the framework, 

traditional engineering variables were 

incorporated for predicting building damage and 

repair costs.  Additionally,  socioeconomic and 

community-level variables such as age, ethnicity, 

gender, family structure, and socioeconomic 

status were included.  The socioeconomic 

variables were used to designate potential 

damage predictors such as the number of injuries 

and fatalities and rates of post-traumatic stress 

disorder (PTSD) diagnoses. These variables were 

used as proxies for the community’s recovery 

time and loss in quality of life.  The framework 

is demonstrated in a community-level case study 

on Los Angeles County, California.   

2. RESILIENCY FRAMEWORK 

The framework presented here was applied for 

determining retrofit techniques for woodframe 

buildings by taking a multi-disciplinary approach 

to disaster mitigation against large earthquakes at 

the community level.  The community-level 

mitigation plan is developed by solving a multi-

objective optimization problem via genetic 

algorithm.  The genetic algorithm minimizes four 

objectives:  initial cost, economic loss, number 

of morbidities, and recovery time.  Within the 

algorithm, objective values were combined and 

taken as the fitness function.  Genetic algorithms 

are used to identify the communities with a range 

of objective values. Several iterations are 

allowed until the solution converges.  Along the 

way, the diverse solutions can be used to form 

the pareto-optimal set of solutions for decision 

makers to compare their preferences in order to 

select their community’s optimal retrofit 

solution. 

To use the framework, the community 

demographic information is uploaded from 2010 

U.S. Census data, and the seismic hazard is 

defined.  The genetic algorithm initializes the 

population and begins the computation of the 

damage states, damage measures, objectives, and 

population fitness.  The following subsections 

provide additional detail on each of these 

computations.   

2.1. Damage States 

Five damage states were considered in this study 

based on five major damage categories identified 

for woodframe structures.  These were identified 

based on experimental tests (e.g., Jennings et al. 

(2014)), and are consistent with the Hazus [DHS 

(2003)] damage states.  Table 1 provides a 

description for each damage state with respect to 

the physical damage caused to woodframe 

structures.  The damage states were centered on 

peak inter-story drift, which has been shown to 

be well-correlated with physical damage to 

woodframe structures [Filatrault and Folz 

(2002)].   
 

Table 1:  Damage State Descriptions. 

Damage 

State 

Level Description 

1 No 

Damage 

Structure can be 

immediately 

occupied, no repairs 

required. 

2 Slight Structure can be 

immediately 

occupied, minor 

drywall repairs 

required. 

3 Moderate Shelter-in-place 

allowed, drywall 

replacement required. 

4 Severe Shelter-in-place 

prohibited, structural 

damage incurred. 

5 Collapse Structure is not safe 

for entry, must be 

reconstructed. 

 

Within this framework, a set of archetypes are 

defined, modeled, and subjected to nonlinear 

time history analysis for obtaining the seismic 

performance for a range of earthquakes and 

seismic intensities.  The peak inter-story drift 

values for each archetype are extracted from this 

data based on the inputted seismic hazard.  These 

values are used to determine the probability of 

each archetype being in any damage state.  
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Lognormal cumulative distribution functions 

(CDFs) were developed for each damage state 

using the respective inter-story drift ranges and 

the damage states were modeled sequentially.  

The probability of each damage state given a 

specific inter-story drift was determined using 

the following relationship for sequential damage 

states and their respective CDFs.   

𝑃[𝐷𝑆 = 𝑑𝑠|𝐼𝑆𝐷 = 𝑥] =

 {

1 − 𝑃[𝐷𝑆] 𝑑𝑠 = 1

𝑃[𝐷𝑆] − 𝑃[𝐷𝑆 − 1] 2 ≤ 𝑑𝑠 ≤ 4
𝑃[𝐷𝑆] 𝑑𝑠 = 𝑛𝑑𝑠

  (1) 

where nds = 5 in this study, 

𝑃[𝐷𝑆] = 𝑃[𝐷𝑆 ≥ 𝑑𝑠|𝐼𝑆𝐷 = 𝑥]  (2) 

𝑃[𝐷𝑆 − 1] = 𝑃[𝐷𝑆 ≥ 𝑑𝑠 − 1|𝐼𝑆𝐷 = 𝑥]  (3) 

and 

∑ 𝑃[𝐷𝑆 = 𝑑𝑠|𝐼𝑆𝐷 = 𝑥] = 1.0
𝑛𝑑𝑠
𝑑𝑠=1   (4) 

The damage states represent the connection 

between the damage measures (e.g., building 

performance, morbidity rates, repair costs, and 

repair times).   

2.2. Damage Measures 

Four damage measures were considered in this 

study:  morbidity rates, repair costs, relocation 

costs, and repair times.   

2.2.1. Morbidity Rates 

The preservation of life is the central goal in any 

structural design.  In this study it is proposed that 

preserving quality of life should also be 

considered as a design goal using the 

population’s mental health as a metric.  The 

morbidity rates include rates for five injury 

levels, including fatalities, injuries, and a rate for 

PTSD diagnoses.  Table 2 provides a description 

of the five injury severity levels.  The morbidity 

rates were determined as a function of the 

damage states and adjusted based on the 

demographics of the population.  The morbidity 

rates for the injury severity levels were computed 

as  

𝑀𝑅𝑖𝑠,𝑑𝑠 = (𝐹𝑎𝑔𝑒,𝑀𝑅 ∙ 𝐹𝑒𝑛𝑣,𝑀𝑅 ∙ 𝐹𝑔𝑒𝑛,𝑀𝑅 ∙

𝐹𝑠𝑒𝑠,𝑀𝑅) ∙ 𝐼𝑆𝑖𝑠,𝑑𝑠   (5) 

and the morbidity rate for PTSD was computed 

as 

𝑀𝑅𝑝𝑟,𝑑𝑠 = (𝐹𝑎𝑔𝑒,𝑀𝑅 ∙ 𝐹𝑒𝑛𝑣,𝑀𝑅 ∙ 𝐹𝑒𝑡ℎ,𝑀𝑅 ∙

𝐹𝑓𝑎𝑚,𝑀𝑅 ∙ 𝐹𝑔𝑒𝑛,𝑀𝑅 ∙ 𝐹𝑠𝑒𝑠,𝑀𝑅) ∙ 𝑃𝑅𝑑𝑠   (6) 

where Fage, Fenv, Feth, Ffam, Fgen, and Fses are the 

socioeconomic factors for age, age, quality and 

density of the built environment, ethnicity, 

family, gender, and socioeconomic status, 

respectively, and where the MR subscript refers 

to the factor value for either injury severity or 

PTSD rate.  ISis,ds and PRds are the probability of 

injury severity level is and PTSD rate for damage 

state ds, respectively.  These variables are not 

derived here for brevity, but were modeled as 

random variables.  The mean values were 

selected as the Hazus values for the injury 

severity rates.  The PTSD rate was set as the 

same rate as severe injuries.  The standard 

deviation for each of the morbidity rates was set 

as one-third of the mean and used in fitting the 

lognormal distributions.  The morbidity rates 

were then used in the computation of three 

objectives:  economic loss, number of 

morbidities, and time to recovery.   

 
Table 2:  Description of Injury Severity Levels. 

Injury Severity 

Level 

Description 

Minor Self-treatable 

Moderate Basic medical care required 

Severe Hospitalization required 

Critical Life threatening 

Fatal Non-survivable 

 

The economic loss due to morbidity was 

determined as the sum of the economic loss 

caused by the number of persons in each 

morbidity category (five injury severity levels, 

including death, and PTSD).   

𝐸𝐿𝑀 =  ∑ 𝐸𝐿𝐼𝑛𝑗,𝑖𝑠 +5
𝑖𝑠=1 𝐸𝐿𝑃𝑇𝑆𝐷  (7) 



12
th

 International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 

Vancouver, Canada, July 12-15, 2015 

 4 

where ELInj,is is the economic loss due to injury 

for injury severity level is, and ELPTSD is the 

economic loss due to PTSD.  The community 

economic losses due to each injury severity level 

were modeled as random variables by 

multiplying the particular cost value associated 

with each injury severity level by the respective 

mean value of the injury severity rate 

distribution.  The standard deviation was 

determined by taking one-third of the particular 

cost value.  The cost values for each injury 

severity level were set as the values the U.S. 

government assigns to each injury severity level, 

including fatality [FHWA (1994)].  These values 

are comprehensive costs covering pain, lost 

quality of life, medical costs, legal costs, lost 

earnings, lost household productivity, etc.   

The economic loss due to PTSD, ELPTSD, 

was modeled as the sum of economic losses due 

to treatment cost of PTSD, ELPTSD,T and work 

downtime due to PTSD considering absenteeism, 

ELPTSD,A, and presenteeism, ELPTSD,P.    

𝐸𝐿𝑃𝑇𝑆𝐷 = 𝐸𝐿𝑃𝑇𝑆𝐷,𝑇 + 𝐸𝐿𝑃𝑇𝑆𝐷,𝐴 + 𝐸𝐿𝑃𝑇𝑆𝐷,𝑃  (8) 

To model the economic loss due to PTSD as a 

random variable, the process above was similarly 

repeated.  The equations used for determining the 

annual rate of absenteeism and presenteeism 

based on the number of work loss days and work 

cut back days were obtained from Goetzel et al. 

(2004) and Kessler and Frank (1997), and again 

are not presented here for brevity.   

2.2.2. Repair Cost 

Repair costs were represented as random 

variables with mean values provided at the 

subassembly level for five subassemblies 

[Reitherman and Cobeen (2003)].  To determine 

the repair costs for archetype i the number of 

units for each of the five subassemblies was 

determined.  To compute the total archetype 

repair cost, RCds,i, for each damage state, the 

lognormal inverse CDF, ɸ-1
(RCds,k), for the 

subassembly repair costs was multiplied by the 

number of subassembly units, nunits,k, and 

summed together for all subassemblies k.   

𝑅𝐶𝑑𝑠,𝑖 = ∑ 𝑛𝑢𝑛𝑖𝑡,𝑘 ∙ Φ−1(𝑅𝐶𝑑𝑠,𝑘)5
𝑘=1   (9)

To compute the economic loss due to all 

archetypes in the community for all damage 

states, the archetype i repair cost for damage 

state ds, RCds,i, was multiplied by the total 

number of archetypes ni in the community and 

summed together. 

𝐸𝐿𝑅𝐶 = ∑ ∑ 𝑅𝐶𝑑𝑠,𝑖
𝑛𝑎𝑟𝑐ℎ
𝑖=1 ∙ 𝑛𝑖

𝑛𝑑𝑠
𝑑𝑠=1    (10) 

2.2.3. Relocation Cost 

Following the input scenario earthquake, if a 

building reached DS4 or DS5, then temporary 

relocation of the building occupants would be 

required. The ability for building occupants to 

shelter in place is important to decision makers 

and community leaders since it could lead to 

permanent relocation of residents to another 

community which will have significant impact 

on the community both financially and 

culturally.  The number of relocated persons, nrel, 

was computed as the number of buildings 

reaching damage states 4, ni(DS4), and damage 

state 5, ni(DS5) multiplied by the specific 

building’s occupancy, occi.   

𝑛𝑟𝑒𝑙 = 𝑛𝑖(𝐷𝑆4) ∗ 𝑜𝑐𝑐𝑖 + 𝑛𝑖(𝐷𝑆5) ∗ 𝑜𝑐𝑐𝑖  (11) 

The number of relocated persons is provided as a 

fragility function conditioned on the initial cost.     

𝑃[𝑛𝑟𝑒𝑙 ≤ 𝑛|𝑖𝑐 = 𝑖𝑐𝑚]  (12) 

where ic is the initial cost, and icm is the initial 

cost of the specific community mitigation plan 

m.  The computation of the cost for relocation 

was adopted from the HAZUS methodology, and 

incorporated into the objective economic loss.    

𝑐𝑟𝑒𝑙,𝑖 =  𝑓𝑎𝑖 ∙ [(1 − 𝑝𝑒𝑟𝑖) ∙ ∑ (𝑝𝑑𝑠,𝑖 ∙5
𝑑𝑠=4

𝑑𝑐𝑖) + 𝑝𝑒𝑟𝑖 ∙ ∑ (𝑝𝑑𝑠,𝑖 ∙ (𝑑𝑐𝑖 + 𝑟𝑒𝑛𝑡𝑖 +5
𝑑𝑠=4

𝑟𝑡𝑑𝑠,𝑖))]    (13) 

where, crel,i is the relocation cost for archetype i 

based on occupancy class; fai is the floor area of 

archetype i; pds,i is the probability of archetype i 

being in damage state ds; dci is the disruption 

costs for archetype i based on occupancy class in 

units of dollars per square foot ($/sf); rtds,i is the 

recovery time for archetype i in damage state ds; 



12
th

 International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 

Vancouver, Canada, July 12-15, 2015 

 5 

peri is the percent owner occupied for archetype 

i; renti is the rental cost for archetype i based on 

occupancy class in units of $/sf/day.  The values 

for dci, peri, and renti were obtained from 

HAZUS.  The values for rtds,i were the mean 

values for repair time, RepTds,i.  To determine the 

economic loss due to relocation, ELRL, the 

relocation cost for archetype i was multiplied by 

the total number of archetypes i in the 

community, and summed for all archetypes. 

𝐸𝐿𝑅𝐿 = ∑ 𝑐𝑟𝑒𝑙,𝑖
𝑛𝑎𝑟𝑐ℎ
𝑖=1 ∙ 𝑛𝑖  (14) 

2.2.4. Repair Time 

The repair times were modeled identically to the 

repair costs in Sec. 2.2.2, replacing mean 

subassembly repair costs with subassembly 

repair times obtained from the same source.  The 

specific computation of repair time will not be 

provided here due to its repetitiveness.   

2.3. Objectives 

As detailed in Sec. 2, four objectives were 

considered in this study.  Their individual 

computations are provided in the following 

subsections. 

2.3.1. Initial Cost 

The initial cost, RO1, was computed as the sum 

of the cost for all new retrofits for that specific 

generation in the algorithm relative to the initial 

population.   

𝑅𝑂1 =  𝑖𝑐𝑟𝑒𝑡  (15) 

The new retrofit costs, icret, were computed using 

a unit cost per square foot for the respective 

archetype and respective retrofit, cret,i, multiplied 

by the total floor area of the archetype, fai. New 

retrofits were determined by subtracting the total 

number of buildings retrofitted in the current 

generation, ngen,i, from the initial generation, no,i.   

𝑖𝑐𝑟𝑒𝑡 = ∑ 𝑐𝑟𝑒𝑡,𝑖 ∙ 𝑓𝑎𝑖 ∙ (𝑛𝑔𝑒𝑛,𝑖 − 𝑛o,𝑖
𝑛𝑎𝑟𝑐ℎ
𝑖=1 )  

  (16) 

2.3.2. Economic Loss 

The economic loss, RO2, was computed as the 

sum of direct and indirect costs. These costs 

included:  repair costs, ELRC, relocation costs, 

ELRL, and morbidity costs (e.g., injury costs, 

PTSD treatment costs, PTSD downtime costs, 

and the value of lost life), ELM, where the 

computation of each of these variables was 

provided in previous sections. 

𝑅𝑂2 =  𝐸𝐿𝑅𝐶 + 𝐸𝐿𝑅𝐿 + 𝐸𝐿𝑀  (17) 

2.3.3. Number of Morbidities 

The number of morbidities, RO3, was computed 

by multiplying the morbidity rates by the 

population size of the community,   

𝑅𝑂3 =  ∑ [(∑ 𝑀𝑅𝑖𝑠,𝑑𝑠
𝑛𝑖𝑠
𝑖𝑠=1 + 𝑀𝑅𝑝𝑟,𝑑𝑠) ∙

𝑛𝑑𝑠
𝑑𝑠=1

∑ (𝑛𝑖,𝑑𝑠 ∙ 𝑜𝑐𝑐𝑖)
𝑛𝑎𝑟𝑐ℎ
𝑖=1 ]     (18) 

where ni,ds is the number of archetypes i in 

damage state ds, and occi is the occupancy for 

each archetype i.  The morbidities included all 

injury severity levels, and PTSD diagnoses.   

2.3.4. Time to Recovery 

The quality of life and mental health of the 

population is important in order for a community 

to have a successful economy.   One way to 

measure the impact on the quality of life of the 

population is through the estimated recovery 

time.  To compute the community’s time to 

recovery, RO4, the maximum was taken over the 

recovery time for each morbidity category, RTM, 

and the total repair time, RTRep.   

𝑅𝑂4 =  𝑚𝑎𝑥 {
𝑚𝑎𝑥(𝑅𝑇𝑀)

𝑅𝑇𝑅𝑒𝑝
  (19) 

2.4. Genetic Algorithm Fitness Function 

As previously mentioned, a genetic algorithm 

(GA) was used to optimize the community-level 

retrofit.  GAs are advantageous in this case due 

to their robustness and multiple-solution output.  

That is, rather than providing a single solution, 

GAs provide a “population” of solutions in every 

generation which allows for the formation of the 

pareto-optimal set of solutions if desired.  A 

simple genetic algorithm was employed here 

using a single point crossover operator, a single 

point mutation operator, and tournament 

selection.  Tournament selection is based on the 
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fitness of each individual in the population (here 

an individual is represented by the woodframe 

building stock of a community).  The fitness was 

computed by using only the mean values for each 

of the variables derived in the previous sections 

to provide strict numbers for each objective.  The 

objectives were normalized by the minimum 

population value of each respective objective in 

order to keep each on the same order of 

magnitude.  Once normalized, the objectives, roi, 

were weighted, wi, and summed together.    

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑤1 ∙ 𝑟𝑜1 + 𝑤2 ∙ 𝑟𝑜2 + 𝑤3 ∙ 𝑟𝑜3 +
𝑤4 ∙ 𝑟𝑜4   (20) 

The weights allow input of the decision maker 

preferences and can be changed to provide more 

diverse solutions.  The lower the fitness value, 

the more fit the individual, and the more likely 

for it to be duplicated in future generations, this 

is the premise of a genetic algorithm. 

3. COMMUNITY-LEVEL CASE STUDY 

This case study uses only a single floor plan 

designed by two seismic provisions providing 

two archetypes to comprise the decision space.  

This is a simplified version of the options 

available to a community for demonstration 

purposes of this paper.  The floor plan is a three-

story soft-story woodframe apartment building 

with tuck-under parking.  The building was 

designed using the 1959 SEAOC Blue Book 

[SEAOC (1959)] seismic recommendations and 

the ASCE Standard 7-05 [ASCE (2005)] 

equivalent lateral force procedure.  The use of 

only two archetypes simplifies the decision space 

considerably, but still illustrates the framework.   

3.1. Inputs 

The community under consideration was Los 

Angeles County, California.  Table 3 provides 

the community input data for the case study 

obtained from 2010 Census data [U.S. Census 

Bureau (2012)]. The seismic hazard was set as 

the maximum considered earthquake (MCE) for 

Los Angeles, California (Sa = 2.5g).  The 

weights shown in Eq. (21) were set to unity and 

were not changed during the analysis.  The 

population size was set to 5,000 buildings. 

 
Table 3:  Community-Level Case Study Input Data. 

Variable Data for Los Angeles 

County, CA 

Age (0-9 y.o.) 13.1% 

Age (10-18 y.o.) 14.6% 

Age (19-29 y.o.) 15.4% 

Age (30-45 y.o.) 21.9% 

Age (46-59 y.o.) 24.2% 

Age (60+ y.o.) 10.9% 

Ethnicity (minority) 72.2% 

Ethnicity (non-

Hispanic white) 

27.8% 

Partnered Household 32.3% 

Single Household 72.2% 

Family Household 

(children) 

37.2% 

Gender (male) 49.3% 

Gender (female) 50.7% 

Salary (average) $81,729 

SES (low) 27.6% 

SES (moderate) 43.4% 

SES (high) 29.0% 

3.2. Results 

The results presented here were developed using 

the following genetic algorithm parameter 

values:  probability of crossover = 0.85, 

probability of mutation = 0.1, 30 individuals (i.e. 

communities of buildings) in the population, and 

80 total generations.  This provided 2,400 data 

points (i.e. total retrofitted communities in the 

analysis).    As an output, the minimum, 

maximum, and mean population fitness values 

for each generation were plotted.  Although not 

shown here, the GA was stopped before it could 

converge to a single solution.  Presenting the 

converging solution was not felt to be relevant to 

the framework since the pareto-optimal set 

requires diverse solutions, and a number of 

diverse solutions were produced during the 80 

generations.  The optimal solution must be based 

on the decision maker or community preferences 

of the objectives which were not incorporated in 
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this case study, but could be incorporated 

through the objective weights shown in Eq. (21). 

The GA produced community fragility 

functions for the latter three objectives 

conditioned on the first objective.   

Figure 1 provides the probability of 

nonexceedance for the number of morbidities 

conditioned on initial cost.  

Figure 1 has 2400 fragility curves plotted on it, 

one from each community in each generation.  

Many of the solutions are identical.  If more 

archetypes are used, there will be more variety 

allowed in the solutions, and a much more 

diverse solution base will be generated.  The 50
th

 

percentile values were extracted from 

Figure 1 and plotted against the initial cost, 

shown in 

Figure 2.  
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Figure 4 provide similar figures with 50th 

percentile values for the economic loss and time 

to recovery, respectively, versus the initial cost.  

One can see that there were very similar trends in 

the three objectives when compared to initial 

cost.  Referring to Figures 3, 4, and 5, the pareto-

optimal solutions would be the far left points and 

bottom points.  These points represent the 

optimal tradeoffs between the respective 

objective and the initial cost.  All other solutions 

are dominated by these points.  The points in 

Figures 3, 4, and 5 may be mapped back to the 

associated community mitigation plan for 

presentation to the decision maker(s).    

 

Figure 1:  Nonexceedance Probability for the 

Number of Morbidities Conditioned on Initial Cost 
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Looking at 

Figure 2, at $655 million initial cost and 31,700 

morbidities, a single solution is encircled within 

the zoomed in section.  This solution maps to 

Figure 3 at $9.4 billion in economic losses, and 

maps to 

Figure 4 at 63 weeks recovery time. This 

solution corresponds to the mitigation plan of 2 

of the 1959 SEAOC buildings and 4998 of the 

ASCE Standard 7-05 buildings in the 

community.  Demonstrating that the lowest 

number of morbidities occured when nearly all 

of the outdated buildings were retrofitted.  

Decision makers can use results similar to 

Figure 1, and apply a set confidence level to 

develop similar figures as those presented in 

Figure 2 through 

Figure 4 for identifying their optimal mitigation 

plan. 

0 2 4 6 8 10 12

x 10
8

0

1

2

3

4

5

6

7

8
x 10

4

Initial Cost ($)

N
u
m

b
e
r 

o
f 

M
o
rb

id
it
ie

s
 (

P
e
rs

o
n
s
)

 

 

50% PNE

6.4 6.5 6.6 6.7 6.8

x 10
8

3.1

3.15

3.2

3.25

x 10
4

Initial Cost ($)

N
u
m

b
e
r 

o
f 

M
o
rb

id
it
ie

s
 (

P
e
rs

o
n
s
)

 

 

50% PNE

0 2 4 6 8 10 12

x 10
8

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

10

Initial Cost ($)

E
c
o
n
o
m

ic
 L

o
s
s
 (

$
)

 

 

50% PNE

0 2 4 6 8 10 12

x 10
8

50

60

70

80

90

100

110

120

Initial Cost ($)

R
e
c
o
v
e
ry

 T
im

e
 (

w
e
e
k
s
)

 

 

50% PNE

0 20,000 40,000 60,000 80,000 100,000
0

0.2

0.4

0.6

0.8

1

Number of Morbidities

P
[n

M
o
rb

id
it
ie

s
>

=
n
|I
C

 =
 I

C
(i
)

 

 

IC(i)

0 2 4 6 8 10 12

x 10
8

0

1

2

3

4

5

6

7

8
x 10

4

Initial Cost ($)

N
u
m

b
e
r 

o
f 

M
o
rb

id
it
ie

s
 (

P
e
rs

o
n
s
)

 

 

50% PNE

6.4 6.5 6.6 6.7 6.8

x 10
8

3.1

3.15

3.2

3.25

x 10
4

Initial Cost ($)

N
u
m

b
e
r 

o
f 

M
o
rb

id
it
ie

s
 (

P
e
rs

o
n
s
)

 

 

50% PNE

0 2 4 6 8 10 12

x 10
8

50

60

70

80

90

100

110

120

Initial Cost ($)

R
e
c
o
v
e
ry

 T
im

e
 (

w
e
e
k
s
)

 

 

50% PNE



12
th

 International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 

Vancouver, Canada, July 12-15, 2015 

 10 

4. CONCLUSIONS 

Deciding where money is best allocated such that 

it protects the population, preserves their quality 

of life, and maintains infrastructure involves a 

complex decision process.  This is especially true 

considering the varied building stock and 

pronounced demographic diversity of some 

geographically adjacent communities. The 

framework presented herein aims to assist local 

government leaders and other stakeholders with 

respect to how best to allocate funds for 

mitigating the woodframe building stock of a 

community. To make those decisions and to 

move toward a more earthquake resilient 

community, it is thus critical to consider both the 

built and social environment.   

Like any study, there were limitations to the 

approach described in this paper. There are more 

factors which influence individual- and 

community-level resiliency to earthquakes that 

were not considered here.  The variables selected 

for this framework were chosen based on their 

presence in the literature and availability in 

publically accessible datasets.  Additionally, the 

use of any number of archetypes is a 

simplification of a real-world scenario.  In this 

study, all buildings in the community were 

assumed to be equal distance from the epicenter, 

and with no aging or repairs conducted.  Despite 

these limitations, the presented framework 

provides decision makers with comparisons 

between mitigation plans, and allows the 

communities to examine multiple resilience 

levels with the associated risk-based 

performance criteria.   
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