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ABSTRACT: This paper proposes a reliability based flow analysis framework for water pipe networks 

after an earthquake event. The first part of the framework is an automated leakage and breakage 

modeling of water pipe segments in a network damaged by an earthquake event. The second part is an 

efficient system-level probabilistic flow analysis based on the Matrix-based System Reliability (MSR) 

formulation and the branch-and-bound method. It estimates the system-level flow quantities of network 

pipes and the system damage state probabilities, and significantly reduces the computational costs by 

sequentially prioritizing the system states according to their likelihoods and by selecting their partial 

sets. The proposed framework is demonstrated by a water pipe network consisting of 11 pipe segments 

under an earthquake event, in which the statistical moments and the probability of the water flows of 

several pipes are estimated based on the proposed framework.    

 

1. INTRODUCTION 

Water pipe networks are one of the largest 

infrastructure assets among lifeline networks and 

substantially contribute to the economic services, 

industrial activities, quality of life, and the 

environment. Their primary duty is to provide 

ample amounts of water at a sufficient pressure 

level in order to meet all demands from 

consumers. Their reliable water supply is an 

essential service for communities and is part of 

the so-called service of general interest being 

vital to the general welfare, public health, and the 

collective security of populations, as well as 

economic activities (Alegre et al. 2006). When 

natural or man-made disasters occur, however, 

water pipe networks are often vulnerable to 

structural failures and may lose a significant 

amount of water or even become non-operational 

due to the leakage and breakage of pipe 

segments. This prevents them from carrying the 

specified quantities of water and the required 

pressure heads, and post-disaster disruption of 

the water supply obviously causes considerable 

public inconvenience. In this context, it is 

imperative to immediately predict the post-

hazard flow of a water network, considering 

possible leakage and breakage scenarios for 

prompt risk-informed decision making on hazard 

mitigation and disaster management. 

Many research attempts have been made to 

estimate the seismic performance of water supply 

networks using Monte Carlo simulation (MCS) 

or non-simulation-based methods, which include 

Dueñas-Osorio et al. (2007), Adachi & 

Ellingwood (2009), Zolfghari & Niari (2009), 

Lee et al. (2011), Kim et al. (2012), Torri & 

Lopez (2012), and Kang & Kliese (2014). These 

studies mainly focused on connectivity analyses 

or non-quantity-based analyses, and some of the 

MCS-based methods conducted probabilistic 

estimation of quantities, but most of the non-

simulation methods are limited in quantity 

estimations.       

This paper proposes a system-level 

probabilistic flow analysis framework for water 
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pipe networks after an earthquake event. The 

first part of the proposed framework is an 

automated modeling of a water pipe network 

considering its leaked and broken components 

due to earthquake shaking. Multiple software 

packages including ArcGIS (ESRI 2011), 

EPANET (Rossman 2000), and GIRAFFE 

(Cornell University 2008) are integrated for this 

purpose. The second part of the proposed 

framework is an efficient algorithm for a 

probabilistic post-earthquake water flow analysis 

of the modeled network considering system-level 

damage scenarios such as the leakage and 

breakage in multiple pipes using the Matrix-

based System Reliability (MSR) analysis 

framework (Lee et al. 2011, Kang & Song 2011) 

and the branch-and-bound method. The branch-

and-bound method sequentially identifies critical 

damage scenarios according to their likelihoods, 

and reduces the size of the vectors/matrices in 

the MSR method by considering only important 

scenarios. The proposed approach is 

demonstrated by a benchmark water pipe 

network example having 11 pipelines. 

2. PROPOSED FRAMEWORK 

2.1. Network modeling for hydraulic analysis 

The first part of the framework is a post-hazard 

network modeling. First, a topology of a water 

pipe network is prepared in Google Earth, and 

the coordinate information for network junctions 

is stored in a Keyhole Markup Language (KML) 

file. This file is then imported to ArcGIS, 

Geographic Information System (GIS) based 

software developed by ESRI, through GPS 

Visualizer, web-based free software. In ArcGIS, 

additional parameter information such as pipe 

diameter, pipe roughness, elevation of junctions, 

and water demand locations and levels is added, 

and graphically unsnapped junctions in the 

Google Earth model are fully snapped using the 

snapping tool in ArcGIS. Finally, the model is 

stored in a Drawing Interchange Format (DXF) 

file and imported to EPANET, through a proper 

file conversion using EPACAD. In EPANET, the 

remaining parameters such as the locations of 

reservoirs, tanks, and pumps, the required 

demand at junctions are defined, and a hydraulic 

analysis is carried out to estimate the water flow 

of each pipe segment.  

2.2. System damage modeling for multiple pipe 

leakage and breakage  

To model leakage and breakage in multiple pipe 

segments due to a seismic event, a modeling 

scheme in GIRAFFE is adopted and simplified 

such that a pipe segment damage has only two 

states, i.e., leakage and breakage, for 

computational simplicity. The modeling details 

for pipe breakage and leakage are illustrated in 

Figures 1 and 2, respectively. Figure 1 shows the 

modeling of a pipe breakage through the removal 

of the broken pipe element. The corresponding 

water discharge is modeled by installing two 

empty reservoirs at the two end points of the 

removed element. To model the water discharge 

from the broken pipe into the atmosphere, one-

way check valves are installed.  

 

 
Figure 1 Hydraulic model for a pipe break (Cornell 

University, 2008)  

 

Figure 2 shows the modeling of pipe 

leakage, where an empty reservoir is installed at 

the mid-point of the leaked pipe, and the leaked 

pipe and the reservoir are connected through a 

fictitious pipe and a one-way check valve. The 

diameter of the fictitious pipe determines the 

leakage rate, and in this study, it is assumed to be 

1/6 of that of the original pipe. All of these 

modeling procedures are automated in 

MATLAB®  using an EPANET MATLAB 

Toolkit (Eliades, 2009) to model random 

breakages and leakages of multiple pipelines 

after an earthquake event.   

Modeling

Pipe break
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Figure 2 Hydraulic model for a pipe leak (Cornell 

University, 2008)  

2.3. MSR-based post hazard flow analysis 

In the proposed framework, the MSR-based 

uncertainty quantification method (Lee et al. 

2011) is employed to carry out post-hazard water 

pipeline network flow analysis, in which the 

automated modeling procedure introduced in the 

previous section is used to estimate water flow 

quantities. Consider a water pipe network system 

consisting of n pipeline components. The ith 

component has di prescribed damage states, i = 

1,…,n. Thus, the system has a total of 

d1×d2××dn system states determined by 

component damage states. In this study, all di's 

are assumed to be 3, representing no damage, 

leakage, and breakage, and the system has 3n 

damage states accordingly. Let Pi,(j), i = 1,…,n, j 

= 1,…,di, denotes the probability of the ith 

component in the jth damage state. By assuming 

that all components are statistically independent, 

the probability of each system state can be 

obtained as the product of the corresponding 

component probabilities, i.e. 

1 2 1 2

(1,1,...,1) 1,(1) 2,(1) ,(1)

(2,1,...,1) 1,(2) 2,(1) ,(1)

( , ,..., ) 1,( ) 2,( ) , ( )n n

n

n

d d d d d n d

P P P P

P P P P

P P P P

     
   

  
    
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   

        

p  (1) 

where p is termed the probability vector (Lee et 

al. 2011) showing all possible system states, and 

P(…) denotes the probability of a system state 

determined by the component damage states 

shown in the subscript. For example, (2,1,…,1) 

indicates that all the components are in the first 

damage state except that the first component is in 

the second damage state.  

For each of the system state, any 

corresponding system quantity such as the post-

hazard flow of each pipeline can be estimated 

using the water flow analysis model proposed in 

the previous section. For each of the system 

states in Equation 1, the system quantities are 

evaluated as follows:      

1 2 1 2

(1,1,...,1) 1,(1) 2,(1) ,(1)

(2,1,...,1) 1,(2) 2,(1) ,(1)

( , ,..., ) 1,( ) 2,( ) ,( )

( , ,..., )

( , ,..., )

( , ,..., )
n n

n

n

d d d d d n d

Q f q q q

Q f q q q

Q f q q q

   
   
    
   
   
      

q   (2) 

where q is termed the quantity vector (Lee et al. 

2011), Q(…) denotes the system quantity of the 

system state determined by the component 

damage state shown in the subscript, and f() 

denotes the post-hazard flow analysis model 

proposed in the previous section.  

Using the probability vector p in Equation 1 

and the quantity factor q in Equation 2, the 

statistical parameters and the probability 

functions of the system quantities such as the 

mean, the variance, and the cumulative 

distribution function (CDF) of the system 

quantity can easily be estimated by the following 

matrix calculations (Lee et al. 2011): 

T

2 T 2

:

( .* )

( ) ( )
k

Q

Q Q

Q k

k q q

F q P Q q p
 

 

  

   

q p

p q q  (3) 

where “.*” denotes the element-wise product of 

two vectors, and pi and qi are the kth elements of 

the vectors p and q, respectively.  

2.4. Branch-and-bound method for efficient 

probabilistic flow analysis 

The system-level probabilistic flows analysis 

described in the previous section may require a 

huge computational costs for a large system. This 

is because the number of the system states (i.e. 

d1×d2××dn) increases exponentially with the 
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number of components. In this study, we propose 

an efficient method employing the branch and 

bound method (Murotsu 1984, Guenard 1984). 

The branch-and-bound method is used to 

sort the system state probability vector in 

Equation 1 as follows. We starts from the 

probability vector of the first component only, 

i.e., [P1(1),∙∙∙,P1(d1)]
T. We first find the element 

with the maximum value in this vector and 

multiply it by the probability vector of the next 

component,[P2(1),∙∙∙,P2(d2)]
T . Then, the total size 

of the probability vector increases to (d1+d2−1). 

Next, we repeat finding the element with the 

maximum value in this increased size vector and 

check if this element has already been branched 

out in the previous process. If so, we multiply it 

by the vector of the next component, 

[P3(1),∙∙∙,P3(d3)]
T to increase the vector size to 

(d1+d2+d3−2). If not, we multiply the element by 

the vector of the second component, 

[P2(1),∙∙∙,P2(d2)]
T to increase the vector size to 

(d1+2d2−2). These processes are repeated to 

prioritize important system states and to evaluate 

their probabilities.  

At each process, we check if the element 

with the maximum value contains all n network 

components in the product. If that is the case, the 

maximum value and the corresponding system 

state are stored, and the element of the second 

highest system probability is branched out to 

continue the process. Critical system states and 

their probabilities are collected until the sum of 

the system state probabilities reaches a value 

close to 1.0 or a targeted value. The size of this 

partial probability vector is significantly smaller 

than the full vector in Equation 1 because many 

of the system states have negligible likelihoods. 

Then a normalizing process dividing the stored 

values by their sum is conducted so that the sum 

of the probabilities in the partial vector becomes 

1.0. By replacing the complete probability vector 

in Equation 1 by the normalized partial 

probability vector, one can perform probabilistic 

flow analysis with significantly reduced 

computer memory requirement and improved 

efficiency.   

3. APPLICATION 

3.1. Application network 

The proposed framework is applied to the 

water pipe network in Figure 3, which is 

modeled based on a network example in 

Vitkovsky et al. (2000). It has 11 pipes (indexed 

by the numbers in parentheses), seven nodes 

(indexed by the numbers in circles), two inflows, 

and one outflow at a demand node. A constant 

demand at a fixed time point is assumed with a 

specified demand value. The pipe diameters are 

equally 254 mm for all pipes, and the lengths of 

the 11 pipes are 1,372 m, 762 m, 762 m, 1,067 

m, 762 m, 762 m, 762 m, 914 m, 1219 m, 762 m, 

and 762 m, respectively. The Hazen-Williams 

coefficient is chosen as W = 120.  

  
Figure 3 Example water pipe network with 11 pipe 

segments 

 

When an earthquake event occurs, it is 

assumed that each pipeline in the network will 

have one of the following three damage states: 

undamaged, leakage, or breakage. The failure 

probabilities of the pipes are estimated using the 

following repair rate given as a function of the 

peak ground velocity (PGV) in the HAZUS 

technical manual (FEMA 2003), which is 

defined by the average number of failures per 

unit length (km) of a pipe: 
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The failure probability of each pipe is 

computed using a Poisson process along a 

dimension of length. This paper deals only with 

failures induced by ground shaking and uses the 

repair rate model in Equation 4; the ground 

failure is ignored. 

The PGV is computed from the following 

attenuation relationship (Campbell 1997): 

 

 

ln(PGV) ln(PGA) 0.26 0.29

1.44ln 0.0203exp(0.958 )

1.89ln 0.361exp(0.576 )

(0.0001 0.000565 ) 0.12

0.15 0.30

0.75tanh(0.51 )(1 ) ( )

SR SR
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M

r M

r M

M r F

S S

D S f D

  

 

 

  

 
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  (5) 

where 

2 2

ln(PGA) 3.512 0.904

1.328ln{ [0.149exp(0.647 )] }

[1.125 0.112ln 0.0957 ]

[0.440 0.171ln ]

[0.405 0.222ln ]

SR

HR

M

r M

r M F

r S

r S

  

 
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 

 

  (6) 

where PGA is the peak ground acceleration, M 

denotes the earthquake magnitude assumed to 

vary within the range 6.5~8.0 in this study, F 

represents the fault type, assumed to be 0 for 

strike-slip type faulting, SRS  and HRS  define the 

local site conditions, assumed to be alluvium or 

firm soil ( 0),SR HRS S   D denotes the depth to 

bedrock, assumed to be 0.45 km, and r is the 

distance between the center of each pipe and the 

epicenter. The distances between the pipes and 

the epicenter are 3.9 km, 4.2 km, 3.8 km, 3.9 km, 

3.5 km, 4.0 km, 4.1 km, 4.7 km, 4.9 km, 4.5 km, 

and 4.5 km (from pipes 1 to 11). For D < 1 km, 

fV(D) is given as  

( ) 0.30(1 )(1 ) 0.15(1 )V HR SRf D S D D S        (7) 

When a pipe segment is damaged by a 

ground shaking in an earthquake, it can have 

either one of the two states: leakage or breakage. 

Their respective likelihoods of occurrence are 

assumed to be 0.2 and 0.8 modifying the 

distribution used in Zolfaghari & Niari (2009). 

Then, the probabilities of the leakage and 

breakage of a pipe in an earthquake event are 

computed as the product of the failure 

probability obtained by use of the repair rate in 

Equation 4 and the probabilities of occurrence of 

either leakage or breakage when the pipe is 

damaged. The undamaged state is calculated as 

one minus the failure probability of the pipe by 

leakage or breakage.  

3.2. Results and discussions 

Using the proposed flow based reliability 

analysis framework, the mean, the standard 

deviation, and the coefficient of variance (c.o.v.) 

of the flow rate in pipe 5 for given earthquake 

magnitudes are estimated in Table 1. In this 

table, the earthquake magnitudes 6.0, 7.0, and 

8.5 are selected, and also unknown earthquake 

magnitude is considered by using the PDF of the 

earthquake magnitude used in Kang et al. (2008). 

It is first seen from the results that the flow in 

pipe 5 increases with the earthquake magnitude. 

This is because the pipes in the network are more 

likely to be damaged as the earthquake 

magnitude increases and will have more chances 

of water losses, and the flow in pipe 5 should 

increase to fill up the water lost to maintain the 

required outflow demand at node 4. In Figure 4, 

the probability of the water flow is plotted. 

 

 
Figure 4 Probability of water flow in pipe 5 
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Table 1. Mean, standard deviation, c.o.v. of water 

flow from node 1 to pipe 5 

 Mean 

(ft3/s) 

Standard 

deviation 

(ft3/s) 

c.o.v. 

M = 6.0 3.0602 4.6059 1.5051 

M = 7.0 3.3920 8.2345 2.4276 

M = 8.5 3.4470 11.0899 3.2172 

Uncertain M 3.3147 7.5096 2.2488 

 

The results for pipe 6 are shown in Table 2. 

In this table, all mean values are negative, which 

means that the assumed flow direction is 

opposite to reality. For increasing earthquake 

magnitudes, the mean flow rates decrease due to 

water loss by leakage and breakage. Note that if 

we add the mean flow rate of pipes 5 and 6, they 

almost have a constant value close to the demand 

flow at node 4, for all earthquake magnitudes 

considered. This means that they try to maintain 

the required outflow demand at node 4. In Figure 

5, the probability of water flow in pipe 6 is 

plotted.  

 
Figure 5 Probability of water flow in pipe 6 

 

Table 2. Mean, standard deviation, c.o.v. of water 

flow in pipe 6 

 Mean 

(ft3/s) 

Standard 

deviation 

(ft3/s) 

c.o.v. 

M = 6.0 -1.7689 3.8992 2.2043 

M = 7.0 -1.4388 7.8287 5.4413 

M = 8.5 -1.2668 11.1008 8.7631 

Uncertain M -1.5103 7.0480 4.8678 

 

It should be noted that, for all results and 

plots, the quantity vector q in Equation 2 was 

evaluated only once, and the change of the 

earthquake magnitudes and the corresponding 

changes in the pipe damage probabilities were 

handled only by updating the probability vector 

in Equation 1, which significantly saves 

computational costs as most computational 

efforts are needed in the evaluation of the 

quantity vector q requiring repeated evaluations 

of flow analyses. 

To further reduce computational costs, the 

branch-and-bound method introduced in Section 

2.4 is employed. The mean flow rates of pipes 5 

and 6 are calculated as shown in Figure 6 for the 

earthquake magnitude M = 7.0. The analysis is 

repeated for increasing number of branches in 

the branch-and-bound method represented by the 

sum of the probabilities in the probability vector, 

p. The results are represented as two cases such 

that the vector p is normalized by the sum of the 

probabilities and the vector p is not normalized. 

It is seen that the mean flow predictions 

converge to the values in Tables 1 and 2. The 

number of the identified branches and the 

computational costs are provided in Figure 6 and 

Figure 7 as normalized values by those for the 

full system states. The computational costs for 

the analysis for the full system states requires 

about 30 hours using MATLAB on a computer 

with Intel I7 CPU (2.80 GHz each) and 3GB of 

RAM.  
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Figure 6 Mean flow estimation for pipes 5 and 6 

according to the sum of probabilities in a probability 

vector  

 

 
 

Figure 7 The normalized number of identified system 

states (upper) and the normalized computation time 

(lower) according to the sum of probabilities in a 

probability vector 

 

It should be noted that the branch-and-

bound method in the proposed framework is 

purely based on the order of the probabilities of 

system states without the consideration of system 

quantities, although a proper ordering should be 

made considering both the probabilities and the 

associated quantities because we are interested in 

the prediction of the quantities in terms of their 

partial descriptors. Hence, the convergence of the 

branch-and-bound method cannot be robust, and 

a sudden step change can occur even after a large 

number of branches are identified, which makes 

the determination of truncation point in the 

branch-and-bound method difficult. However, if 

the branching process is performed by 

considering both probabilities and quantities, it 

will significantly decelerate the computation 

because the order of the branches cannot be 

determined until each branch is fully expanded.  

To avoid sudden quantity changes during 

branching processes, any expected extreme 

quantities with low probability should be pre-

identified if possible, and they should be 

manually incorporated in the reliability analysis 

to avoid such convergence issues.   

4. CONCLUSION 

This study proposed an efficient system-level 

probabilistic flow analysis framework to estimate 

the post-hazard performance of water pipe 

networks in a probabilistic way. The framework 

is consisting of the two parts: (1) a post-hazard 

network modeling procedure; and (2) an efficient 

system-level probabilistic flow analysis 

algorithm developed based on the MSR method 

and the branch-and-bound method. The 

framework was demonstrated by an 11 pipe 

network after an earthquake event. For various 

seismic damage scenarios, the system 

performance was probabilistically measured in 

terms of the water flows of the network pipes. 

The analysis results showed that the flow rate of 

pipes are determined to maintain the required 

demand amount at a specified node. A 

computational efficiency was achieved using the 

branch-and-bound method by sequentially 

prioritizing system states according to their 

likelihoods and considering only important 

scenarios. This computational efficiency was 

demonstrated through the same example, and a 
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discussion for convergence issues in the branch-

and-bound method was drawn.    
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