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ABSTRACT: Defying failure is the primary challenge of the structural engineer. It sounds paradoxical, 
but in order to achieve a successful design, the structural engineer must think about and account for all 
possible failure modes of a structure. This is not different in structural optimization. Hence, in 
structural optimization one also has to consider the expected costs of failure. In structural engineering 
design, economy and safety are apparently conflicting goals. However, when expected costs of failure 
are considered, it becomes evident that investments in safety are necessary in order to avoid paying for 
failure. The optimum point of compromise can be found by a risk optimization, where the objective 
function includes all costs over the life-cycle of the structure: construction, operation, inspection 
maintenance, disposal, and the expected costs of failure. The latter are an undeletable remainder of the 
failure modes that the structure needs to be designed against. This paper addresses the optimization of 
simple structural systems, considering the balance between competing failure modes such as yielding 
(squashing), buckling and snap-through. The study shows how different failure modes, associated to 
different costs of failure, lead to different optimal designs. A plane truss structure is studied as 
application example. The shape (nodal positions) and member size are considered as design variables.  
Results show that different optimal designs are obtained when the balance between competing failure 
modes is changed.   

1. INTRODUCTION 
Structural optimization involves seeking for 

the (optimal) shape and size of a structure, which 
allows it to fulfill its intended function with 
minimal resources use. It is today widely known 
that deterministic design optimization is not 
robust w.r.t. uncertainties in structural loads and 
material strength. In deterministic design 
optimization, uncertainties are taken into account 
in a subjective and indirect way, by means of 
partial safety factors specified in design codes. 

As a consequence, deterministic optimal 
solutions may lead to reduced reliability levels 
(Beck & Gomes, 2012). As an example, consider 
a fully stressed design where all material points 
are designed against the limit: such a structure is 
more likely to collapse, since there are no 
alternative load paths. 

Structural optimization should be robust 
with respect to load and resistance uncertainties. 
This perception has led to the development of 
different methodologies: 

1. Robust optimization (Beyer & Sendhoff, 
2006; Schueller & Jensen, 2009); 

2. Fuzzy optimization or fuzzy 
programming (Zimmermann, 1992); 

3. Reliability-based design optimization or 
RBDO (Cheng et al., 2006). 

Typical objectives in robust optimization are 
maximizing mean system performance and 
minimizing the variance. In robust optimization, 
uncertainties are represented as random variables 
or stochastic processes. Otherwise, in fuzzy 
optimization, uncertainties are represented by 
fuzzy numbers. While robust optimization has a 
probabilistic approach, the fuzzy optimization 
presents a possibilistic approach. In general, the 
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amount of information available determines the 
appropriate approach (Bastin, 2004). 

RBDO seeks minimization of objective 
function involving material volume, manufacture 
cost or structural system performance. 
Uncertainty in loading and strength is addressed 
objectively and modeled probabilistically. 
Failure probabilities are normally used design 
constraints. 

Consideration of uncertainties in structural 
design optimization is not a novelty. However, a 
literature review shows that in most classical 
RBDO articles (Du & Chen, 2004; Tu et al., 
1999; Cheng et al., 2006; Youn & Choi, 2004; 
Agarwal et al., 2007; Yi et al., 2008; Aoues & 
Chateauneuf, 2010; Valdebenito & Schueller, 
2010) failure consequences are ignored or 
discarded.  

Objective functions in robust optimization 
and RBDO frequently involve costs, but such 
costs relate to material volume or manufacturing 
costs. A cost term often overlooked in classical 
RBDO problems is the expected failure cost. 
Expected failure cost is the product between 
failure costs by failure probabilities. This 
definition complies with the definition of risk: 
expected cost of failure can be understood as the 
risk associated to each failure mode of the 
structure. The total expected cost is the sum of 
expected failure costs for each possible failure 
mode, in addition to initial construction costs, 
maintenance and operation costs. The total 
expected cost of a structural system is directly 
affected by the risk offered to users, employees, 
the general public and the environment. 

In this study, the risk optimization 
formulation is employed (Beck & Verzenhassi, 
2008; Beck & Gomes, 2012; Beck et al., 2012). 
In this formulation, expected costs of failure are 
included in the objective function. The 
optimization problem becomes unconstrained.  

2. RISK OPTIMIZATION 
Consider ࢄ  and ࢊ  two parameter vectors of a 
structural system. Vector ࢄ represents all random 
variables of the problem such as dimensions, 
resistance properties of materials and structural 

members and loads. Some of these parameters 
are by nature random variables; others cannot be 
deterministically defined due to several 
uncertainty sources. Vector ࢊ  contains the 
system design variables or optimization 
variables, such as partial safety factors, 
dimensions, nodal coordinates and even some 
(deterministic) parameters of the probability 
distribution models of random vector	ࢄ. 

The existence of uncertainties implies risks, 
that is, the possibility of undesired structural 
responses. The boundary between desired and 
undesired structural responses is formulated in 
limit state equations ݃ሺࢄ, ሻࢊ 	ൌ 	0 such that: 

ሻࢊሺ݂ߗ  ൌ ሼݔ|݃ሺࢊ,ࢄሻ ൑ 0ሽ (1) 

ሻࢊሺݏߗ  ൌ ሼݔ|݃ሺࢄ, ሻࢊ ൐ 0ሽ (2) 

where ߗ௙ሺࢊሻ  and ߗ௦ሺࢊሻ  are the failure and 
survival domains, respectively. 

Each limit state function describes a 
possible failure mode in terms of serviceability 
or ultimate capacity. The probability of an 
undesirable response, or failure probability, is 
given by:  

௙ܲሺࢊሻ ൌ ࢄൣܲ ∈ ሻ൧ࢊ௙ሺߗ ൌ ׬	 ሻࢊሺ࢞ሻ݀࢞ఆ೑ሺࢄ݂
 (3) 

where ݂ࢄሺ࢞ሻ represents the joint probability 
density function of random vector ࢄ  and 
ܲሾ. ሿ	represents probability.  

The failure probability for each limit state 
function, as well as for system failure, is 
calculated using techniques of structural 
reliability, such as FORM (First Order 
Reliability Method), SORM (Second Order 
Reliability Method) or Monte Carlo simulation 
(Melchers, 1999; Ang & Tang, 2007). 

2.1. Quantifying failure consequences 
The total expected cost (ܥ௧௘ ) of a structural 
system in a risk optimization problem is given by 
the sum of the following costs: 

 ;initial or construction cost :݈ܽ݅ݐ݅݊݅ܥ .1
 ;operation cost :݊݋݅ݐܽݎ݁݌݋ܥ .2
 ,Cost of inspections, maintenance :.ݐ݊݅ܽ݉ܥ .3

repair and replacement; 
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 ;cost of discard :݀ݎܽܿݏ݅݀ܥ .4
 .expected cost of failure :݂݁ܥ .5
The expected cost of failure is the product 

between failure cost by the respective failure 
probability (Beck & Gomes, 2012): 

ሻࢊ௘௙ሺܥ  ൌ ሻࢊ௙ሺܥ	 ௙ܲሺࢊሻ (4) 

Failure costs include repair or replacement 
costs for damaged components, complete system 
rebuild, compensation costs due to accidental 
failure, and others. The failure probability is 
evaluated by structural reliability theory, 
following Eq. (3). To each failure mode there is 
an associated expected cost of failure term, 
hence:  

ሻࢊ௧௘ሺܥ ൌ ሻࢊ௜௡௜௧௜௔௟ሺܥ ൅ ሻࢊ௢௣௘௥௔௧௜௢௡ሺܥ ൅
ሻࢊ௠௔௜௡௧.ሺܥ																				 ൅ ሻࢊௗ௜௦௖௔௥ௗሺܥ ൅
																				∑ ሻࢊ௙ሺܥ ௙ܲሺࢊሻ

௙௔௜௟.		௠௢ௗ௘௦
௞ୀଵ  (5) 

The optimal amount of resources to invest in 
safety of the built structure, and in inspection and 
maintenance policies, is the one that leads to the 
minimum expected total cost. This amount can 
be found by solving the following risk 
optimization problem: 

∗ࢊ  ൌ :ሻࢊ௧௘ሺܥሾ	݊݅݉݃ݎܽ ࢊ ∈ ܵሿ (6) 

where ܵ ൌ ሼࢊ௠௜௡ ൑ ࢊ ൑ ௠௔௫ሽࢊ  is the feasible 
design space and ࢊ௠௜௡	 and  ࢊ௠௔௫	are the lower 
and upper limits of the design variables. In this 
formulation, the reliability constraints are 
incorporated in the objective function. 

The above formulation allows one to solve 
the safety-economy tradeoff in the design and 
operation of a given structure. Moreover, it 
allows one to find the optimal point of balance 
between competing failure modes, which is 
particularly important when significantly 
different failure costs are associated to different 
failure modes (Gomes & Beck, 2013). The risk 
optimization formulation allows finding the 
appropriate safety margins w.r.t. each failure 
mode. 

3. THE PROBLEM 
The problem addressed in this paper is a simple 
two-bar truss as illustrated in Figure 1. 
Geometrical and material non-linearities are 
considered. The solution is formulated in 
analytical form. 

In the initial configuration, the two bars 
form an angle ߠ଴ with the imaginary horizontal 
line connecting the supports. Vertical force P at 
node B causes the vertical displacement ݑ. The 
problem is symmetric w.r.t. the vertical line 
passing through B and B’. The half-span is b and 
height is h. The solution is parameterized w.r.t. 
h/2b. 

 

 
 

Figure 1: Simple two-bar truss. 
 
By equilibrium condition, the relation 

between applied force and normal force in the 
bars is given by: 

 ܲሺݑሻ ൌ ܰ sin ௜ߠ ൌ
ேሺ௛ା௨ሻ

௅
  (7) 

where ߠ௜ is the bar angle in displaced position. 
A non-linear elastic material is considered, 

with Green deformation: 

ሻݑሺܧ  ൌ ଴൫1ܧ ൅  ሻ൯ (8)ݑሺீߝߟ

ሻݑሺீߝ  ൌ
ଵ

ଶ
ቀଶ௛௨ା௨

మ

௅బ
మ ቁ (9) 

By means of Hooke’s Law, the normal force 
is given as product of material elasticity constant 
by deformation:  

 ܰሺݑ, ݄, ሻߟ ൌ ଴ܵ଴ܧ ൤
ଵ

ଶ
ቀ
ଶ௛௨ା௨మ

௅బ
మ ቁ ൅

ఎ

ସ
ቀ
ଶ௛௨ା௨మ

௅బ
మ ቁ

ଶ
൨ (10) 

Equilibrium paths for the structure, with 
geometrical and material nonlinearities, are 
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shown in Figure 2, for ݄/2ܾ ൌ 	0.09  and 
different material constants (ߟ). Effect of pure 
geometrical nonlinearity can be observed for 
ߟ → 0 . Note that with large deflections, as 
physical nonlinearity increases (larger	ߟ), more 
instability regions are observable, and limit loads 
are reduced.  
 

 
 
Figure 2: Equilibrium paths for different elastic 
nonlinearity constants for initial configuration 
(݄/2ܾ ൌ 	0.09ሻ. 

3.1. Variables and limit state functions 
The bars are assumed hollow circular, with 
external diameter ݀ and thickness ݐ. The vector 
of design variables is given by initial 
configuration and cross-section area: ࢊ ൌ
ሼܾ, ݄, ݀,   .ሽݐ

Three random variables are considered: 
applied load ௔ܲ , deformation modulus ܧ଴  and 
yielding stress ߪ௬. The random variables follow 
Gaussian distributions with parameters 
௔ܲ~Nሺ50,5ሻ kN, ܧ଴~LNሺ20500,1025ሻ MPa and 
௬~LNሺ50,2.5ሻߪ  MPa. Hence, random vector ࢄ 
is: ࢄ ൌ ൛ ௔ܲ, ,଴ܧ  .௬ൟߪ

Three failures modes are considered:  

1. Snap-through or limit point instability; 
2. Buckling or bifurcation instability; 
3. Yielding  or squashing; 
To formulate a solution, the final 

displacement, which delimits the equilibrium 
path extension, is first defined. This point is 
calculated by iterative Newton Raphson or by 

looking for a root of 	ܲሺݑሻ െ ௔ܲ. The result is a 
displacement ݑ௙  given as a function of 
( ௔ܲ, ,଴ܧ ,ࢊ  .ሻߟ

Snap-through failure is defined by the limit 
point, which indicates the beginning of an 
unstable equilibrium. This point ݑ௟௜௠		is obtained 
by nullifying the tangent stiffness matrix. The 
limit displacement is function of (݄, ܾ,  ሻ. Theߟ
limit state function for snap-through failure is 
written as: 

 ݃ଵሺࢄ, ,ࢊ ሻߟ ൌ ௟ܲ௜௠ሺࢄ, ,ࢊ ሻߟ െ ௔ܲ (11) 

where ௟ܲ௜௠  is the load corresponding to limit 
displacement ݑ௟௜௠, and ௔ܲ is the applied load. 

The second failure mode is bifurcation 
instability or buckling. The Euler relation (Eq. 
12) that describes buckling is given by:  

 ௖ܰ௥ሺݑሻ ൌ
గమா	ூ

௅బ
మ ൌ 	 గ

మ	ாబூ	ሺଵାఎகృሺ୳ሻሻ

௅బ
మ  (12) 

where ௖ܰ௥ሺݑሻ is the critical normal force. For bi-
articulated bars, buckling length is equal to bar 
length. 

The limit state equation for buckling is: 

 ݃ଶሺࢄ, ,ࢊ ሻߟ ൌ ௖ܰ௥ሺݑ௜ሻ െ ܰሺݑ௜ሻ (13) 

where ܰሺݑ௜ሻ is the acting normal force, given in 
Eq. (10).  

During the load-displacement equilibrium 
path for the structure, Eq. (13) presents three 
local minima. The points of minima (ݑ௜  in Eq. 
(13)) are found by taking the derivative of Eq. 
(13) w.r.t. displacement ݑ and equating it to zero. 
Failure due to buckling occurs at one of these 
points of minima or at the final displacement 
 The point of minima where buckling failure .(௙ݑ)
occurs changes according to the initial 
configuration (݄/2ܾ). 

The third failure mode is compressive 
squashing or tensile yielding of the cross-section.  
The limit state function in Eq. (14) is given in 
terms of the yielding tension ߪ௬ , compared for 
both tensile and compression normal forces: 

									݃ଷሺࢄ, ,ࢊ ሻߟ 	ൌ

݊݅ܯ																									 ቈ
൫ߪ௬. ܵ଴ െ Max௨ൣห ௖ܰ௢௠௣ሺݑ௝ሻห൧	൯

൫ߪ௬. ܵ଴ െ Max௨ൣ ௧ܰ௘௡௦௜௟௘ሺݑ௝ሻ൧൯
቉ (14) 
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where ௖ܰ௢௠௣൫ݑ௝൯	 and ௧ܰ௘௡௦௜௟௘ሺݑ௝ሻ  are evaluated 
from the load-displacement curve, by taking the 
derivative of normal force w.r.t. displacements 
( ݀ܰሺݑሻ/݀ݑ ), and by considering the final 
displacement.  

These displacements ( ௝ݑ  in Eq. 14) are 
illustrated in Figure 3, which shows normal force 
versus displacement curves. One observes in 
Figure 3 the existence of two points of maximum 
compression, one point of maximum tensile 
force and the final displacement (black dot). The 
correct evaluation of the maximum normal 
(compression or tensile) force is done by a 
displacement analysis, which identifies the 
displacements that belong to the equilibrium 
path, according to final displacement ሺݑ௙ሻ . 
Figure 3 also shows the displacements ݑ௜ in Eq. 
(13). The difference between ݑ௜  and ݑ௝is shown 
by the variation of minimum point in ܰሺݑሻ and 
௖ܰ௥ሺݑሻ െ ܰሺݑሻ curve. 

 
  

Figure 3: Comparison between acting and critical 
normal force. 

 

3.2. Initial and Failure Costs 
The initial cost is given by material volume 
(ܸ ൌ  ߩ ܿ݉ଷ), multiplied by specific mass	଴ܵ଴ܮ	2
ሺ݃/ܿ݉³ሻ  and unit mass price ሺ1000	 $ ݇݃⁄ ሻ: 

ሻࢊ௜௡௜௧௜௔௟ሺܥ ൌ  ܵ଴	଴ܮ	c௨௡௜௧	ߩ	2000

																											ൌ    (15)	ܵ଴	଴ܮ௥௘௙ܥ

where ܥ௥௘௙  is a reference value for costs, ܮ଴	 is 
given in cm and the area in cm². The initial cost 
is, of course, function of the design variables. 

It is well known that different failure modes 
are associated to different costs. Fragile or 
sudden failure, which occurs without warning, 
has more serious consequences than ductile 
failure. Service failures can lead to temporary 
suspension of use, which generally represents 
smaller costs than collapse (ultimate failure).  

The simple two-bar structure considered 
herein could have many different applications; 
hence the costs of failure are immaterial. In order 
to avoid limiting the study to one possible 
application, the costs of failure are given 
generically in proportion to the initial cost.  

Total expected cost can be written as: 

ሻࢊ௧௘ሺܥ ൌ ௜௡௜௖௜௔௟ሺ1ܥ ൅ 	ܣ ௙ܲ	௦௡௔௣ ൅ 

	ܤ																													 ௙ܲ௕௨௖௞௟௜௡௚ ൅ 	ܥ ௙ܲ௧௘௡௦௜௢௡ሻ (16) 

where ܣ, ,ܤ  are failure cost factors that depend ,ܥ
on the failure mode. Different failure cost 
scenarios are considered in the sequence. 

4. RESULTS 
In a first analysis, failure probabilities are 
evaluated by changing initial truss height, 
keeping other design variables fixed at ݀ ൌ
,݉ܿݒ	3.34 ݐ ൌ 3.4	݉݉, ܾ ൌ 50	ܿ݉	and ߟ ൌ 100. 
This study helps to understand the different 
failure mode behavior when the angle ߠ଴  is 
changed. 

 

  
Figure 4: Failure probabilities for each failure mode. 
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In Figure 4, one observes that the transition 
to snap-through failure is continuous, whereas 
transition to buckling failure is discrete. The 
yielding failure can be explained with aid of 
Figure 5, where each load-displacement curve 
corresponds to a configuration ratio in Figure 4. 
For large ݄/2ܾ  (݄/2ܾ ൐ 0.95), normal load is 
compressive and failure may occur due to 
squashing (compressive yielding). For 	݄/2ܾ ൏
0.08, snap-trough failure is highly likely, and in 
this case there is a reversal in the normal load. 
Because of this reversal, there is a probability 
that the bars fail also due to tensile yielding.  

 

 
 

Figure 5: Normal force versus displacements for five 
initial configurations (h/2b). 

 
Figure 6 shows results for a parametric 

analysis, where different costs of failure are 
considered. The objective function ( ௧௘ܥ ) is 
placed: in terms of truss height (above), diameter 
(center) and thickness (below). For each plot, the 
“remaining” design variables are fixed at: 	݀ ൌ
3.34	ܿ݉, ݐ ൌ 3.4	݉݉, ܾ ൌ 50	ܿ݉ and ݄ ൌ
10.7	ܿ݉ , which is the optimal height for the 
corresponding configurations. Total expected 
cost for this “reference” configuration, with 
ܣ ൌ ܤ ൌ ܥ	 ൌ 1, is ܥ௧௘ ⁄௥௘௙ܥ ൌ 0.1639. Reliability 
indexes for this configuration are: ߚ௦௡௔௣ ൌ
௕௨௖௞௟௜௡௚ߚ			,4.03	 ൌ ∞ and ߚ௬௜௘௟ௗ ൌ 3.29.  

In Figure 6, results are also shown for other 
cost configurations, were each cost term 
increased at once to ten units (10). Since 
buckling is not relevant for this configuration, 
one observes that changing the cost of failure for 
buckling does not change the objective function 

nor optimal values of design variables. However, 
increasing the cost of failure for snap-through 
and yielding affects the objective function, 
increasing optimal values of design variables ݄, ݀ 
and ݐ. The change is not dramatic, but it shows 
that a different equilibrium point is obtained 
between the competing failure modes. Observed 
changes in design variables are of 4.67% for ݄, 
and 7.74% for ݀  and 9.68% for ݐ. 

 

 
 
Figure 6: Total expected cost (ܥ௧௘) for four  
failure cost scenarios, in terms of design variables 
 ݄, ݀ and ݐ. 

 
Figure 7 shows the objective function for 

other combinations of failure costs, in terms 
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external diameter. The variation in total expected 
costs for these scenarios is presented in Table 1.  

 

 
 

Figure 7: Total expected cost (݁ݐܥ) for different 
failure cost scenarios, in terms of design variables 
݄/2ܾ, ݀ and ݐ. 

 
Table 1: Percentage change in design parameters for 
different cost configurations. 
A	 B	 C	 h/2b	 %	 d	 %	 t %
1	 1	 1	 0.107	 ‐	 3.10	 ‐	 0.31 ‐
10	 1	 1	 0.107	 0	 3.14	 1.29	 0.31 0
1	 10	 1	 0.107	 0	 3.10	 0	 0.32 3.23
1	 1	 10	 0.110	 2.80	 3.26	 5.16	 0.33 6.45
5	 10	 20	 0.111	 3.74	 3.30	 6.45	 0.34 9.68
20	 10	 5	 0.109	 1.87	 3.26	 5.16	 0.33 6.45
30	 30	 30	 0.112	 4.67	 3.34	 7.74	 0.34 9.68

5. CONCLUSIONS 
This paper addressed the optimal design of a 
non-linear truss structure, considering the effects 
of expected costs of failure. Physical and 
geometrical non-linearities were considered. 
Failure by yielding, buckling and snap-through 
were considered. Problem selection and its 
solutions targeted the competition between 
failure modes, when costs of failure are different. 
The differences between the optimal designs 
found herein were subtle, but they demonstrated 
how the competition between failure modes can 
affect optimal structural design. 
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