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ABSTRACT: This paper proposes a dual stochastic finite element method for conducting stochastic anal-
ysis for laminated composite plates with consideration of microscopic material property uncertainties. A
stochastic multiscale finite element method, which couples the multiscale computation homogenization
method with the second order perturbation technique, is developed first to propagate variability in the ef-
fective elasticity property of composite arising from microscopic uncertainties such as Young’s modulus
and Poisson’s ratio of constituent materials. Then a standard stochastic finite element analysis is con-
ducted to consider structural level uncertainties. The performance of the proposed approach is evaluated
by comparing the estimates of mean values and coefficients of variation for the effective elastic properties
and structural response for a laminated composite plate with corresponding results from the Monte Carlo
simulation method.

1. INTRODUCTION

Composite materials are becoming increasingly im-
portant in civil engineering applications where the
tailoring opportunities offered by composite fi-
bre reinforcement can achieve engineering require-
ments not attainable by conventional steel and con-
crete options. Enormous efforts have been devoted
to predict the effective mechanical properties of
composite materials to advance the structural anal-
ysis for composite structures in deterministic con-
text. However, it has been widely accepted and ex-
tensively reported that uncertainties exist in all as-
pects of a composite structure, e.g. constituent ma-
terial properties, that result in uncertainties in struc-
tural responses. Due to the heterogeneous nature
of composites, the uncertain behaviour in perfor-
mance of a composite structure such as laminated
plate is often more higher than the conventional
isotropic material structures. An efficient and ac-

curate quantification of the uncertainty in structural
performance is thus desirable to analyse a compos-
ite structure, and it is also a crucial part of the devel-
opment of reliability-based design method for com-
posite structures.

The objectives to quantitative modelling of un-
certainty of systems with random properties can
be divided into three groups: the description of
the random properties of the system (Jeong and
Shenoi, 2000; Chuang, 2006), the calculation of
statistical information of the response from the sys-
tem properties (Motley and Young, 2011; Sasiku-
mar et al., 2014; Talha and Singh, 2014), and the
interpretation and use of this statistical response in-
formation for design, maintenance, repair, and so
on (Murotsu et al., 1994; Frangopol and Recek,
2003; Soares, 1997). The calculation of the statis-
tical response characteristics requires an extension
of the traditional deterministic analysis that leads
to stochastic analysis. Monte Carlo simulation
method, perturbation method and spectral method
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are the available solutions for this type of problem
(Matthies, 2007; Schuëller and Pradlwarter, 2009;
Stefanou, 2009). Although stochastic finite element
based methods have been used for a long time, it
is only recently that attempts are being made to
extend these methods for uncertainty quantifica-
tion in composite materials and composite struc-
tures (Chen and Guedes Soares, 2008; Ngah and
Young, 2007; Talha and Singh, 2014). However,
most of previous work on stochastic analysis for
laminated composite plates focused on meso-scale
uncertainties such as ply or lamina material proper-
ties. For instance, Chen and Guedes Soares (2008)
consider the uncertainty of Young’s modulus. Ngah
and Young (2007) considered the components in
the constitutive stiffness matrix as random field.
Many studies have shown that mechanical proper-
ties of multi-phase composite materials are strongly
affected by their microscopic heterogeneous na-
ture (Sriramula and Chryssanthopoulos, 2009; Pot-
ter et al., 2008). Various of homogenization meth-
ods are available in the literature to predict effec-
tive material properties of composites. Although it
has been pointed out that potential benefits can be
obtained (Charmpis et al., 2007), considerations on
microscopic material property uncertainties, espe-
cially through micromechanics method, are seldom
reported in stochastic analysis. Chamis (2004) and
Welemane and Dehmous (2011) are a few that in-
vestigated microscopic uncertainties for stochastic
analysis of composite structures.

In order to taking microscopic uncertainties into
account in stochastic analysis of composite struc-
tures, this paper presents a dual stochastic finite-
element based procedure. Among the many inher-
ent uncertainties, we mainly focus on microscopic
constituent material properties in present study.
The analytical development starts with the propa-
gation of uncertainties at the microscopic material
properties to determine the effective material prop-
erties at macro or ply scale by using the stochastic
homogenization method (Zhou et al., 2014). First-
order shear deformation laminate theory is then
used as basis to propagate the uncertainty in the ma-
terial behaviour at the laminate or structural scale.
Next, the stochastic finite element analysis is per-

formed to determine the stochastic structural re-
sponses corresponding to the uncertain basic vari-
ables. A case study of laminated composite plate is
performed to illustrate the proposed method for the
analysis of composite structures.

2. STOCHASTIC VARIATIONAL FORMULATION

OF MULTISCALE APPROACH
2.1. Stochastic homogenization method for com-

posite materials
First, we will summarize the basic assumptions and
the final formulae of the stochastic homogeniza-
tion method for the estimation of effective elas-
tic moduli. For a detailed discussion and numer-
ous references for this and related methods, the
reader is referred to Zhou et al. (2014). The class
of homogenization-based multi-scale constitutive
models employed in the present study is charac-
terised by the assumption that the strain and stress
tensors at a point of the so-called macro-continuum
are volume average of their respective microscopic
counterpart fields over a pre-specified Representa-
tive Volume Element (RVE). That is, by defining
the deformation gradient ε̄ and the stress tensor σ̄

as volume averages of their counterpart fields over
the RVE, we have

ε̄ ≡ 1
Vµ

∫
Ωµ

εµdV =
1

Vµ

∫
Ωµ

∇uµdV (1)

and
σ̄ =

1
Vµ

∫
Ωµ

σµdV (2)

where εµ and σµ denote, respectively, the deforma-
tion gradient and the stress fields of the RVE, Vµ is
the volume of the RVE and ∇ denotes the gradient
operator.

By defining the field ũµ of displacement fluctua-
tions of the RVE as

ũµ ≡ uµ −u∗ with u∗ = ε̄y (3)

The deformation gradient field of the RVE can be
written as a sum of a uniform deformation gradi-
ent coinciding with the macroscopic deformation
gradient, ε̄ , and a displacement fluctuation gradient
field, ε̃ ≡ ∇ũµ ,

εµ = ε̄ + ε̃ (4)
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To comply with the averaging strain assumption,
the displacement fluctuation field must satisfy∫

Ωµ

ε̃µdV = 0. (5)

To make upscaling transition, a second assump-
tion also known as the Hill-Mandel principle is in-
troduced, and it requires

σ̄ : ε̄ =
1

Vµ

∫
Ωµ

σµ : εµdV (6)

Considering the RVE equilibrium and the second
assumption, it introduces an addition constraint for
the RVE that requires:∫

∂Ωµ

te ·ηdA = 0 η ∈ V , (7)

in terms of the RVE boundary traction te.
Hence, the RVE equilibrium problem for a

linear-elastic material case consists of finding, for a
given macroscopic deformation ε̄ , a kinematically
admissible displacement fluctuation field ũµ ∈ V
under constraints Eqs.(5) and (7), such that∫

Ω

σ : ∇ηdV =
∫

Ω

(
Cµεµ

)
: ∇ηdV = 0 ∀η ∈ V ,

(8)
where Cµ is material constitutive tensor and V is
the (as yet not defined) space of virtual kinemati-
cally admissible displacement of the RVE.

Considering the uncertainties in material prop-
erties, b, constitutive matrix Cµ and displacement
fluctuation ũµ are stochastic function of b. Us-
ing perturbation method, the variational function
Eq.(8) can be transformed into its zeroth-, first- and
second-order approximations as:

• The zeroth order∫
Ωs

µ

∇
s
η : Cµ(b̄) : ∇

sũµ(b̄)dV

+
∫

Ωs
µ

∇
s
η : Cµ(b̄) : εdV = 0 (9)

• The first-order
n

∑
p=1

{∫
Ωs

µ

∇
s
η :
(
Cµ(b̄) :

[
Dbp∇

sũµ(b̄)
]

+
[
DbpCµ(b̄)

]
: ∇

sũµ(b̄)
)

dV

+
∫

Ωs
µ

∇
s
η :
[
DbpCµ(b̄)

]
: εdV

}
δbp = 0(10)

• The second-order
n

∑
p=1

n

∑
q=1

{∫
Ωs

µ

∇
s
η :
(
Cµ(b̄) :

[
Hbpbq∇

sũµ(b̄)
]

+
[
HbpbqCµ(b̄)

]
: ∇

sũµ(b̄)
+2
[
DbpCµ(b̄)

]
:
[
Dbq∇

sũµ(b̄)
])

dV

+
∫

Ωs
µ

∇
s
η :
[
HbpbqCµ(b̄)

]
: εdV

}
δbpδbq = 0(11)

2.2. Stochastic formulation for laminated com-
posite plates

In this section, the stochastic variational formula-
tion for probabilistic analysis of laminated compos-
ite plates is deduced by the first-order or Reissner-
Mindlin shear deformation theory (FSDT) and the
perturbation method. Using FSDT the displace-
ment components u, v and w can be expressed in
terms of the mid-plane displacements u0, v0, w0,
and the rotations of transverse normal about y- and
x-axes of θx and θy, respectively, as (details in
Oñate (2013) for example)

u(x,y,z) = u0(x,y)− zθx(x,y) (12)
v(x,y,z) = v0(x,y)− zθy(x,y)
w(x,y,z) = w0(x,y)

The strain components are computed using the
above displacement field with ε = ∇u, and it is ex-
pressed as

ε =
(
εm 0

)T
+
(
−zε̂b ε̂s

)T
= Sε̂ (13)

where
ε̂ =

(
ε̂m ε̂b ε̂s

)T (14)

with

ε̂m =

[
∂u0

∂x
,
∂v0

∂y
,

(
∂u0

∂y
+

∂v0

∂x

)]T

(15)

ε̂b =

[
∂θx

∂x
,
∂θy

∂y
,

(
∂θx

∂y
+

∂θy

∂x

)]T

ε̂s =

[
∂w0

∂x
−θx,

∂w0

∂y
−θy

]T

are the generalized strain vectors due to membrane,
bending and transverse shear deformation effects,
respectively, and

S =

[
I3 −zI3 03×2

02×3 02×3 I2

]
(16)
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is the generalized strain ε̂ to the actual strain ε

transformation matrix.
Now, let us consider a composite laminated plate

formed by a stacking of nl orthotropic layers with
orthotropic axes 1, 2, 3 and isotropy in the 1 axis
(i.e. in the plane 23). The 1 axis defines the di-
rection of the longitudinal fibres which are em-
bedded in a matrix of polymeric or metallic mate-
rial. The relationships between the in-plane stresses
σp = [σx,σy,τxy]

T and the transverse shear stresses
σs = [τxz,τyz]

T with their conjugate strains for each
layer k can be written as

σ =

(
σp
σs

)
=

[
Dp 0
0 Ds

](
εp
εs

)
= Dε (17)

The constitutive matrices Dp and Ds are symmet-
rical and their terms are a function of independent
material parameters and the angle βk, and they can
be obtained through

Dp = TT
1 D1T1, Ds = TT

2 D2T2 (18)

with T1 and T2 are coordinate transformation ma-
trix from material principal coordinate system to
global system, and D1 and D2 are in-plane constitu-
tive matrix and transverse shear constitutive matrix
in material principal coordinate system.

Now we are ready to establish the stress-strain
relation between laminate stress and strain by inte-
grating through the thickness of the laminate of the
stress, we have

σ̂ = D̂ε̂ (19)

with

σ̂ =

σ̂m
σ̂b
σ̂s

 , D̂ =

 D̂m D̂mb 03×2
D̂mb D̂b 03×2
02 02 D̂s


and

σ̂m =
∫ t/2

−t/2
σpdt σ̂b =−

∫ t/2

−t/2
zσpdt σ̂s =

∫ t/2

−t/2
σsdt

where −t/2 and t/2 are the z-coordinates of the
lamina’s upper and lower surfaces, respectively.

For a laminate with nl orthotropic layers and ho-
mogeneous material within each layer we can write

D̂m =
nl

∑
k=1

tkDpk D̂mb =
nl

∑
k=1

tkz̄kDpk

D̂b =
nl

∑
k=1

1
3
[
z3

k+1− z3
k
]

Dpk (20)

where tk = zk+1− zk, z̄k =
1
2 (zk+1 + zk) and Dpk is

the in-plane constitutive matrix for the kth layer.
The principle of virtual work (PVW) is written

in terms of the generalized strains, the resultant
stresses and the external distributed load t as∫

A
δ ε̂

T
σ̂dA =

∫
A

δuT tdA (21)

where A is the mid-plane surface of the
plate, δu = [δu0,δv0,δw0,δθx,δθy]

T and
t = [ fx, fy, fz,mx,my]

T .
Considering the uncertainties in material proper-

ties, b, constitutive matrix D̂ and the structural re-
sponse u are stochastic function of b. Using Taylor
series expansion based perturbation approach to ap-
proximate the stochastic terms D̂, u and ε̂ , and re-
taining the second-order accuracy, then the zeroth-,
first- and second-order equations of Eq.(21) can be
written as follows (Kleiber and Hien, 1992):

The zeroth order∫
A

δ ε̂
T D̂
(
b̄
)

ε̂
(
b̄
)

dA =
∫

A
δuT t

(
b̄
)

dA (22)

The first order
n

∑
i=1

{∫
A

δ ε̂
T D̂
(
b̄
)[

Dbi ε̂
(
b̄
)]

dA

−
∫

A
δuT [Dbit

(
b̄
)]

dA

+
∫

A
δ ε̂

T [DbiD̂
(
b̄
)]

ε̂
(
b̄
)

dA
}

δbi = 0 (23)

The second order
n

∑
i=1

n

∑
j=1

{∫
A

δ ε̂
T D̂
(
b̄
)[

Hbib j ε̂
(
b̄
)]

dA

−
∫

A
δ ε̂

T [Hbib jD̂
(
b̄
)]

ε̂
(
b̄
)

dA

−2
∫

A
δ ε̂

T [DbiD̂
(
b̄
)][

Db j ε̂
(
b̄
)]

dA

−
∫

A
δuT [Hbib jt

(
b̄
)]

dA
}

δbiδb j = 0 (24)
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3. FINITE ELEMENT IMPLEMENTATION

3.1. Finite element approximation of C̄
Using standard notations as follows,

ũµ = Nãµ , ∇
sũµ = Bãµ , η = Nδa,

∇
s
η = Bδa and ε = Ba∗,

where N denotes shape function, B is the strain-
displacement matrix, ãµ is nodal displacement fluc-
tuation vector, δa is virtual nodal displacement
fluctuation vector, a∗ denotes the given nodal dis-
placement vector. The finite element approxima-
tion to the zeroth-, first- and second-order varia-
tional principles in Eqs.(9-11), respectively are ob-
tained as:

The zeroth-order{
Kãµ +Ka∗

}
·δa = 0 (25)

The first-order{
n

∑
p=1

{
K
[
Dbp ãµ

]
+
[
DbpK

]
ãµ

+
[
DbpK,p]a∗

}
δbp

}
·δa = 0 (26)

The second-order{
n

∑
p=1

n

∑
q=1

{
K
[
Hbpbq ãµ

]
+
[
HbpbqK

]
ãµ

+2
[
DbpK

][
Dbp ãµ

]
+
[
HbpbqK

]
a∗
}

δbpδbq
}
·δa = 0 (27)

with K =
∫

Ωs
µ

BTCµBdV ,
[
DbpK

]
=∫

Ωs
µ

BT [DbpCµ

]
BdV , and

[
HbpbqK

]
=∫

Ωs
µ

BT [HbpbqCµ

]
BdV denoted as the stiff-

ness matrix and its first- and second-order partial
derivatives, respectively. The solutions for mi-
crostructure displacement fluctuation field ãµ and
its derivatives

[
Dbp ãµ

]
and

[
Hbpbq ãµ

]
can be found

by introducing appropriate boundary conditions
for the microstructure such as the three classic
boundary conditions of linear displacement, peri-
odic displacement and anti-periodic traction, and
constant tractions. Details can be found in Zhou
et al. (2014). With these at hand, the constitutive

relation between the applied macrostrain ε̄ and the
homogenized macrostress σ̄ can be calculated:

C̄=
σ̄

ε̄
(28)

and similarly for its first- and second-order partial
derivatives

[
DbiC̄

]
and

[
Hbib jC̄

]
, respectively.

3.2. Finite element formulation for laminated
composite plates

Again, the finite element implementation to ana-
lyze the laminated composite plates can be obtained
by introducing a conventional finite element dis-
cretization in Eqs.(22-24). Then their finite element
approximations can be written as:

The zeroth order

Ku = F (29)

The first order

n

∑
i=1

{
K
[
Dbiu(b̄)

]
+[DbiK]u

−
[
DbiF

(
b̄
)]}

δbi = 0 (30)

The second order

n

∑
i=1

n

∑
j=1

{[
Hbib jK

(
b̄
)]
−
[
Hbib jF

(
b̄
)]

−2
[
DbiK

(
b̄
)][

Db ju
(
b̄
)]

−
[
Hbib jK

(
b̄
)]

u
}

δbiδb j = 0 (31)

with K=
∫

A BT D̂BdA, [DbiK] =
∫

A BT [DbiD̂
]

BdA,
and

[
Hbib jK

]
=
∫

A BT [Hbib jD̂
]

BdA denoted as the
stiffness matrix of laminated plate elements and its
first- and second-order partial derivatives, respec-
tively. Solving the Eqs.(29-31) consecutively, the
nodal displacements u and its first- and second-
order partial derivatives, [Dbiu] and

[
Hbib ju

]
can be

obtained, and other structural response terms can be
calculated straightforwardly.

It should be noted that the stiffness matrix D̂
and its derivatives

[
DbiD̂

]
and

[
Hbib jD̂

]
in the

above Eqs.(29-31) are obtained by Eq.(28) through
stochastic homogenization method. According to
the first-order shear deformation theory, the through
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thickness direction stress of the k-th ply σ3 is as-
sumed to be zero. A reduced stress-strain relation
can be obtained from the stiffness matrix Eq.(28) as
σ = Qε with

Qi j = C̄i j−
C̄i3C̄ j3

C̄33
, i, j = 1,2,6 (32)

Hence, the in-plane and transverse shear stiffness
matrix in Eq.(18) are

D1 =

Q11 Q12 Q16
Q21 Q22 Q26
Q61 Q62 Q66

 D2 =

[
C̄44 C̄45
C̄54 C̄55

]
.

4. NUMERICAL EXAMPLE
For the demonstration of adequacy of the proposed
approach, we analysed a square laminated compos-
ite plate. The dimension of the structure is given in
Fig.1a. The plate is made of 4 graphite/epoxy uni-
directional lamina with material properties listed in
Table 1. The stacking sequence for respective lam-
ina is (30/− 30)4 as an angle ply laminate, where
the subscript 4 denotes the number of repetitions.
The thickness of the lamina is assumed to be 5 mm.
The structure is subject to a uniformly distributed
load of 1000.0N/m2 or 1× 10−3N/mm2, and the
edges are simply supported.

Table 1: Statistical properties of random variables

Random variable Symbol Value
Fibre
Axial modulus Ez 233 GPa
Transverse modulus Ep 23.1 GPa
Axial Poisson ratio νz 0.2
Transverse Poisson ratio νp 0.4
Axial shear modulus Gz 8.96 Gpa
Matrix
Young’s modulus Em 4.62 GPa
Poisson ratio νm 0.36 GPa

The response of the material at microscale level
is analysed using representative volume element
(RVE) with width l. In general, the width l is much
smaller than the characteristic thickness of the lam-
inae. The fibre-reinforced material is assumed to
have periodic arrangement of finescale fibres em-
bedded in a polymer matrix as shown in Fig.1b. A

cubic RVE sample is shown in Fig.1c for a compos-
ite with hexagonal arrangements of unidirectional
fibres. A local Cartesian coordinate system (1-2-3)
is introduced at the microscale and oriented such
1-axis is aligned parallel to the axis of the fibres.

y

x

z

a

b

t

(a) Plate

(b) Detail of fibres arrange-
ment

1

3

2

(c) RVE

Figure 1: Example of laminated fibre-reinforced com-
posite plate

To calculate the effective stiffness matrix of the
represented fibre-reinforced composite, the RVE
has been meshed into 6263 four-node tetrahe-
dral elements consisting of 4206 elements for fi-
bres and 2057 elements for matrix, with a to-
tal of 1441 nodes. Implementing Eqs.(25-27) on
the MoFEM (mesh-oriented finite element method)
program (Kaczmarczyk et. al., 2014), the effective
elastic tensor and its first- and second-order deriva-
tives can be obtained through Eq.(28) for specified
boundary condition. Here the effective constitutive
model obtained under periodic displacement and
anti-periodic traction boundary condition case are
presented.

With the obtained effective stiffness matrix of
each lamina, the reduced stiffness matrix and its
first- and second-order partial derivatives can be
obtained through Eq.(32). Introducing a certain
type of element, the stochastic finite element anal-
ysis for the laminated plate can be conducted based
on Eqs.(30-31). In the present study, the plate is
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discretized into 12× 12 four-node rectangular ele-
ments.

To demonstrate the accuracy of the present dual
SFEM method, a comparison between the present
approach and Monte Carlo simulation method
(MCS) with 5000 samples has been performed. Un-
certainty in the axial modulus of fibre, Ez were con-
sidered and various coefficients of variation ranged
from 0.025 to 0.15 were examined. Results are
shown in Fig 2 for the effective elastic properties
with CoV of 0.15 for Ez, and Fig.3 for the deflec-
tion at the centre of the plate.

(a) Mean value

(b) Coefficient of variation

Figure 2: Statistics of the components of the effective
elastic property due to variation in axial modulus of
fibre, Ez, with CoV of 0.15

In general, Fig 2 and Fig.3 show good agreement
between the present approach and MCS on the re-

sults of mean value and coefficient of variation with
respect to various CoVs of Ez. This indicates that
the numerical accuracy of the present dual SFEM is
sufficient.
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(b) Coefficient of variation

Figure 3: Statistics of the deflection at the centre of
the plate w.r.t. various coefficients of variation in axial
modulus of fibre, Ez

5. CONCLUSIONS

A dual stochastic finite element formulation tak-
ing into account the multi-layer effect and the mi-
croscopic variability of material properties in each
lamina was developed for stochastic analysis of
laminated composite plates. Stochastic homog-
enization method was used to propagate micro-
scopic uncertainties. A comparison with Monte-
Carlo simulation on the numerical accuracy shows
that the proposed approach could provide reason-
able probabilistic prediction.
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