
Computing the Subdifferential of
Convex Piecewise Linear-Cubic

Functions
by

Aaron Matthew Mahnic

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

B.SC. COMPUTER SCIENCE HONOURS

in

THE COLLEGE OF GRADUATE STUDIES

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

April 2021

© Aaron Matthew Mahnic, 2021

The following individuals certify that they have read, and recommend
to the College of Graduate Studies for acceptance, a thesis/dissertation en-
titled:

Computing the Subdifferential of Convex Piecewise Linear-
Cubic Functions

submitted by Aaron Matthew Mahnic in partial fulfilment of the re-
quirements of the degree of B.Sc. Computer Science Honours

Dr. Yves Lucet, I. K. Barber School of Arts & Sciences
Supervisor

ii

Abstract

Computational Convex Analysis (CCA) studies the computation of con-
vex operators commonly used in convex analysis. CCA allows researchers
to visualize non-trivial convex transforms and build an intuition from these
examples. Using the convexity and structure of piecewise linear cubic (PLC)
functions as a model, the foundation for a new CCA toolbox has been im-
plemented. The CCA toolbox is built in MATLAB and includes extensive
test coverage and examples. In addition, it is free and open source.

The CCA toolbox provides several plotting methods to visualize PLC
functions and their properties. Plotting the domain of a PLC function is
a useful tool for both research and visualizing the correctness of computed
output. Within a PLC function, any polyhedral set can be unbounded and
plotting the domain of such a function would lead to an unbounded plot
which cannot be displayed. We introduce a method that manipulates the
PLCVC data structure in the CCA toolbox to plot an unbounded domain
within a specified window.

A convex analysis operation of considerable interest is the Legendre-
Fenchel transform, also known as the Fenchel conjugate. The computation
of the Fenchel conjugate can be done in linear time. As a first step in
implementing a linear time conjugate computation for the CCA toolbox, we
introduce a new class (PLCVP) that implements a method for computing
the subdifferential at any point of a PLC function.

iii

Table of Contents

Abstract . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

Acknowledgements . viii

Dedication . ix

Chapter 1: Introduction . 1

Chapter 2: Preliminaries . 3
2.1 Piecewise Linear-Cubic Functions 5

Chapter 3: Plotting Unbounded Piecewise Polynomials 7
3.1 PLCVC . 7

3.1.1 Data Structure . 7
3.1.2 Computing Boundedness 9

3.2 Plotting . 10
3.2.1 Example Plots . 13

Chapter 4: Computing the Subdifferential of PLC Functions 17
4.1 PLCVP . 17

4.1.1 Motivation . 17
4.2 Subdifferentials of PLC Functions 18

4.2.1 Data Structure . 20
4.2.2 Algorithm . 21
4.2.3 Algorithm . 25

iv

TABLE OF CONTENTS

Chapter 5: Numerical Experiments 27
5.0.1 Example 1 . 27
5.0.2 Example 2 . 29
5.0.3 Example 3 . 31

Chapter 6: Conclusion and Future Work 33

Bibliography . 34

v

List of Tables

Table 3.1 Flag for edge . 9

Table 4.1 Cases for the grd array 22

vi

List of Figures

Figure 3.1 Extending non-extreme vertices 11
Figure 3.2 Plot domain perspective 12
Figure 3.3 Cubic function domain plot 14
Figure 3.4 Quadratic function domain plot 15
Figure 3.5 Plot domain modified bounding box 16

Figure 4.1 Point outside vs. point on the interior of a function’s
domain . 21

Figure 4.2 Point on an edge and vertex comparison 23
Figure 4.3 Points on the boundary 24

Figure 5.1 Plot of the l1 norm function 27
Figure 5.2 One norm subdifferential on face 28
Figure 5.3 One norm subdifferential on an edge 29
Figure 5.4 One norm subdifferential on vertex 30
Figure 5.5 PLC function with two faces plot 30
Figure 5.6 Subdifferentials on an edge 31
Figure 5.7 Bounded triangular function plot 32
Figure 5.8 Subdifferential normal cone 32

vii

Acknowledgements

Thank you to Dr. Yves Lucet for the opportunity to work and learn
under his guidance. This has been an invaluable experience in more ways
than I can put into words.

viii

Dedication

To my fiancé Nicole and my daughter Sophia.

ix

Chapter 1

Introduction

Computational Convex Analysis (CCA) has proven to be a relevant topic
and has found applications in areas such as computer vision, medical imag-
ing and signal/image recovery [Luc10]. There are a number of fundamental
transforms that arise in convex analysis that are integral to these appli-
cations. Robot navigation uses distance transform algorithms that are a
special case of computing the Moreau envelope (also called the Moreau-
Yosida approximate, Yosida Approximate or Moreau-Yosida regularization)
[Luc10]. Medical imaging applies the Legendre-Fenchel conjugate transform
to detect singularities in CT scans [Luc10, Qu11]. Lastly, signal and image
recovery makes use of a combination of the former two transforms, called the
proximal average, to recover the original signal or image from a corrupted
version [CW05].

Computer-aided convex analysis focuses on visualizing fundamental trans-
forms of convex analysis when applied to functions of typically one or two
variables [Haq17]. A CCA toolbox was developed to perform these trans-
forms on both univariate and bivariate functions. The latest version of the
CCA toolbox is built in MATLAB [MAT21]. The CCA toolbox includes
extensive test coverage and examples and is free and open source.

The new CCA toolbox represents bivariate piecewise linear-cubic (PLC)
functions in multiple data types. The PLCVC class represents these PLC
functions using a vertex and coefficient representation and is based on the
structure PLC functions described in [SL21]. The PLCVP class uses a point-
wise representation of PLC functions to use graph-matrix calculus (GMC)
algorithms. Using GMC algorithms we can compute the Legendre-Fenchel
conjugate and other convex analysis transforms in linear time [Haq17, GL11].

In this thesis, we characterize a data structure using vertex and coeffi-
cient representation of the PLCVC class and use this data structure to plot
the domains of unbounded PLC functions in Chapter 3. In Chapter 4, we
summarize a pointwise representation of PLC functions and show how the
pointwise representation can be used to compute the Fenchel conjugate. We
show subgradient calculus rules for PLC functions and describe how these
rules are applied in a new algorithm to compute the subdifferential at any

1

Chapter 1. Introduction

point of a PLC function. Finally, in Chapter 5 we show several examples of
subdifferential computations for PLC functions.

2

Chapter 2

Preliminaries

This chapter reviews several key definitions that will be used throughout
this paper.

Definition 2.1. [Bec17] (Convex Set) A set C ∈ Rn is convex if ∀x, y ∈ C
and λ ∈ [0, 1] it holds that:

λx+ (1− λ)y ∈ C.

Definition 2.2. [RW98] (Convex Hull) For a set C ⊂ Rn, the convex hull
of C consists of all the convex combinations of elements of C:

coC = {
p∑

i=1

λixi | xi ∈ C, λi ≥ 0,

p∑
i=1

λi = 1, p ≥ 0}.

Fact 2.3. The convex hull of a non-empty set C is the smallest convex set
that contains C.

Definition 2.4. [Bec17] (Normal Cone) For a set C ⊂ Rn and a point
x ∈ C, the normal cone of C at x is defined as

NC(x) = {s ∈ Rn | 〈s, z − x〉 ≤ 0, ∀z ∈ C}.

Definition 2.5. (Proper Function) A function f : Rn → R ∪ {−∞,+∞},
is said to be a proper function if dom(f) = {x ∈ Rn : f(x) < +∞} 6= ∅ and
f(x) > −∞ for all x ∈ Rn.

Definition 2.6. (Convex function) A proper function f : Rn → Rn∪{+∞}
is convex if its domain is a convex set and for any two points, x1,x2 ∈ domf
and θ ∈ [0, 1]

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2).

Definition 2.7. (Subgradient) For a proper function f : Rn → (−∞,∞]
with x ∈ dom(f), a vector g ∈ Rn is called a subgradient of f at x if

f(y) ≥ f(x) + 〈g, y − x〉, ∀y ∈ Rn.

3

Chapter 2. Preliminaries

Definition 2.8. (Subdifferential) The set of all subgradients at f at x is
called the subdifferential of f at x and denoted by

∂f(x) = {s ∈ Rn | f(y) ≥ f(x) + 〈s, y − x〉,∀y ∈ Rn}.

Definition 2.9. [RW98, Theorem 9.61] (Clarke Subdifferential) Let f :
Rn → (−∞,∞] be a proper convex function. The Clarke subdifferential at
x ∈ Rn is given by

∂̄f(x) = co{ lim
i→∞
∇f(xi) : xi → x and ∇f(xi) exists}.

In addition, when f is convex then ∂̄f(x) = ∂f(x).

Fact 2.10. [Bec17, Theorem 3.33] (The Subdifferential at Points of Dif-
ferentiability) Let f : Rn → (∞,∞] be a proper convex function, and let
x ∈ int(dom(f)). If f is differentiable at x, then ∂f(x) = {∇f(x)}.

Fact 2.11. [Bec17, Theorem 3.36] (Subdifferential of the Sum) Let f1, f2 :
Rn → (∞,∞] be proper convex functions, and let x ∈ dom(f1) ∩ dom(f2).
(a) The following inclusion holds,

∂f1(x) + ∂f2(x) ⊆ ∂(f1 + f2)(x).

(b) if x ∈ int(dom(f1)) ∩ int(dom(f2)), then

∂(f1(x) + f2(x)) = ∂f1(x) + ∂f2(x).

Definition 2.12. (Indicator Function) For a subset C ⊂ Rn, the indicator
function of C is given by

δC(x) =

{
0 x ∈ C,
∞ x /∈ C.

Fact 2.13. (Subdifferential of the Indicator Function) Suppose that C ⊆ Rn

with the indicator function δC . The subdifferential of δc is given by

∂δC(x) = NC(x),∀x ∈ C.

That is, the subdifferential of the indicator function at a point x is the normal
cone NC(x) of C.

Definition 2.14. [RW98] (Fenchel Conjugate) For any function f : Rn →
R ∪ {+∞}, the conjugate function f∗ : Rn → R ∪ [−∞,+∞] is given by

f∗(s) = sup
x∈Rn
{〈s, x〉 − f(x)}.

4

2.1. Piecewise Linear-Cubic Functions

2.1 Piecewise Linear-Cubic Functions

Definition 2.15. [RW98] (Polyhedral Set) A set C ⊂ Rn is said to be a
polyhedral set if it can be expressed as the intersection of a finite number
of closed half-spaces or hyperplanes. The polyhedral set can equivalently be
expressed as a finite number of linear constraints.

Definition 2.16. (Polyhedral decomposition) The set C = {Ck : k ∈ K}
where K is a finite index set, is called a polyhedral decomposition of D ⊂ Rn

if it satisfies the following conditions

(i) all of its members Ck are polyhedral sets,

(ii)
⋃

k∈K Ck = D,

(iii) for all k ∈ K, dim Ck = dim D,

(iv) riCk1 ∩ riCk2 = ∅, where k1, k2 ∈ K, k1 6= k2.

Definition 2.17. (Polyhedral subdivision) The set C is a polyhedral sub-
division if C is a polyhedral decomposition and the intersection of any two
members of C is either empty or a common subset of both.

Definition 2.18. (Piecewise Linear-Cubic Function) A Piecewise Linear
Cubic function is a special case of piecewise polynomial functions with a
polyhedral domain such that on each polyhedral set the function is defined
by either a linear, quadratic or cubic function.

Similarly, a Piecewise Linear Quadratic (PLQ) function would be defined
as having either a linear or quadratic function on each polyhedral set.

Definition 2.19. [Jak13, GJL14] (Edge) For any x1, x2 ∈ Rn and x1 6= x2,
we define an edge by the set

E = {x ∈ Rn : x = λ1x1 + λ2x2, λ1 + λ2 = 1}.

We classify edges as:

(i) Segment: When λ1, λ2 ≥ 0.

(ii) Ray: When λ1 ≥ 0.

(iii) Line: When λ1, λ2 ∈ R.

Definition 2.20. (Vertex) A vertex is either a starting point of a ray, one
of the end points of a segment, or it is an isolated point.

5

2.1. Piecewise Linear-Cubic Functions

Definition 2.21. (Face) A set F is a face of a polyhedral P if dim(F) =
dim(P)− 1 and there exists a linear subspace H such that F = H ∩ P .

Definition 2.22. [BJS11] (Direction, Extreme Direction) Given a convex
set C, a nonzero vector d is a direction of C if for each x ∈ C the ray
{x+ λd : λ ≥ 0} also belongs to the set.

An extreme direction of a convex set is a direction of the set that cannot
be represented as a positive combination of two distinct directions of the
set.

Definition 2.23. [Roc70] (Extreme Point) Given a convex set C, a point
x ∈ C is an extreme point of C if x cannot be written as λy + (1− y)z for
y, z ∈ C,z 6= x, and 0 < λ < 1.

Fact 2.24. [Haq17] (Representation of a Polyhedral Set) Let C be a polyhe-
dral set. There exists extreme points xi and extreme directions dj such that
any x ∈ C can be written,

x =
k∑

i=1

λixi +
l∑

i=1

µidi = 1,

where
∑k

i=1 λi = 1, λi ≥ 0, i = 1, ..., k, µi ≥ 0, i = 1, ..., l.
In addition, if C is bounded then the set of extreme directions is empty.

If C is not bounded then the set of extreme directions is nonempty and has
a finite number of elements.

Definition 2.25. (Planar Graph) A graph G = (V , E) is said to be a planar
graph if it can be drawn in a plane with no two edges crossing each other
except at a vertex to which they are incident.

Fact 2.26. [HL18, Proposition 2.13] Let G = (V ,E) be a connected planar
graph with ne edges and nv vertices. Assume nv ≥ 3. Then ne ≤ 3nv.

6

Chapter 3

Plotting Unbounded
Piecewise Polynomials

3.1 PLCVC

The PLCVC class within the CCA toolbox implements a data type for
bivariate PLC functions. The class is able to represent both bounded and
unbounded PLC functions.

3.1.1 Data Structure

To store a PLC function, each polyhedral set is divided into vertices,
edges, and faces. Vertices indicate either the intersection of edges or a
single point. Edges are either a line segment between two vertices or a ray
which extends infinitely in one direction. If the interior of the polyhedral
set is non-empty it is called a face.

As input, PLCVC takes in four specific matrices: V, E , f and F . The
matrix V contains the coordinates (x, y) ∈ V for each vertex. Edges are
stored in the edge list E where each ei ∈ E is a pair of indices (v1, v2)
that index the two endpoints of the edge in the vertex list V. If an edge
is a ray, then a binary flag for each edge ei ∈ E is set to specify that the
edge extends infinitely past the vertex v2 ∈ ei. For a PLC function with n
polyhedral sets, the coefficients for the polynomial function associated with
each face are provided in an n × 10 matrix f . The matrix F indexes the
function indices from f for the faces to the left and right of each edge ei ∈ E .

In matrix form, the input is given by

V =

x1 y1
x2 y2
. .
. .
xn yn

 , E =

e1,1 e1,2 b1
e2,1 e2,2 b2
. . .
. . .

en,1 en,2 bn

 ,F =

i1,1 i1,2
i2,1 i2,2
. .
. .
in,1 in,2

 ,

7

3.1. PLCVC

f =

c1,1 c1,2 c1,3 c1,4 q1,1 q1,2 q1,3 l1,1 l1,2 l1,3
c2,1 c2,2 c2,3 c2,4 q2,1 q2,2 q2,3 l2,1 l2,2 l2,3
.
.
cn,1 cn,2 cn,3 cn,4 qn,1 qn,2 qn,3 ln,1 ln,2 ln,3

 .
Note that not every input matrix needs to be defined with values, as long

as the domain of the polyhedral partition the input represents is connected.
For example, a cubic function with an infinite domain that has no vertices
and no edges can be represented using an empty list for both V and E .

Example 3.1. Consider the following example of a PLC function

f(x) =

−x3 − y3 + x2 + y2 x ≤ 0, y ≤ 0;

−x3 + 2y3x2 + 2y2 x ≤ 0, y ≥ 0;

3x3 + 2y3 + 2x2 + 2y2 x ≥ 0, y ≥ 0;

3x3 − y3 + 2x2 + y2 x ≥ 0, y ≤ 0.

The function f is continuous with a full domain. It has four distinct poly-
hedral faces. They can be represented using the V, E , f , F data structure
as:

V =

0 0
−1 0
0 1
1 0
0 −1

 , E =

1 2 0
1 3 0
1 4 0
1 5 0

 ,

f =

−1 0 0 −1 1 0 1 0 0 0
−1 0 0 2 1 0 2 0 0 0
3 0 0 2 2 0 2 0 0 0
3 0 0 −1 2 0 1 0 0 0

 ,F =

1 2
2 3
3 4
4 1

 .
If we take the first row from f as f1

f1 =
[
−1 0 0 −1 1 0 1 0 0 0

]
,

8

3.1. PLCVC

then we can see that,

f1 ∗

x3

x2y
xy2

y3

x2

xy
y2

x
y

constant

= −x3 − y3 + x2 + y2,

which represents the first component in the PLC function f .

3.1.2 Computing Boundedness

The edge list E includes a binary flag for each ei ∈ E that indicates
whether the edge is a ray or a line segment as shown in Table 3.1. Upon
instantiation this flag is used to determine if a PLC function is unbounded
or not.

Flag Edge type

1 line segment
0 ray

Table 3.1: Flag for edge

Proposition 3.2. For a convex piecewise polynomial function f with a list
of edges E, if there exists at least one ray in E, then dom(f) is unbounded.

Proof. Let C be the closed convex set dom(f). If there is at least one ray in
the edge list of f , then the set of extreme directions of C is nonempty. By
Fact 2.24, if the set of extreme directions is nonempty, then C is unbounded.
Thus, dom(f) is unbounded.

The converse of Proposition 3.2 is not necessarily true. There are two
cases of PLC functions that will have no edges in the edge list E to consider,

(i) A function with a full domain.

(ii) A needle function (a function whose domain is a single point).

9

3.2. Plotting

Distinguishing between these two cases is done by looking at the ver-
tex matrix V . The function from (i) will have no vertex, while the needle
function (ii) will have a single vertex.

To determine if a PLC function is bounded or not, PLCVC checks for
the presence of rays by scanning the binary flags in E as defined in Table 3.1.
If there are no edges in E , then the total number of vertices in V is used
to determine boundedness. As both the edge list E and vertex list V are
provided to PLCVC at input as a planar graph. The algorithm runs through
N edges and M vertices in O(N + M). For a planar graph, by Fact 2.26,
we have that M ≤ 3N and therefore

O(N +M) = O(N + 3N) = O(N).

Checking boundedness is performed in linear time where N is the number
of vertices in a PLC function f .

3.2 Plotting

PLCVC includes a function to plot bounded domain PLC functions. We
extended this function to plot functions with unbounded domains. When
the domain is unbounded we replace the function f with f + δD where δD
is the indicator function of a box D.

For any point in dom(f) ∩D, the function will be equal to f(x), while
for any other point, it will be infinity. This gives us dom(f) ∩ D which is
the domain of f restricted to the box D. We specify D as a bounding box
of the region of interest on dom(f) that we want to plot.

Example 3.3. Consider a PLC function with a vertex representation stored
as

V =

0 0
−1 0
0 1
1 0
0 −1

 , E =

1 2 0
1 3 0
1 4 0
1 5 0

 ,

f =

−1 0 0 −1 1 0 1 0 0 0
−1 0 0 2 1 0 2 0 0 0
3 0 0 2 2 0 2 0 0 0
3 0 0 −1 2 0 1 0 0 0

 ,F =

1 2
2 3
3 4
4 1

 .

10

3.2. Plotting

(a) Graph of vertices for a PLC
function f .

(b) Vertices after non-extreme ver-
tices have been extended by a fac-
tor of t.

Figure 3.1: Graph of vertices for a PLC function f before and after extending
non-extreme vertices

In this example, every edge is a ray so the only extreme point is the vertex
(0,0). After extending the non-extreme vertices by a magnitude t = 1000,
the resulting matrix Ve will be

Ve =

0 0

−1000 0
0 1000

1000 0
0 −1000

 .
A visual representation of the non-extreme vertex extension is illustrated

in Figure 3.1(b).
The final step requires computing an intersection for each face. Let B

be a matrix of points (xi, yi) that represent the size of the window to plot
on such that

B =

[
xmin ymin

xmax ymax

]
.

We compute a bounding box as a polygon using the minimum and max-
imum x, y coordinates in B. The bounding box polygon represents the win-
dow to plot the output to. Using the extended vertex list Ve, a polygon pi is
constructed for each face. The intersection of each face polygon pi with the

11

3.2. Plotting

Figure 3.2: This figure shows how the plot unbounded domain algorithm
works on a PLC function with four unbounded faces. Each coloured polygon
on the plane represents a face. The black square represents the bounding
box which is displayed as output.

bounding box computed from B represents the domain of each polyhedral
set in a PLC function. A visualization of the bounding box overlaying the
domain of a function that has been restricted to D is shown in Figure 3.2.
Plotting each pi together shows the entire domain of a PLC function within
the specified bounding box B.

12

3.2. Plotting

Algorithm 1: Plot Unbounded Domain

input : P (PLCVC polyhedral set), xAxis (1x2 matrix specifying
the boundary along the x axis to plot), yAxis (1x2 matrix
specifying the boundary along the y axis to plot)

output: 2d plot of the resulting domain for P
begin

if Domain is unbounded then
eV s← extendNonExtremeVertices(P);
facePolygons← ∅;
boundaryView = createPolygon(xAxis,yAxis);
foreach facei ∈ P do

Compute the indices of each vertex v ∈ P.Pi into iX, iY ;
[X,Y]← indices of each point (x, y)∀iX, iY ∈ eV s;
Compute the boundary B of points (x, y) ∈ [X,Y];
boundaryFace = createPolygon(B);
facePolygons ← boundaryV iew ∩ boundaryFace;

end
plot(each polygon f ∈ facePolygons);

else
plotBoundedDomain();

end

end

Proposition 3.4. Consider a PLC function with N vertices and M faces,
the plotBoundedDomain function runs in linear time O(N)

Proof. The computation to restrict the function f with f|D is done in O(N)
by computing a new set of vertices VD from the vertex matrix V. Computing
the intersection is done by building a polygon from the vertices in Vd and
taking the intersection of this polygon with the bounding box which requires
us to loop through the N vertices in VD. Total runtime is dominated by the
number of vertices and thus O(N).

Therefore, the algorithm runs in linear time.

3.2.1 Example Plots

Cubic Function

Recall the cubic function from Example 3.1. It is comprised of four
unbounded faces. Figure 3.3(a) shows a plot of the function in R3, while
Figure 3.3(b) shows the plot of the domain for this function in R2. The

13

3.2. Plotting

four colours of each plot each represent a face. We see the output of the
plotUnboundedDomain method correlates with the function plot.

(a) Plot of a cubic PLC function (b) Plotted domain of the same
function

Figure 3.3: PLCVC plot of the function and domain of a cubic convex PLC
function. In both plots, the different colours represent different faces.

Quadratic Function

Consider the function,

f(x, y) =

{
x2 + y2 + 2xy x ≥ 0, y ≥ 0;

∞ otherwise.

A plot of this function is shown in Figure 3.4(b). The domain of f is
restricted to the first quadrant of the Cartesian plane. Using a bounding
box B = [1, 1] × [1, 1], we expect to see the domain plotted only where
x, y ≥ 0. The plot of dom(f) is shown in Figure 3.4(b). In the figure, we see
dom(f) is correctly plotted on the first quadrant, while any (x, y) /∈ dom(f)
are not plotted.

Changing Bounding Box

The bounding box that determines the region of interest to plot can be
passed by the user to the plotUnboundedDomain method. In this example
we show how changing the bounding box changes the output. Consider the
function,

14

3.2. Plotting

f(x, y) =

x2 + y2 x ≥ 0, y ≥ 0;

−x2 + y2 x < 0, y ≥ 0;

∞ otherwise.

The domain of this function is restricted to positive y values. The func-
tion has two faces separated by an edge along the y-axis. For each plot
in 3.5 we denote the face on the left F1 and the face on the right F2. In
Figure 3.5(a) the plot of dom(f) is shown centered on the origin. In Fig-
ure 3.5(a), we specify a new bounding box and shift the window along the
x-axis by 0.5 units. The effect this has on the plot is that a larger area of
the domain for the face F1 is shown while the area of the domain for face
F2 is smaller as compared to Figure 3.5(a). In Figure 3.5(c) we shift the
bounding box used in Figure 3.5(a) up by one unit along the y-axis. The
function is defined everywhere above the x-axis and the plot shows a full
domain in the window accordingly.

(a) Plot of a quadratic PLC func-
tion

(b) Plotted domain showing the
function is restricted to the first
quadrant

Figure 3.4: Plot of a quadratic function and the plot of the function’s do-
main.

15

3.2. Plotting

(a) Domain plot cen-
tered at the origin

(b) Domain plot shifted
along the x-axis

(c) Domain plot above
the x-axis

Figure 3.5: All three figures show the domain plot for the same PLC func-
tion. The figures illustrate the effect of changing the bounding box of the
plot domain method.

16

Chapter 4

Computing the
Subdifferential of PLC
Functions

4.1 PLCVP

4.1.1 Motivation

With the CCA library, we want to perform convex transformations as
efficiently as possible. The conjugate transformation can be computed in lin-
ear time by using the following relationship between the conjugate function
and subgradients.

Theorem 4.1. [Bec17, Theorem 4.20] (Conjugate subgradient theorem).
Let f : Rn → (∞,∞] be a proper convex function. The following claims are
equivalent for any x ∈ Rn, y ∈ Rn.

(i) 〈x, y〉 = f(x) + f∗(y).

(ii) y ∈ ∂f(x).

If in addition f is closed, then (i) and (ii) are equivalent to

(iii) x ∈ ∂f∗(y).

From Theorem 4.1 we note that if f is closed then,

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(y). (4.1)

Recall the graph of the subdifferential,

(x, y) ∈ gph∂f ⇐⇒ y ∈ ∂f(x). (4.2)

17

4.2. Subdifferentials of PLC Functions

Applying Equations (4.1) and (4.2) then,

(x, y) ∈ gph∂f ⇐⇒ y ∈ ∂f(x)

⇐⇒ x ∈ ∂f∗(y)

⇐⇒ (y, x) ∈ gph∂f∗.

(4.3)

By (4.3) we can see the domain of all subgradients in the subdifferential
of a function is the same set as the range of all subgradients in the subdif-
ferential of its conjugate function. This relationship leads to graph-matrix
calculus [GL11] where numerous rules are given to transform the graph of a
subdifferential of a function to the graph of a transformed function’s subdif-
ferential. Here, from Goebel’s graph-matrix calculus, the Fenchel conjugate
transform is given by

gph∂f∗ =

[
0 id
id 0

]
gph∂f. (4.4)

For a proper closed convex function f with x ∈ Rn, y = f(x) ∈ Rn, and
s ∈ ∂f(x) ⊂ Rn then f∗(y) can be calculated by Fenchel’s equality,

f∗(y) = 〈s, x〉 − y. (4.5)

As a consequence, we can compute complex transforms such as the conjugate
with simple matrix multiplication which is both fast and easy to manipulate
in MATLAB. PLCVP aims to represent PLC functions by storing the graph
of the subdifferential to take advantage of graph-matrix calculus.

4.2 Subdifferentials of PLC Functions

When computing the subdifferential of convex PLC functions, there are
three distinct cases to consider given where a point lies on the domain of the
function. For a convex PLC function f , either a given point f(x1, x2) = y
lies outside of dom(f), somewhere on the interior of dom(f) or the point
is on the boundary of dom(f). We apply subdifferential calculus based on
these cases.

Outside of the Domain

The elements of ∂f(x) are the subgradients of f at x ∈ R2 and f is
subdifferentiable at x if ∂f(x) 6= ∅. By convention, when x /∈ dom(f),

18

4.2. Subdifferentials of PLC Functions

we define ∂f(x) = ∅. This definition is consistent with the subgradient
inequality,

f(y) ≥ f(x) + 〈s, y − x〉, ∀y ∈ Rn. (4.6)

For a proper function f , the subgradient inequality (4.6) does not hold if
x /∈ dom(f) and y ∈ dom(f). Thus, if x /∈ dom(f), f is not subdifferentiable
at x.

Interior of the Domain

We now consider a point on the interior of the domain. For a PLC
function there are several cases.

(i) Interior of a face: The interior of each face is a polyhedral set defined
by a polynomial expression which is continuous and differentiable any-
where on the interior. Let x ∈ R2, if a function f is convex and dif-
ferentiable at x ∈ dom(f), then ∂f(x) = {∇f(x)}. For any point that
lies on the interior of a face, we need only to compute the gradient of
f at that point.

(ii) On an edge: If a point x ∈ R2 is on the relative interior of an edge,
then it is on the intersection of two faces. For a PLC function f
with faces F1 and F2 that share an edge ei and have the respective
associated functions f1 and f2 then {x ∈ ri(ei) : f1(x) = f2(x)}. From
(i) we know that for x ∈ int(dom(f)) the subdifferential for each face
is ∂fi(x) = {∇fi(x)}. Since f is convex we can apply the Clarke
subdifferential from Definition 2.9 (see [RW98, Theorem 9.61]) and
obtain the subdifferential at x by

∂f(x) = ∂̄f(x) = co{∇fi(x) : fi(x) = f(x)}. (4.7)

(iii) On a vertex: For the case when a point is on a vertex but within the
interior of a PLC function f , the formula (4.7) applies again. If a point
on the interior of f that satisfies the constraints for n polyhedral sets,
we compute the gradients at the point x for each of the n faces and
then return the convex hull.

On the Boundary of the Domain

For each piece of a PLC function f , we associate the function f̃k =
fk + δCk

, where δCk
is the indicator function. By the subdifferential of the

19

4.2. Subdifferentials of PLC Functions

sum rule 2.11,

∂f̃k(x) = ∂[fk(x) + δCk
(x)] = ∂fk(x) + ∂δCk

(x). (4.8)

The subdifferential of the indicator function ∂Ck
is the normal cone NCk

from the Fact 2.13 so,

∂fk(x) + ∂δCk
(x) = ∇fk(x) +NCk

(x). (4.9)

Applying (4.9) with the definition of the normal cone (2.4), then for any
x ∈ Ck and for all z ∈ Ck, we have the subdifferential at f̃k(x) is,

∂f̃k(x) = ∇fk(x) +NCk
(x)

= {s+∇fk(x) ∈ R2 : 〈s, z − x〉 ≤ 0}.

The subdifferential on an edge of a polytope P is the normal cone of x
at P . The normal cone NP will be a ray normal to the edge. For a vertex
of P , each edge of the normal cone NP will be a ray normal to the incident
edges at v.

Proposition 4.2. Let f be a proper PLC bivariate function having a fi-
nite number of faces f1, f2, ..., fn. Assume v is a vertex of an edge on the
boundary of dom(f) and that v is an extreme point. There is at least an-
other edge having v as an extreme point such that v = e1 ∩ e2 where E1

and e2 are edges on the boundary of dom(f). The normal cone at v is
Ndom(f)f(v) = Nf1(v) ∩Nf2(v) where fi is the face of f with edge ei.

Proof. For v to be an extreme point, there must be two incident edges that
are on the boundary of dom(f). If there are more than two incident edges to
v, only two of these edges can be on the boundary of dom(f) and any other
edge is within the interior of dom(f). An edge that is within the interior of
dom(f) then v is not an extreme point for that edge.

Assume s is a subgradient of f1. If s is also a subgradient of f2 then
it is a subgradient of f . Therefore, any subgradient in the intersection of
the subdifferentials of f1 and f2 is a subgradient of f . Conversely, any
subgradient of f is also in the intersection of f1 and f2.

4.2.1 Data Structure

As input, our subdifferential algorithm uses the same data structure
that we use for PLCVC as described in Chapter 3. The input takes a vertex
matrix V, an edge matrix E , a face adjacency matrix F , and coefficient

20

4.2. Subdifferentials of PLC Functions

(a) (b)

Figure 4.1: Figure (a) shows a point outside of the domain of f and (b)
shows a point inside of the domain of f .

matrix f . Alternatively, a PLCVC object can be provided as input to the
PLCVP class and these matrices will be passed along to the subdifferential
algorithm. The subdifferential is always a closed convex polyhedral set so
the algorithm outputs the subdifferential using the same data structure. To
differentiate between the input and output, we will assign Vs, Es, and Fs to
be the subdifferential output matrices.

4.2.2 Algorithm

For a bivariate convex PLC function f , we can determine if a point
x ∈ R2 lies outside of the dom(f) by evaluating the function at the point
f(x). The PLCVC class implements an evaluation method (eval) that we
use for this purpose. If a point does not satisfy the constraints for any of
the polyhedral sets in f then the value is infinity. Any finite value satisfies
at least one constraint and therefore x ∈ dom(f). In addition to returning
the function value at a point, the PLCVC eval method returns the index(es)
of the face(s) containing the point in a matrix R for any polytope which
satisfies the constraints. If the PLCVC eval method returns infinity, then
there is no subdifferential at the point and we return an empty set. Figure 4.1
compares a point outside of dom(f) to one on the interior of dom(f).

When we know that a point is on the interior of the domain of f , the
next step is determine if the point is on an edge or a vertex so that we
can apply the subdifferential calculus rules. For each face Fi in the region

21

4.2. Subdifferentials of PLC Functions

R array, we check if the given point x lies somewhere on one of the edges
en ∈ Fi. If we find the point is on en then either the point is on one of
the two vertices v1, v2 ∈ en or somewhere on the relative interior of en. If
the point lies on any edge, we store an index to en in an edge list iE. One
limitation to note is that we are not currently handling floating point errors
when calculating if a point is on an edge.

After checking if the point lies on any edge of the faces, if the edge list
iE is empty and the number of faces in R is exactly one, then we know the
point is not any vertex or edge. We can conclude that such a point must
be on the interior of a face. Using the face number i returned by the eval
function, we compute the gradient of the point on the face and return the
singleton {∇fi(x1, x2)} as the subdifferential at this point. If the edge list
iE is empty but the region array R had more than one element, we return
an error. This could be the case for a floating point error where a point was
on an edge or a vertex but the calculation determining if the point was on
an edge found it was not.

For any point with at least one element in the edge list iE, we need to
know how many constraints in f the point satisfies and if this point is on
the boundary of dom(f).

We perform one loop through the edge list iE to build a list of gradients
and properties of each edge in iE. We build the grd cell array as,

grd = {ej ,∇fj(x1, x2), bj},

where ej ∈ iE is the edge index, ∇fj(x1, x2) is the gradient for the face that
ej is on, and bj is a binary flag indicating if the edge ej is on a boundary.
If an edge is between two faces (equivalently not on a boundary of dom(f))
then it is stored in grd twice so that the gradient of both adjacent faces of
the edge ej are stored. Based on the number of elements in grd, we have a
number of possible cases as listed in Table 4.1.

Case No. No. of gradients b flag count Case

1 2 0 On an interior edge
2 >2 0 On interior vertex
3 1 1 On a boundary edge
4 1 >1 On boundary vertex (1 face)
5 >1 >1 On boundary vertex (2+ faces)

Table 4.1: Cases for the grd array

Two possible cases are not included in Table 4.1 because they are handled

22

4.2. Subdifferentials of PLC Functions

(a) (b)

Figure 4.2: Both figures show a PLC function f with four faces and four
edges. Figure (a) shows a point on an edge that is in the int(f). Figure (b)
shows a point that is on a vertex and in int(f).

prior to the creation of grd. If there are no subgradients then the point x
was outside of dom(f). If there was a single gradient that was not on the
boundary, then the point was found to be on the interior of a face and the
gradient has been returned. In either case, an error is returned if these cases
are found after computing grd.

For cases 1 and 2 from Table 4.1, the computation of the subdifferential is
similar. We take each gradient in grd and use them as vertices in the vertex
list Vs. If there are only two gradients, as per case 1 in Table 4.1 where the
point is on an interior edge, then the output will be a line segment between
the two vertices. We add a single edge to Es between the two vertices. We
leave the face matrix Fs empty. If there are more than two elements then
the face is on an interior vertex. In this case, we build the edge list as a
connected graph such that, if Vs has n vertices, there are exactly n edges
and each vertex is connected to exactly two edges. Vertices from adjacent
faces are connected to each other.

For each of the cases 3,4,5 from Table 4.1 the point is on the boundary.
In all of these cases, we compute the normal cone at the point. If the point
is on an edge and on the boundary as in case 3 of Table 4.1 and shown in
Figure 4.3(a), then we know the normal cone will be a ray that is normal
to the edge. In this case, we compute the normal cone which builds a ray
by adding two vertices to Vs, a single edge to Es, and setting Fs = ∅. This
represents the ray normal to the edge ej .

23

4.2. Subdifferentials of PLC Functions

(a) (b)

Figure 4.3: Figure (a) shows a point on the boundary of dom(f) on an edge
(b) shows a point on the boundary of dom(f) on the vertex.

When the point is found to be on a boundary vertex of only one face,
as in case 4 from Table 4.1, we compute the normal cone at the point and
return the normal cone representation as Vs,Es,Fs.

In the final case, we compute the intersection of two or more normal
cones. To compute the intersection of two normal cones, we first compute
the normal cone for each in the Vs,Es,Fs representation. With the two
normal cones, we note that they both share a vertex at the point we are
evaluating. We compute the normalized 360 degree angle each edge makes
at this point. We then evaluate where the edges lay in relation to each other
to compute the overlap. Once the overlap is determined, a new Vs,Es,Fs list
is built using the edges found that overlapped. If the overlap is determined
to only be along a ray, then only a ray is returned.

24

4.2. Subdifferentials of PLC Functions

4.2.3 Algorithm

Algorithm 2: Subdiff

input : x (1x2 matrix containing point to evaluate at), P (PLCVC
polyhedral set)

output: z (1x2 matrix of the function evaluated at x), G
(polyhedral set of the subdifferential at x)

begin
z, face← PLCV C.eval(x);
if (isInfinity(z)) then

G← {}; return;
end
iE ← [Edges in P that x lies on];
if (isEmpty(iE)) then

G← {∇fface(x)}; return;
end
grd ← [ej , ∇fi(x), bj] if edge ej ∈ iE on face i;
if (all bj ∈ grd == 0) then

Vs, Es, Fs ← build polyhedral set from co(∇fg(x)∀g ∈grd);
else if (any bj ∈ grd == 1) then

Vs, Es, Fs ← computeNormalCone(x);
end
G← {Vs, Es, Fs}; return;

end

Proposition 4.3. Consider a PLC function with N faces, the Subdiff algo-
rithm runs in O(N)

Proof. The algorithm runs through a number of cases, and if any of the cases
is satisfied along the way, the subdifferential is returned and the algorithm
exits. The worst case run time requires the algorithm to pass through each
case until the final one. The worst case occurs when a point x is on a
vertex on the boundary of dom(f). For every case, the PLCVC eval method
evaluates a point on a PLC function with M faces in O(M) time. The
evaluation needs to do a linear search of each of the M faces to find the
right face to evaluate the function at. Once the face is found, the point is
evaluated using the coefficients for that face which is an efficient calculation
in O(1) time. For a point x /∈ dom(f) the subdifferential is an empty set
and returned in O(1) time.

We loop through the N edges in E once to build the edge list iE. In
addition, we loop through the edges in iE to compute the gradient edge list

25

4.2. Subdifferentials of PLC Functions

grd. Both of these operations are computed in O(N). If a point is found
to not be on any edge then ∇f(x) is computed and returned as a singleton.
Computing the gradient at x is done in O(1). Evaluating possible cases
for grd is done in O(N) as there could be N edges in grd. The worst case
runtime operation after we have checked the grd matrix is when the normal
cone must be computed for two faces. The normal cone and subsequent
intersection calculations are done in O(1).

Therefore, the overall time complexity for the algorithm is linear.

26

Chapter 5

Numerical Experiments

In this chapter we use the subdifferential method in PLCVP to find the
subdifferential at various points of a few PLC functions. We use plotting
methods from PLCVC to visualize the PLC functions and the subdifferential
at these points.

5.0.1 Example 1

Consider the l1 norm function,

f(x1, x2) =

x1 + x2 −x1 ≤ 0,−x2 ≤ 0;

−x1 + x2 x1 ≤ 0, x2 ≥ 0;

−x1 − x2 x1 ≥ 0, x2 ≥ 0;

x1 − x2 x1 ≥ 0, x2 ≤ 0.

Figure 5.1: Plot of the l1 norm function.

27

Chapter 5. Numerical Experiments

A plot of the l1 norm function is shown in Figure 5.1. We evaluate
the subdifferential at three different points. At f(1, 1), the point is on the
interior of face three. The subdifferential is the gradient at the point f3(1, 1)
which we compute as,

∂f(1, 1) = ∇f3(1, 1) = (
∂f

∂x1
(1, 1),

∂f

∂x2
(1, 1)) = (1, 1).

Accordingly, the subDiff method returns the same subgradient as the
subdifferential for the l1 norm at (1,1). The output from the subdifferential
algorithm at (1,1) on the l1 norm is shown in Figure 5.2.

(a) Domain plot of the l1 norm. (b) ∂f at (1,1).

Figure 5.2: Figure (a) shows the domain of the l1 norm with the point (1,1)
highlighted. Figure (b) shows the subdifferential of the l1 norm at (1,1).

Next, we compute the subdifferential of the l1 norm at (1,0). This point
is on an edge between two faces. The subdifferential is computed as

∂f(1, 0) = co{∇f3(1, 0),∇f4(1, 0)}
= co{(1, 1), (1,−1)}
= {(x1, x2) ∈ R2 : x1 = 1;−1 ≤ x2 ≤ 1}.

The subdifferential algorithm computes the gradients of both faces then
adds the gradients as vertices to the VS matrix. An edge is added between
the two vertices to represent the interval found above and the edge is flagged
as a line segment. A plot of the output from the subdifferential algorithm
for the l1 norm at (1,0) is seen in Figure 5.3. The matrices returned by the
algorithm for the subdifferential of the l1 norm at this point are,

VS =

[
1 1
1 −1

]
, ES =

[
1 2 1

]
, FS =

[
0 0

]
.

28

Chapter 5. Numerical Experiments

(a) Domain plot of the l1 norm. (b) ∂f at (1,0)

Figure 5.3: Figure (a) shows the domain of the l1 norm with the edge point
(1,0) highlighted. Figure (b) shows the subdifferential of the l1 norm at
(1,0).

A final example using the l1 norm is for the subdifferential at (0,0).
This point is a vertex and all four faces are “active” at this point. The
computation for the subdifferential requires the gradient of all four faces,

∂f(0, 0) = co{∇fi(0, 0) : fi ∈ f}
= co{[−1, 1]× [−1, 1]}
= {(x1, x2) ∈ R2 : −1 ≤ x1 ≤ 1;−1 ≤ x2 ≤ 1}.

We find that the subdifferential algorithm correctly computes the square
around the origin at (0,0). The algorithm finds four gradients and adds
them as vertices. A list of edges is built forming a bounded square from the
vertices. The matrices returned by the algorithm are,

VS =

−1 −1
−1 1
1 1
1 −1

 , ES =

1 2 1
2 3 1
3 4 1
4 1 1

 , FS =

0 1
0 1
0 1
0 1

 .
A plot of the subdifferential at (0,0) of the l1 norm is seen in Figure 5.4

5.0.2 Example 2

To test how the algorithm computes the subdifferential on a boundary
consider,

29

Chapter 5. Numerical Experiments

(a) Domain plot of the l1 norm. (b) ∂f at (0,0)

Figure 5.4: Figure (a) shows the domain of the l1 norm with the vertex (0,0)
highlighted. Figure (b) shows the subdifferential of the l1 norm at (0,0).

f(x1, x2) =

x1 + x2 −x1 ≤ 0,−x2 ≤ 0;

−x1 + x2 x1 ≤ 0, x2 ≥ 0;

∞ otherwise.

A plot of this function is shown in 5.5.

Figure 5.5: Plot of a PLC function with a boundary along the x axis

Since the boundary is a straight line along the x axis, the subdifferential
at any point in f will be a ray that is normal to the x axis. We compute

30

Chapter 5. Numerical Experiments

the subdifferential on an edge (1,0) and at a vertex (0,0) and find in both
cases that a ray is properly returned, as shown in Figure 5.6.

(a) (b)

Figure 5.6: Subdifferentials on an edge

5.0.3 Example 3

Consider the bounded triangle,

f(x1, x2) =

{
x21 + x22 + 2x1x2 in triangle with vertices(0, 0), (1, 0), (0.5, 1);

∞ otherwise.

A plot of this triangle is shown in Figure 5.7. For the subdifferential of
the triangle at the vertex (0,0), we expect a normal cone comprised of two
rays that are normal to the two edges that meet at the vertex. Indeed this
is what we get, as Figure 5.8 shows the boundary of the triangle with the
normal cone at (0,0) as returned by the subDiff algorithm. The following
vertex representation of the subdifferential at (0,0) of the triangle is returned
by the subdifferential algorithm,

VS =

 0 0
0 −1
−1 0.5

 , ES =

[
1 2 0
1 3 0

]
, FS =

[
1 0
0 1

]
.

Both edges are flagged as rays in the edge list ES as noted by the zeros
in column three.

31

Chapter 5. Numerical Experiments

Figure 5.7: A plot of a bounded triangle with only one face.

Figure 5.8: The edges in blue show the boundary of the triangle. The edges
in orange show the subdifferential of the triangle at (0,0) which is a normal
cone

32

Chapter 6

Conclusion and Future Work

Two contributions have been made to the CCA library. A plot domain
algorithm was added to PLCVC, and a subdifferential computation algo-
rithm was added as a basis for the PLCVP library. We showed how the
vertex and coefficient representation of PLC functions used by the PLCVC
class could be manipulated to work with a region of interest for functions
with full domains. We used this restricted region of interest to plot the
domain of unbounded PLC functions. This method may prove useful for
future additions to the CCA library that work with PLC functions of full
domains.

We introduced the subDiff algorithm to compute the subdifferential at
any point of a PLC function. We showed how the algorithm uses subdiffer-
ential calculus and the structure of PLC functions to compute the subdif-
ferential. This algorithm can be used to build a pointwise representation of
PLC functions using GPH matrices.

Now that the subdifferential can be computed, the PLCVP class needs
an algorithm to build GPH matrices to represent PLC functions. There is
still research to be done on the optimal way to store the GPH matrices. In
[Haq17] a GPH matrix was created for each entity of a PLC function and a
hyper matrix was used to keep track of the entity types and arrangement.
An alternative is to store the values in each GPH matrix as indices to larger
matrices. For example, each xi in a GPH matrix would be stored as an
index to a matrix of all GPH matrix points X. By storing the matrix in
this way, a single matrix operation can be done to transform the graph of
the subdifferential as opposed to looping through each GPH matrix and
transforming matrix.

In addition to computing transforms, PLCVP class will need to be able
to convert back to PLCVC coefficient representations of functions. Since
there is no unique way to store a function as a GPH matrix, we must ensure
that we accurately recover the correct function.

33

Bibliography

[Bec17] Amir Beck. First-Order Methods in Optimization. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2017. →
pages 3, 4, 17

[BJS11] M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali. Linear programming
and network flows: Fourth edition. 01 2011. → pages 6

[CW05] Patrick L. Combettes and Valérie R. Wajs. Signal recovery by
proximal forward-backward splitting. Multiscale modeling simu-
lation, 4(4):1168–1200, 2005. → pages 1

[GJL14] Bryan Gardiner, Khan Jakee, and Yves Lucet. Computing the par-
tial conjugate of convex piecewise linear-quadratic bivariate func-
tions. Computational optimization and applications, 58(1):249–
272, 2014. → pages 5

[GL11] Bryan Gardiner and Yves Lucet. Graph-Matrix Calculus for Com-
putational Convex Analysis, pages 243–259. Springer New York,
New York, NY, 2011. → pages 1, 18

[Haq17] Tasnuva Haque. Computation of convex conjugates in linear time
using graph-matrix calculus. PhD thesis, University of British
Columbia, 2017. → pages 1, 6, 33

[HL18] Tasnuva Haque and Yves Lucet. A linear-time algorithm to
compute the conjugate of convex piecewise linear-quadratic bi-
variate functions. Computational Optimization and Applications,
70(2):593–613, 06 2018. → pages 6

[Jak13] Khan M. K. Jakee. Computational convex analysis using paramet-
ric quadratic programming. PhD thesis, 2013. → pages 5

[Luc10] Y. Lucet. What shape is your conjugate? A survey of computa-
tional convex analysis and its applications. SIAM Rev., 52(3):505–
542, 2010. → pages 1

34

https://epubs.siam.org/doi/abs/10.1137/1.9781611974997
https://open.library.ubc.ca/collections/ubctheses/24/items/1.0343417
https://open.library.ubc.ca/collections/ubctheses/24/items/1.0343417
https://ezproxy.library.ubc.ca/login?url=https://www-proquest-com.ezproxy.library.ubc.ca/scholarly-journals/linear-time-algorithm-compute-conjugate-convex/docview/2027405889/
https://ezproxy.library.ubc.ca/login?url=https://www-proquest-com.ezproxy.library.ubc.ca/scholarly-journals/linear-time-algorithm-compute-conjugate-convex/docview/2027405889/
https://ezproxy.library.ubc.ca/login?url=https://www-proquest-com.ezproxy.library.ubc.ca/scholarly-journals/linear-time-algorithm-compute-conjugate-convex/docview/2027405889/
http://dx.doi.org/10.1137/100788458
http://dx.doi.org/10.1137/100788458

Bibliography

[MAT21] MATLAB. version 9.10.0 (r2021a), 2021. → pages 1

[Qu11] Gang-rong Qu. Singularities of the radon transform of a class of
piecewise smooth functions in r 2. Acta Mathematicae Applicatae
Sinica, 27(2):191–208, 2011. → pages 1

[Roc70] R. Tyrrell Rockafellar. Convex analysis. Princeton Mathematical
Series. Princeton University Press, Princeton, N. J., 1970.→ pages
6

[RW98] R.T. Rockafellar and R.J.B. Wets. Variational analysis, volume
317 of Grundlehren der Mathematischen Wissenschaften [Fun-
damental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin, 1998. → pages 3, 4, 5, 19

[SL21] Shambhavi Singh and Yves Lucet. Linear-time convexity test for
low-order piecewise polynomials. SIAM Journal on Optimization,
31(1):972–990, 2021. → pages 1

35

http://dx.doi.org/10.1007/978-3-642-02431-3
https://doi.org/10.1137/19M1290851
https://doi.org/10.1137/19M1290851

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	1 Introduction
	2 Preliminaries
	2.1 Piecewise Linear-Cubic Functions

	3 Plotting Unbounded Piecewise Polynomials
	3.1 PLCVC
	3.1.1 Data Structure
	3.1.2 Computing Boundedness

	3.2 Plotting
	3.2.1 Example Plots

	4 Computing the Subdifferential of PLC Functions
	4.1 PLCVP
	4.1.1 Motivation

	4.2 Subdifferentials of PLC Functions
	4.2.1 Data Structure
	4.2.2 Algorithm
	4.2.3 Algorithm

	5 Numerical Experiments
	5.0.1 Example 1
	5.0.2 Example 2
	5.0.3 Example 3

	6 Conclusion and Future Work
	Bibliography

