
Restricted-dimension subgradient descent: asymptotic

bounds on error

Emmanuel Sales
University of British Columbia

April 2020

Abstract

Convex optimization, the study of minimizing convex functions over convex sets, is host
to a multitude of methods with far-reaching applications in machine learning. For methods
in convex optimization, it is often of interest to analyze the asymptotic bounds of the error
of the method, or in other words, how close the result of the method gets to the minimum
value after some set period of time.

Gradient descent, an iterative procedure that involves taking the gradients of convex
functions at a sequence of points, is one of the most important algorithms in the field of
convex optimization. Subgradient descent refers to gradient descent that can be applied to
functions that need not be smooth. The primary focus of this text is this particular type
of gradient descent.

This text will explore error estimates of the asymptotic bounds of the final iterate error
of subgradient descent; that is, the error between the result of the subgradient descent
procedure after a set number of steps T . Prior work has established tight asymptotic error
bounds that are independent of the dimension of the underlying set; this work explores
the possibility of there existing tighter bounds when the dimension of the underlying set is
restricted to a finite constant d that is independent of T . In this work we have proven that

in the case of d = 1, the final iterate error has an upper bound of O
(

1√
T

)
.

1 Introduction: Convex optimization

1.1 Convex sets and functions

The domain of convex optimization is concerned with problems of the following form: given a
convex function f on a convex set S, devise an algorithm for finding an approximate minimum
of f(x) on S. Definitions of the relevant concepts are as below:

Definition 1.1 (Convex set). A set S ⊆ R is convex if ∀x, y ∈ S,∀θ ∈ [0, 1], θx+ (1− θ)y ∈ S.

Definition 1.2 (Convex function). A function f : S → R is convex if ∀x, y ∈ S,∀θ ∈
[0, 1], f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

1.2 Convex optimization problems

In general, convex optimization methods are concerned with functions wherein we have limited
or no prior information about its global landscape and optima. Instead, different methods are
concerned with scenarios in which, given a point x in the set S of interest, we can query the value

1

of the function f(x) and possibly its first- or second-order derivatives. For functions that are
not smooth, first-order methods can make use of elements of the subdifferential of the function
at a point.

Definition 1.3 (subdifferential). Let S ⊂ Rd be convex. The subdifferential of a function
f : Rd → R at the point x, denoted ∂f(x) is the set of directions g ∈ Rd such that, for all y ∈ S,
f(y) ≥ f(x) + gT (y − x).

1.2.1 Convex optimization in machine learning

In machine learning, convex optimization problems often take the form of finding

min
w∈Rn

m∑
i=1

fi(w) + λR(w)

where the functions f1, . . . , fm,R are convex and λ ≥ 0 is a known parameter (Bubeck, [1]).
Convex optimization is particularly useful in these cases because local minima of convex func-
tions are guaranteed to be global minima, thus simplifying the criteria needed to find global
minima.

In machine learning these functions fi are determined by a data set (xi, yi) ∈ Rn × Y for
i = 1, . . . ,m. The fi generally represent a loss function that quantifies how close a function
gw(xi), parameterized by w is able to return a value close to yi for each xi. The lower fi is for
each i, in general, the closer gw(xi) is able to attain the results yi for every i. The function
R(w) acts as a regularizer, which imposes additional constraints imposed on x in the form of a
penalty.

In the problem of linear regression for example the gw(x) we are interested in is wTxi. Setting
fi(w, xi) = (wTxi−yi)2 andR(w) = 0, we obtain the least squares minimization problem, which
can be reframed in matrix notation as min‖Xw − y‖2, where X ∈ Rm×n is the matrix with
the ith row equivalent to xTi , and y ∈ mathbbRm is the vector of yi values. The least-squares
problem has been thoroughly theoretically explored and it has an analytical closed-form solution
of w = (XTX)−1XT y when the matrix X has full rank.

Many other problems also fall into this framework but do not reap the benefits of a closed-
form solution. For example, setting the fi as in the case for linear regression but adding
R(w) = ‖w‖1 produces the lasso problem ([2]), which requires iterative methods in order to
solve.

1.3 Convex optimization methods and gradient descent

First-order methods are convex optimization methods that involve the first derivative or gradient
of the function. These are useful when the global landscape of the function (and thus, its
optimum points) cannot be determined analytically, but it is computationally easy to compute
the values of the functions at any given point x.

Central to the analysis of first-order methods is the notion of oracle complexity, which Bubeck
([1]) defines as how many queries to an ”oracle” that, given an input x, either produces either
the value of f(x) (zeroth order oracle) or the value of a subgradient (more in Section 2) of f at
x.

Gradient descent is an iteration on the equation

xt+1 = xt − ηt∇f(xt) (1)

Results have been shown for lower bounds that would apply to any gradient descent opti-
mization method, mostly by proving the existence of functions for which any black box procedure

2

would only get within a certain distance of the minimum value of the function within t iterations
(or oracle queries). In this case, a gradient descent method is defined as an iterative procedure
{xi} and {gi} where gi = ∇f(xi), the initial x1 = 0, and xt+1 ∈ Span(g1, . . . , gt).

These theorems make use of the important additional concept of strongly convex functions,
noted as being significant because functions of this class significantly speed up the performance
of first-order methods.

Definition 1.4 (Strongly convex function). A function f : S → R is α-strongly convex if
∀x, y ∈ S, f satisfies the inequality f(x)−f(y) ≤ ∇f(x)T (x−y)− α

2 ‖x−y‖2. If f is not smooth
then ∇f(x) can be replaced by gx ∈ ∂f(x).

These are Theorems 3.13, 3.14, and 3.15 in Bubeck.

Theorem 1.1. Let t ≤ n and L,R > 0. There exists a convex and L-Lipschitz function f such
that for any gradient descent black-box procedure,

min
1≤s≤t

f(xs)− min
‖x‖2≤R

f(x) ≥ RL

2(1 +
√
t)

(2)

Theorem 1.2. Let t ≤ (n − 1)/2, β > 0. There exists a continuously differentiable function
f for which ‖∇f(x) − ∇f(y)‖ ≤ β‖x − y‖ for all x and y, such that for any gradient descent
procedure,

min
1≤s≤t

f(xs)− f(x∗) ≥ 3β

32

‖x1 − x∗‖2
(t+ 1)2

(3)

Theorem 1.3. Let κ > 1. There exists an α-strongly convex continuously differentiable function
f for which ‖∇f(x)−∇f(y)‖ ≤ β‖x−y‖ for all x and y, with κ = β/α such that for any gradient
descent procedure, we have

f(xt)− f(x∗) ≥ α

2

(√
κ− 1√
κ+ 1

)2(t−1)

‖x1 − x∗‖2 (4)

2 Subgradient descent

We examine subgradient descent on convex and bounded sets.

2.1 Definition of subgradient descent

Subgradient descent is a type of gradient descent that works on functions that are not necessarily
smooth. One important usage of subgradient descent is in the case of L1 minimization and
regularization; loss functions of the form

∑n
i=1 |g(X)− y| are nonsmooth and require the use of

subgradients, as a gradient cannot be selected at every point. We have

xt+1 = xt − ηtgt (5)

where gt ∈ ∂f(xt), not requiring the gradient ∇f(xt) to exist as in (1).
The algorithm can be written as follows:

Algorithm 1: SubgradientDescent

x1 ← some initial guess in the set S
for t in 2 . . . T do

ηt ← 1√
t

gt ← an element in ∂f(x)
xt+1 ← ΠS(xt − ηtgt)

end

3

where Π, the projection operator, is defined by ΠS(z) = arg minx∈S‖x− z‖2.

2.1.1 Choices of step size

There are many possible choices of ηt. Boyd, Xia, and Mutapcic ([3]) list four:

• Constant step size: ηt = h, independent of t

• Constant step length: ηt = h/gt, such that ‖xt+1 − xt‖ is the same for all t

• Square summable but not summable: choices of ηt such that
∑∞
t=1 η

2
t <∞ and

∑∞
t=1 ηt =

∞.

• Nonsummable diminishing: choices of ηt such that limt→∞ ηt = 0 and
∑∞
i=1 ηt =∞.

In Section 3, where we provide a proof related to final iterate error for the case where
dim(S) = 1, we examine the algorithm with ηt = 1√

t
, which is an example of a nonsummable

diminishing step size rule.

2.2 Convergence results

Definition 2.1. The final iterate error of a run of subgradient descent is the value of f(xT)−
f(x∗).

Boyd ([3]) states that for the diminishing step size rule, the limit limt→∞ f(xt) = f(x∗), i.e.
the algorithm is guaranteed to converge to the optimal value.

Prior work has established that for a run of SGD with T iterations on a T -dimensional space,
the final iterate error is Ω(log(T)/

√
T) [4].

An upper bound for the expected final iterate error for stochastic gradient descent without
smoothness assumptions was established by Shamir and Zhang [5] as O(log T/

√
T) over non-

smooth convex objective functions.

2.3 Goals of this work

This work’s primary aim is to examine the properties of subgradient descent on convex functions
in arbitrary finite-dimensional cases. We aim to examine the possibility that tighter bounds can
be achieved than existing results if we restrict the dimension of the space we are analyzing to a
finite constant d.

In Section 3, we establish a tight upper bound on the final iterate error of the algorithm as
O(1/

√
T) in the case where d = 1.

3 Upper bound for final iterate error where d = 1

The primary result is the following theorem on the final iterate error of subgradient descent in
the restricted 1-dimensional case. This is a tighter result than the general upper bound achieved
by Shamir and Zhang ([5]) of O(log(T)/

√
T).

Theorem 3.1. Let S ⊂ R be convex and bounded (without loss of generality, let diam(S) = 1).
Let f : S → R be a convex and 1-Lipschitz.

Then the final iterate error |f(xT)− f(x∗)| of a run of subgradient descent is in O(1)√
T

.

4

−3.5 −3 −2.5 −2

2

2.5

3

3.5

x

(a)

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

x

(b)

2 2.5 3 3.5

2

2.5

3

3.5

x

(c)

Figure 1: Example of three cases where Theorem 3.1 applies. Figures 1a and 1c are examples of
convex functions that are monotonically decreasing on their underlying set, and hence has the
minimizer x∗ lying at one of the endpoints. Figure 1b denotes the case where the minimizer x∗

resides in the middle.

Proof. We prove this by induction on the number of iterations.
The base case is on the first iteration, T = 1, or the initial value. Set c = max(

√
2, f(x1)−

f(x∗)). Any initial starting point will have error that is less than or equal to c√
1
.

The inductive step: Suppose the iteration error f(xT−1)−f(x∗) ≤ c√
T−1 . We will show that

this implies

f(xT)− f(x∗) ≤ c√
T

(6)

We have
f(xT)− f(x∗) = f(xT)− f(xT−1) + f(xT−1)− f(x∗) (7)

which is known to be less than (f(xT)− f(xT−1)) + c√
T−1 by the inductive hypothesis.

We then examine the quantity f(xT) − f(xT−1). By the subgradient descent algorithm we
have

xT = ΠS(xT−1 − ηT−1gT−1) (8)

with ηT−1 = 1√
T−1 and gT−1 in the subgradient of f(xT−1).

Let ẋT = xT−1 − ηT−1gT−1, with xT = ΠS(ẋT).
Because f is 1-Lipschitz, we know that |gi| ≤ 1 for all i.
An important property used in showing the inequality is the monotonicity of the subgradient

on convex functions:

Claim 3.1.1 (Monotonicity of the subgradient). For convex f , for all x, y ∈ S, gx ∈ ∂f(x), gy ∈
∂f(y), (gx − gy)(x− y) ≥ 0.

Proof. By the subgradient inequality we have both f(y) ≥ f(x) + gx(y − x) and f(x) ≥ f(y) +
gy(x− y). Combining these two inequalities we have 0 ≥ (gx − gy)(y − x), or, by chaging signs,
our intended inequality of (gx − gy)(x− y) ≥ 0.

To prove the induction we condition on three cases depending on the presence of 0 in ∂f(xT)
and ∂f(xT−1).

Case 1: If 0 ∈ ∂f(xT) then we have f(xT) = f(x∗), which makes f(xT)− f(x∗) = 0, which is
less than c√

T
for all T .

5

Case 2: If 0 /∈ ∂f(xT) but 0 ∈ ∂f(xT−1), we have xT−1 = x∗ (the optimum) and thus |xT −
xT−1| = ηT−1|gT−1|. Because f is 1-Lipschitz we have |xT − xT−1| ≤ ηT−1 = 1√

T−1 ; again by

Lipschitz we thus conclude f(xT)− f(x∗) = f(xT)− f(xT−1) ≤ c√
T

.

Case 3: 0 /∈ ∂f(xT−1) and 0 /∈ ∂f(xT). For this case we show that (6) holds by showing that it
holds on all possible cases: sign(max ∂f(xT)) = sign(max ∂f(xT−1)), and sign(max ∂f(xT)) 6=
sign(max ∂f(xT−1)).

Case 3.1: sign(max ∂f(xT)) = sign(max ∂f(xT−1)).
There is a special case for when xT is on the boundary of the set S. As such, we condition

on whether or not xT is on the boundary of S.

Case 3.1a: xT is on the boundary of S. In that case, we are able to show the following:

Claim 3.1.2. If xT is on the boundary of S and sign(max(∂f(xT))) = sign(max(∂f(xT−1))),
then xT must be a global minimizer for f on S.

Proof. Because xT is on the boundary of a one-dimensional set, either xT ≥ x∀x ∈ S or
xT ≤ x∀x ∈ S. Because xT = xT−1 − ηT−1gT−1, and ηT−1 > 0, we are able to conclude by
algebra that sign(gT) = sign(gT−1) = −sign(xT − xT−1) = sign(xT−1 − xT).

By the subgradient inequality we have f(x) ≥ f(xT) + gT (x − xT),∀x ∈ S. Because
sign(gT) = sign(xT−1 − xT) = sign(x − xT)∀x ∈ S, we have f(xT) + gT (x − xT) ≥ f(xT)
and therefore f(x) ≥ f(xT)∀x ∈ S.

Thus f(xT) = f(x∗) and thus we have f(xT)− f(x∗) = 0 ≤ c√
T

.

Case 3.1b: xT is in the interior of S. For this case we use the following claim:

Claim 3.1.3. If sign(max ∂f(xT)) = sign(max ∂f(xT−1)), then f(xT) ≤ f(xT−1) and |gT | ≤
|gT−1|.
Proof. Applying Claim 3.1.1 to xT and xT−1, we have

(gT − gT−1)(xT − xT−1) = (gT − gT−1)(−ηT−1gT−1) ≥ 0 (9)

We thus have −gT gT−1 + g2T−1 ≥ 0. Because we know that gT and gT−1 are the same sign,
we know that gT gT−1 ≥ 0. Thus we know that |g2T−1| ≥ |gT gT−1| and thus |gT | ≤ |gT−1|.

Using this fact, and the fact that gT and gT−1 have the same sign, we know that either
gT−1 ≤ gT < 0 or 0 < gT ≤ gT−1. We remark that 0 is in the subgradient of a point z if and
only if z is a global minimizer (a point x∗) for f , as f is convex. Thus by monotonicity of the
subgradient we have either xT−1 < xT ≤ x∗ or x∗ ≤ xT < xT−1, associated with each case
respectively. We are thus able to conclude

sign(gT) = sign(xT−1 − xT)

We know that by the subgradient inequality that f(xT−1) ≥ f(xT)+gT (xT−1−xT). Because
gT and (xT−1 − xT) have the same sign, the quantity is nonnegative; thus we have

f(xT−1) ≥ f(xT)

Corollary 3.1.1. sign(gT) = sign(gT−1), because 0 /∈ ∂f(xT) and 0 /∈ ∂f(xT−1).

To show that f(xT) ≤ c√
T

, it is sufficient to show that

f(xT−1)− f(xT) ≥ c√
T − 1

− c√
T

(10)

We examine the quantity ηT gT , examining the properties of the cases where |gT | ≤ α√
T

and

where gT >
α√
T

, where α is a number chosen in the interval [
√
c, c], which is a nonempty interval

because c ≥ 1.

6

If |gT | ≤ α√
T

: we have

f(xT)− f(x∗) ≤ |gT ||xT − x∗| by convexity/monotonicity of the gradient

≤ α√
T

(1) (|xT − x∗| ≤ 1 by the diameter of the domain)

≤ c√
T

If |gT | > α√
T

:

By convexity we know that

|gT | ≤
f(xT−1)− f(xT)

|xT−1 − xT |
(By Corollary 3.1.1)

=
f(xT−1)− f(xT)

|ηT−1gT−1|
≤ f(xT−1)− f(xT)

|ηT−1gT |
(By Claim 3.1.3)

ηT−1|gT |2 ≤ f(xT−1)− f(xT) = [f(xT−1)− f(x∗)]− [f(xT)− f(x∗)]

≤ c√
T − 1

− [f(xT)− f(x∗)]

By rearranging we deduce

f(xT)− f(x∗) ≤ c√
T − 1

− ηT−1|gT |2 (11)

By assumption we have |gT | ≥ α√
T

. We thus have

f(xT)− f(x∗) ≤ c√
T − 1

− 1√
T − 1

α2

T

≤ c√
T − 1

− α2/2

(T − 1)1.5

(12)

This is true because for T ≥ 2, 1
T ≥ 1

2(T−1) .

By applying Claim A.1 to (12) we thus have

f(xT)− f(x∗) ≤ c√
T

(13)

as intended.

Case 3.2: sign(max ∂f(xT)) 6= sign(max ∂f(xT−1))
We know that if 0 is in the subgradient of a point x ∈ S, then x is a global minimizer for f .
Combining this optimality condition with fact with the monotonicity of the subgradient

(Claim 3.1.1) we are able to conclude that a global minimizer for f , x∗, is in the open interval
with endpoints xT and xT−1; this can either be (xT , xT−1) or (xT−1, xT). Thus we know that

|xT − x∗| ≤ |xT − xT−1| = |ηT−1gT−1| ≤ ηT
(|gT−1| ≤ 1 because f is 1-Lipschitz)

=⇒ f(xT)− f(x∗) ≤ |xT − x∗| ≤ ηT−1
=

1√
T − 1

≤ c√
T

(as c ≥
√

2) (14)

7

Thus in all cases we have f(xT)− f(x∗) ≤ c√
T

. Thus, we complete the induction. We thus

conclude that f(xT)− f(x∗) ≤ O(1)√
T

.

4 Future directions

The natural extension of the established work is to attempt further theoretical ground work
for higher-dimensional cases and possibly a generalization to any arbitrary finite dimension d.
Lower bounds have been established for arbitrary-dimensional cases where d > T , namely that

the error f(xT) − f(x∗) = Ω(log(d)√
T

), shown in ([4]). Following that, it is natural to speculate

that the bound is tight, such that the error is O
(

logmin(d,T)√
T

)
.

It is also of interest to study lower bounds. As shown in the theorems from [1] listed in Section
1.3, lower bounds can be established by proving the existence of a function f : S ⊂ Rd → R,
such that running subgradient descent on f produces a final iterate error after T iterations that
is bounded below by some function of d and T .

8

References

[1] S. Bubeck et al., “Convex optimization: Algorithms and complexity,” Foundations and
Trends R© in Machine Learning, vol. 8, no. 3-4, pp. 231–357, 2015.

[2] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Sta-
tistical Society: Series B (Methodological), vol. 58, pp. 267–288, 1996.

[3] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,” 2003.

[4] N. J. A. Harvey, C. Liaw, Y. Plan, and S. Randhawa, “Tight analyses for non-smooth
stochastic gradient descent,” CoRR, vol. abs/1812.05217, 2018.

[5] O. Shamir and T. Zhang, “Stochastic gradient descent for non-smooth optimization: Con-
vergence results and optimal averaging schemes,” in Proceedings of the 30th International
Conference on Machine Learning (S. Dasgupta and D. McAllester, eds.), vol. 28 of Proceed-
ings of Machine Learning Research, (Atlanta, Georgia, USA), pp. 71–79, PMLR, 17–19 Jun
2013.

9

A Scalar inequalities

Claim A.1. If T ≥ 2, then α2/2
(T−1)1.5 ≥ c√

T−1 −
c√
T

.

Proof. We show this by the following:

c

(
1√
T − 1

− 1√
T

)
= c

(√
T −
√
T − 1√

T (T − 1)

)

=
c√

T (T − 1)(
√
T +
√
T − 1)

(Using a− b =
a2 − b2
a+ b

)

≤ c

(T − 1)(2
√
T − 1)

(replace every T with T − 1 in the denominator)

=
c

2(T − 1)1.5
≤ α2/2

(T − 1)1.5

(as α2 ≥ c).

10

