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Abstract

A negative-index material (NIM), a metamaterial with simultaneously negative effective
permittivity and permeability, was composed from periodic arrays of split-ring resonators
(SRRs) and aluminum cut wires. The NIM was loaded into the bore of a loop-gap res-
onator (LGR) and reflection coefficient measurements were used to characterize its perme-
ability. Unexpectedly, many numerical simulations and experimental measurements have
suggested that the imaginary component of the cut wire permeability can be negative
which implies power generation rather than dissipation. In this project, the reflection
coefficient measurements were fit to a model proposed by Pendry and coworkers and used
to determine the resonant frequency, magnetic plasma frequency, and damping constant
of the metamaterial’s effective permeability. By comparing these parameters with those
found for arrays of exclusively SRRs, the presence of cut wires was shown to have almost
no effect on the permeability of the NIM when in the presence of a pure magnetic field. In
future research, similar analysis could be done for measurements taken when an external
source is used to establish a current in the cut wires.
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Chapter 1

Introduction

In this thesis we will develop a method to experimentally measure the permeability of
metamaterials composed of arrays split-ring resonators (SRRs) and cut wires. In order
to do this, we will use loop-gap resonators (LGRs) and employ Pendry et al.’s model to
characterize these arrays [1].

1.1 Metamaterials

Metamaterials are materials engineered to have electromagnetic properties that are not
found in natural materials. Specifically, all naturally-occurring materials have a positive
electric permittivity, εr, magnetic permeability, µr, and refractive index, n. Whereas for
metamaterials, at least one of these properties, given by Eqs. (1.1) to (1.3) respectively,
is negative [2].

εr =
ε

ε0
(1.1) µr =

µ

µ0

(1.2) n =
√
εrµr (1.3)

Note that ε0, the permittivity of free space, has the approximate value of 8.85×10−12 F/m
and µ0, the permeability of free space, has the value 4π × 10−7 H/m. In this project, we
will be focusing on negative index materials (NIMs) which classify a specific type of
metamaterial that has a negative index of refraction over part of the electromagnetic
spectrum. For this to occur, the permeability and permittivity must be simultaneously
negative [3].

Figure 1.1: An EM wave moving from a conventional material (with n1 > 0) into an NIM
(n2 < 0, dashed line) and a material with a positive refractive index (n2 > 0, solid line).

1



1.1. Metamaterials

This effect can be further explained by showing an EM wave moving from a conven-
tional material into a NIM compared to when it moves into another conventional material
with a positive refractive index, as shown in Fig. 1.1. To analyze this situation, we will
follow the work done by V. G. Veselago in his 1968 paper “The Electrodynamics of Sub-
stances with Simultaneously Negative Values of ε and µ” [4]. To begin we will define
the boundary conditions for the electromagnetic wave as it moves from material 1 into
material 2 to be:

~E1 = ~E2 (1.4) ~H1 = ~H2 (1.5)

ε1E
⊥
1 = ε2E

⊥
2 (1.6) µ1H

⊥
1 = µ2H

⊥
2 (1.7)

Here, we have denoted the electric field as ~E and the magnetic field intensity as ~H.
The superscript is used to describe the component of the waves that is parallel to the
boundary between material 1 and material 2, while ⊥ describes the component perpen-
dicular to the boundary. Lastly, µ1 and ε1 describe the permeability and permittivity
of material 1 and µ2 and ε2 describe the permeability and permittivity of material 2 [5].
Before we begin our analysis of the effects of µ2 and ε2 on these boundary conditions,
we will define ~E to be travelling in the plane of the paper. This results in ~H travelling
perpendicular to the page, and thus ~H has no component perpendicular to the bound-
ary between material 1 and 2. This yields the trivial result of zero equals zero for the
boundary condition denoted by Eq. (1.7).

To begin, we will assume that our EM wave is travelling from material 1 into material
2 which are both defined to have positive permittivity and permeability, but, ε2 > ε1. As
Eqs. (1.4) and (1.5) do not depend on permittivity or permeability and Eq. (1.7) has a
trivial solution, we are only interested in Eq. (1.6). For these conditions, Eq. (1.6) yields,

E⊥2 =
ε1
ε2
E⊥1 , (1.8)

where, from our initial set-up, we can deduce that E⊥2 < E⊥1 . This is consistent with
Snell’s law, n1sinθ = n2sinθ

′. Now, we can perform a similar analysis for when material
2 is defined to have a negative permeability, µ2, and permittivity, ε2, while µ1 and ε1
remain positive. Again, we are only interested in analyzing Eq. (1.6), which again yields
Eq. (1.8). However, for this scenario ε1

ε2
< 0 so E⊥2 is refracted in a different direction and

results in a negative angle of refraction. This is illustrated by the dashed line in Fig. 1.1.
Therefore, for this material, Snell’s law results in n1sinθ = n2sin−θ′ = −n2sinθ

′. Thus,
for Snell’s law to hold, it is required that the refractive index, n2, is negative for materials
with negative permeability, µ2, and permittivity, ε2.

In this thesis, we will construct arrays of cut wires as well as arrays of both SRRs and cut
wires and characterize their effective relative permeability, µr, at microwave frequencies.

2



1.2. Split-Ring Resonators (SRRs)

In “The Complex Permeability of Split-Ring Resonator Arrays Measured at Microwave
Frequencies” S.L. Madsen and J.S. Bobowski, measured the permeability of SRR arrays
[6]. Now, we will work to see what effect, if any, that addition of cut wires has to these
arrays. Previous numerical simulations and experimental measurements have suggested
that the imaginary component of µr = µ′ − jµ′′ is negative for arrays of cut wires [7].
This is unexpected as it suggests power gain rather than dissipation in the NIM.

1.1.1 Applications

NIMs have many interesting applications which include the creation of super lenses as
well as cloaking devices [2]. Conventional lenses can only focus light on areas equal to
or larger than its wavelength squared. Many simulations have suggested that by utilizing
NIMs, a super lens could be created that is not limited by wave optics [8]. Additionally,
NIMs have been proposed to be able shield an object from view by controlling its EM
radiation [9].

1.2 Split-Ring Resonators (SRRs)

For the purposes of this project, we will define SRRs as planar structures with negligible
length, composed of two concentric, conducting rings with slits in each, on opposing
sides, as shown in Fig. 1.2. In 1999, Pendry et al. proposed SRR arrays exhibit a

Figure 1.2: Schematic depiction of an SRR with radius, r, ring thickness, c, and distance
between conductors, d. Taken from [6].

negative effective permeability just above their resonant frequency [1]. He derived a
model for the real, µ′, and imaginary, µ′′, components of the an SRR arrays effective
relative permeability, which are given by:

µr = µ′ − jµ′′ (1.9)

3



1.3. Cut Wire Arrays

µ′ = 1− [1− (ωs/ωp)
2][1− (ωs/ω)2]

[1− (ωs/ω)2]2 + (γ/ω)2]
(1.10)

µ′′ =
(γ/ω)[1− (ωs/ωp)

2]

[1− (ωs/ω)2]2 + (γ/ω)2
. (1.11)

Here, ωs denotes the SRRs resonant angular frequency, ωs is the SRRs magnetic plasma
angular frequency, and γ is the damping constant, which characterizes the sharpness of
the resonance.

1.2.1 Dimensions and Materials

The SRRs used in this project are depicted in Fig. 1.2. They were made by S. L.
Madsen and J. S. Bobowski [6]. The SRR itself is secured on FR-4 printed circuit board,
shown in green in Fig. 1.2, which has a dielectric constant of about 4.5 at frequency of 1
GHz [10] [6]. The circuit board had thickness t = 1.54 mm and side-length a = 21.0 mm
and the SRR has dimensions r = 5.56 mm, c = 1.91 mm. d = 0.15 mm [6]. Additionally,
2 × 2 planes of four SRRs were composed on printed circuit board of side-length 2a with
evenly spaced SRRs in each quadrant.

1.3 Cut Wire Arrays

Arrays of conducting wires are known to have a negative effective permittivity. Maslovski
et al. derived a model describing the effective permittivity of an array of cut wires under
quasi-static conditions [11]. This model considered a infinite periodic array of conducting
wires as depicted in Fig. 1.3. It was assumed that in these arrays of wires, only EM plane
waves in the fundamental Floquet mode can propagate [12]. This derivation resulted in
the permittivity of the array being defined as,

ε = ε0

(
I − 2π~z0~z0

(ka)2 log( a2

4r0(a−r0))

)
, (1.12)

where I is the identity tensor, and the wave number, k, is given by ω
√
ε0µ0, where ω is

the angular frequency. Moreover, ~z0 describes the unit vector in the z direction. Thus,
the vector product of z0 with itself results in a matrix which isolates the electric field
travelling in the z direction, which, in this model, is along the axis of the cut wire array.
The cut-off wavelength, which restricts the modes of the plane wave travelling through
the cut wire array to the Floquet mode, is therefore given by,

λ0 = a

√
(2π) log

(
a2

4r0(a− r0)

)
. (1.13)

This result, which only pertains to ideally conducting wires, was then extended to incor-

4



1.3. Cut Wire Arrays

Figure 1.3: An infinite periodic array of cut wires. Array has period a and wires have
radius r0. Figure modelled after Fig. 1.4(a) in [13].

porate lossy and loaded wires [11]. These wires were described by having an additional
effective surface impedance,

Zs =
1 + j√

2

√
ωµ0

σ
, (1.14)

where σ is the metal conductivity. This impedance is added with the impedance of the
arrays inductance to yield the complex permittivity,

ε = ε0

(
I − 2π~z0~z0

(ka)2 log( a2

4r0(a−r0))− jka
a
r0
Zs

η

)
, (1.15)

where η, the free-space impedance is given by
√
µ0/ε0. Overall, similarly to effective

relative permeability, effective relative permittivity can be expressed conventionally as a
complex value,

εr = ε′ − jε′′, (1.16)

where ε′ is the real component of permittivity and ε′′ is the imaginary component of
permittivity when losses are considered. Unlike the permeability of SRR arrays, which is
only negative right above its resonance frequency, the permittivity of cut wire arrays can
be negative over a broad range of frequencies. This is further explored in Chapters 5.1
and 5.2.

5



1.4. Loop-Gap Resonators (LGRs)

1.4 Loop-Gap Resonators (LGRs)

In order to measure the permeability of our arrays of both cut wires and SRRs, loop-gap
resonators (LGRs) will be used. An LGR is composed of a long, hollow bore made of
conducting material with a gap down the entire length of the bore and a coupling loop
suspended in one end. The cross-section of a one-loop-one-gap LGR is shown in Fig.
1.4(a), while the actual resonator used is pictured in Fig. 1.4(b).

(a) Schematic. Figure modified from [14]. (b) LGR used for measure-
ments.

Figure 1.4: The cross-section of a one-loop-one-gap resonator with gap thickness t, gap
width w, and bore side-length x.

Figure 1.4 shows that the corners of the LGR’s bore are rounded which was done to
avoid large current densities that would be expected at sharp corners [6]. However, the
side-length of the bore is still given as x and the cross-sectional area is approximated to
be x2. LGRs is can be easily modelled as LRC circuits. An LRC circuit, such as the
one shown in Fig. 1.5, is a simple circuit with an inductor, capacitor, and a resistor in
series. Typically, LGR’s are cylindrical with a circular cross-section of inner radius, r0.
The shell of the LGR acts as a single turn inductor with inductance, L ≈ µ0πr02

l
, where

the cross-sectional area of the circular bore is given by πr0
2 and its length is denoted

l. The capacitance is given by C0 ≈ ε0wl
t

and the resistance is R0 ≈ 2ρπr0
lδ0

, where the
circumference of the bore in 2πr0 and δ is the skin depth of the material that the LGR is
made from [15]. Skin depth is a frequency dependent quantitative measure of how deep
the AC current flowing in the resonator penetrates into its surface [15]. Specifically, δ0,
denotes the skin depth of the resonator at its resonant frequency [14]. These parameters
can be modified for our rectangular LGR with a square cross-section by substituting in
x2 as the cross-sectional area and 4x as the bore’s inner perimeter.
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1.4. Loop-Gap Resonators (LGRs)

Figure 1.5: The equivalent circuit model of an LGR bore. Figure modified from [14].

The approximate inductance can then be represented as,

L0 ≈
µ0x

2

l
. (1.17)

The gap of the LGR has the same dimensions, so it provides the same capacitance of,

C0 ≈
ε0wl

t
. (1.18)

Lastly, the effective resistance of the LGR at its resonance frequency, ω0, is denoted,

R0 ≈
4ρx

lδ0
. (1.19)

We can calculate the skin depth of an LGR using,

δ =

√
2ρ

µ0ω
, (1.20)

where ρ is the resistivity of the material the LGR is composed of [15]. The LGRs used in
this project are made of aluminum which has resistivity ρ = 2.82×10−8 Ωm [16]. From
these parameters, the resonance frequency of the LGR is estimated to be,

f0 =
1

2π
√
LC

, (1.21)

where L and C are given by L0 and C0 for an empty LGR. This logic can also be extended
to a two-loop-one-gap LGR. However, while the capacitance of the LGR is still determined
by the dimensions of the gap, the inductance and resistance are independent for each bore.
These larger LGRs were used to accommodate large 2× 2 arrays of SRRs and cut wires.
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1.4. Loop-Gap Resonators (LGRs)

1.4.1 Dimensions

The one-loop-one-gap LGR we used, as shown in Figs. 1.4(a) and (b), had dimensions
l = 112 mm, x = 21.6 mm, w = 5.0 mm, and t = 1.3 mm [6]. Using these dimensions in
conjunction with Eqs. (1.17), (1.18), and (1.21), we estimate the resonance frequency of
the empty loop gap resonator to be 1 GHz. Additionally, a two-loop-one-gap resonator,
as shown in Figs. 1.6(a) and (b), was used. It had dimensions l = 112 mm, x = 42.7 mm,
w = 5.0 mm, and t = 2.0 mm [6]. As the bore of this resonator is larger, its inductance
will increase relative to the one-loop-one-gap resonator. This, in turn, will lower the
resonance frequency. In order to counteract this change, the capacitance of the LGR
was increased by increasing the gap thickness, t, with respect to the one-loop-one-gap
resonator. This yields an expected resonance frequency of approximately 0.7 GHz for the
empty two-loop-one-gap LGR.

(a) Schematic. Taken from [6]. (b) LGR used for measurements.

Figure 1.6: Two-loop-one-gap resonator with gap thickness, t, and gap width, w.
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Chapter 2

Measurement Methods

In order to collect data, a vector-network analyzer (VNA) was used. Specifically, the
DG8SAQ VNA 3E from SDR-Kits. This VNA is powered from a PC USB-bus and covers
frequencies from 1 kHz to 1.3 GHz. The VNA, which was connected to the LGR’s coupling
loop using an SMA cable, allowed us to both introduce and extract signals from our LGR.
Specifically, we will be interested in characterizing the reflected signal. To do this, we will
measure the coefficient of the reflected signal, S11, from our LGR’s coupling loop.

Before we could take these measurements, the system had to be calibrated. To do this,
we used the Magi-Cal device. Essentially, once the settings for this automatic calibration
system were loaded into data collection software, the Magi-Cal device was connected to
the LGR’s coupling loop using an SMA cable. From here, the calibration was run. As
for this portion of data collection we were only interested in the reflected signal, the
calibration was set to only run through an open circuit, a short circuit, and a circuit
with a 50 Ω load. Additionally, the audio settings of the VNA were adjusted to collect
forty samples per IF period, three pre-samples, and 3 post-samples. This resulted in the
desired sinusoidal signal being delivered to the coupling loop. Once the VNA was set up,
we were able to acquire S11 sweeps over various ranges of microwave frequencies.

The VNA collected S11 data on a logarithmic decibel scale. In order to analyze the
data, we converted it to a linear scale using,

|S11|lin = 10|S11|dB/20. (2.1)

In Eq. (2.1), the absolute value bars indicate that we are only concerned with the mag-
nitude of the S11 signal. Additionally, the factor of twenty in the exponent is due to the
|S11|lin being defined in terms of a voltage ratio instead of a power ratio as shown by Eqs.
(2.2) and (2.3).

|S11|dB = 10 log

(
V2
V1

)2

(2.2) |S11|lin =
V2
V1

(2.3)

Here, V1 denotes the voltage supplied to the coupling loop and V2 denotes the reflected
voltage. Thus, as the voltage ratio is equivalent to the square root of the power ratio,
there is an extra factor of one-half in the exponent as we convert from the decibel scale.
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Chapter 3

Modelling |S11| of An Empty LGR

To model |S11,e| we must calculate the effective impedance of the empty LGR, Ze, and
then exploit the characteristics of transmission lines to determine the reflection coefficient.

3.1 The Effective Impedance of a Loop Gap

Resonator (LGR)

In order to find the effective impedance of a one-loop-one-gap resonator inductively
coupled to a coupling loop of inductance L1, its equivalent circuit model, as depicted in
Fig. 3.1, was analyzed.

Figure 3.1: The equivalent circuit model of an LGR inductively coupled to a coupling
loop of inductance, L1. Figure modified from [14].

In Fig. 3.1, L1 is the effective inductance of the coupling loop, which is assumed to
have no losses. L0 denotes the self inductance of the LGR which is defined as the ratio
of magnetic flux to the opposing current in a loop. C0 is the capacitance of the LGR gap
and R0 is its effective resistance at its resonance frequency. More generally, the effective
resistance of the LGR at all frequencies can be denoted R. Lastly, M0 represents the
mutual inductance between L1 and L0 and is given by k

√
L0L1, where k is a coupling

coefficient whose value is between zero and one [17].
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3.1. The Effective Impedance of a Loop Gap Resonator (LGR)

In order to analyze this circuit, Kirchhoff’s voltage law is applied. This law states
that the sum of the potential differences around a loop equals zero [18]. A voltage is
applied to the coupling loop from the VNA which drives a current, i1, across the coupling
loop. This, in turn, induces an emf through the resonator bore resulting in a second
current, i2, in the LGR. Additionally, the impedance of the LGR’s capacitance is defined
as ZC0 = 1/jωC0 and the impedance of the LGR’s inductance is defined as ZL0 = jωL0.
Applying Kirchhoff’s voltage law to the coupling loop we obtain

V1 = jωL1i1 + jωM0i2, (3.1)

where V1 is the voltage applied to the coupling loop. Now, analyzing the circuit loop of
the LGR we obtain,

0 = jωM0i1 −
ji2
ωC0

+ i2R + jωL0i2. (3.2)

Solving Eq. (3.2) for i2 we obtain,

i2 = i1
−jωM0

R + j(ωL0 − 1
ωC0

)
. (3.3)

The effective impedance is defined as Ze = V1/i1. Therefore, by combining Eqs. (3.1) and
(3.3) and factoring out and dividing by i1 we find,

Ze =
V1
i1

= jωL1 +
ω3M2

0C0

RωC0 + j(ω2L0C0 − 1)
. (3.4)

By multiplying by the complex conjugate of the denominator in Eq. (3.4), the imaginary
and real components of Ze are separated where Ze = Re + jXe. The real component of
the effective impedance is,

Re =
Rω2M2

0

R2 + (ωL0 − 1
ωC0

)2
, (3.5)

and the imaginary component of the effective impedance is,

Xe = ωL1 − ω2M2
0

ωL0 − 1
ωC0

R2 + (ωL0 − 1
ωC0

)2
. (3.6)

Now, to obtain the desired form of Ze, we must express Eqs. (3.5) and (3.6) in terms of
ω0, Q0, and R0 by re-expressing L0 and C0 as L0 = Q0R0/ω0 and C0 = 1/ω0Q0R0. Addi-
tionally, we can write R in terms of R0 by analyzing the skin depth, δ, of the resonator.
The skin depth, denoted by Eq. (1.20), is a quantitative measure of how deeply the AC
current flowing in the resonator penetrates the surface. Thus, the resistance of the LGR
can be represented by,

R =
4ρx

lδ
, (3.7)
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3.2. Modelling |S11,e| of an Inductively-Coupled LGR

where l is the length of the resonator, x is the side length, and ρ is the resistivity of the
material [15]. Now, by combining Eqs. (1.20) and (3.7) and defining R0 = 2

√
2ρµ0ω0(x/l),

where µ0 is the permeability of free space, we obtain R = R0

√
ω/ω0 [14]. By implementing

these changes, we obtain the real and imaginary components of Ze shown in Eqs. (3.8)
and (3.9), respectively.

Re =
[(ωM0)

2/R0]
√
ω/ω0

(ω/ω0) +Q2
0[(ω/ω0)− (ω0/ω)]2

(3.8)

Xe = ωL1 −
[(ωM0)

2/R0]Q0[(ω/ω0)− (ω0/ω)]

(ω/ω0) +Q2
0[(ω/ω0)− (ω0/ω)]2

(3.9)

3.2 Modelling |S11,e| of an Inductively-Coupled LGR

Now that we have determined the effective impedance of an empty LGR, Ze, we can
consider the characteristics of transmission lines to model the magnitude of the reflected
signal, |S11,e|. The LGR is inductively-coupled to a coupling loop connected to a coaxial
cable with characteristic impedance Z0. In order to find the reflection coefficient using Ze

and Z0 we must exploit the result,

S11,e =
Ze − Z0

Ze + Z0

, (3.10)

where Ze = Re + jXe and, the characteristic impedance, Z0, of our transmission line
is 50 Ω [19]. Combining this expression for Ze with Eq. (3.10) and multiplying by the
complex conjugate, we obtain:

S11,e =
R2

e +X2
e − Z2

0

(Re + Z0)2 +X2
e

+ j
2Z0Xe

(Re + Z0)2 +X2
e

. (3.11)

To solve for the magnitude of the reflected signal |S11,e|, we must multiply Eq. (3.11) by
the complex conjugate and square root the result. This results in the following expression
for the magnitude of the reflection coefficient for an inductively-coupled empty LGR:

|S11,e| =
√

[(|Ze|2/Z2
0)− 1]2 + [2(Xe/Z0)]2

[(|Ze|2/Z2
0) + 1] + 2(Re/Z0)

, (3.12)

where |Ze|2 = R2
e + X2

e .

3.3 Plotting |S11,e| for Varying Coupling Constants

Using Eq. (3.12) in conjunction with Eqs. (3.8) and (3.9) we can plot |S11,e| as a function
of frequency for different values of mutual inductance, M0. Here, M0

2/R0 is set equal
to k2×(0.1nH2/mΩ), where k is the coupling coefficient. Additionally, we will use test
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3.4. Experimentally Determining |S11,e| for Varying Coupling Constants

values of ω0 = 2π×(1 GHz), Q0 = 500, L1 = 12 nH, and Z0 = 50 Ω. To vary the mutual
inductance, M0, |S11,e| is plotted as a function of frequency for k = 0.1, 0.2, 0.3, 0.4, and
0.5. The resulting plots are shown in Fig. 3.2.

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

Frequency (Hz) 109

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|S
1

1
,e

|

k = 0.1
k = 0.2
k = 0.3
k = 0.4
k = 0.5

Figure 3.2: |S11,e| plotted as a function of frequency for k = 0.1, 0.2, 0.3, 0.4, and 0.5.

As shown in Fig. 3.2, when k = 0.2, |S11,e| approaches a value very close to zero at its
resonance peak. For critically coupled systems, the maximum signal is transferred from
the coupling loop to the LGR, which means Ze is equal to Z0 as shown by Eq. (3.10).
Therefore, |S11,e| is equal to zero meaning the LGR and coupling loop are critically coupled
when k = 0.2. Thus, when k < 0.2, the LGR is undercoupled. The plot resulting from
an undercoupled mutual inductance, for example when k = 0.1, is shifted left and has a
higher |S11,e| value at resonance. Lastly, when k > 0.2, the LGR is overcoupled. The plot
resulting from an overcoupled mutual inductance, as shown in Fig. 3.2 when k = 0.3, 0.4,
and 0.5, is less sharp, shifted right, and has a higher |S11,e| value at resonance [20].

3.4 Experimentally Determining |S11,e| for Varying

Coupling Constants

|S11,e| as a function of frequency was measured using the two-loop-one-gap resonator
shown in Fig. 1.6. In order to change the coupling constant k, the orientation of the
coupling loop was tuned. To find the orientation that resulted in critical coupling, the
coupling loop was tuned until |S11,e| approached zero. From here, it was adjusted until
a characteristic undercoupled peak was seen, and further adjusted until a characteristic
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3.4. Experimentally Determining |S11,e| for Varying Coupling Constants

overcoupled peak was seen. The data collected was then linearized using Eq. (2.1) and
plotted as shown in Fig. 3.3.
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Figure 3.3: |S11,e| plotted as a function of frequency for two-loop-one-gap resonator for
various coupling loop orientations.

Comparing Fig. 3.2 and Fig. 3.3, we can see that in both figures the plots produced
when the LGR and coupling loop are critically coupled approach zero at their resonance
frequencies. On the other hand, the undercoupled and overcoupled plots have greater
values of |S11,e| for their resonance peaks. As expected, as shown in Fig. 3.3, the un-
dercoupled plot has a slightly lower resonance frequency and the overcoupled plot has a
slightly higher resonance frequency and less defined peak. Additionally, it is important
to note that the two-loop-one-gap LGR’s resonant frequency, f0, was estimated to be ap-
proximately 0.7 GHz. Therefore, while the the model for the one-loop-one-gap resonator
shown in Fig. 3.2 shows resonances occurring at ∼ 1 GHz, it is expected that f0 for
measurements taken using the two-loop-one-gap resonator will be closer to 0.7 GHz, as
observed.
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Chapter 4

Permeability of SRR Arrays

4.1 Modelling Permeability of SRR Arrays

In order to analyze the permeability of SRR arrays, we will be using Pendry et al.’s
model as given in Eqs. (1.9) to (1.11) [1]. Eqs. (1.10) and (1.11) can be re-written in
terms of frequency by substituting in ω = 2πf . This yields,

µ′ = 1− [1− (fs/fp)
2][1− (fs/f)2]

[1− (fs/f)2]2 + [γ/(2πf)]2
(4.1)

and

µ′′ =
[γ/(2πf)][1− (fs/fp)

2]

[1− (fs/f)2]2 + [γ/(2πf)]2
, (4.2)

where fs is the resonant frequency, fp is the plasma frequency, and γ is the damping
constant [1]. Now, as our SRR arrays are expected to have resonance frequencies of
approximately 1 GHz, we can set fs = 1 GHz, from here we set fp equal to 1.05 GHz
and γ/(2π) to 10 MHz. Using these test values, we can plot µ′ and µ′′ as a function of
frequency. The obtained curves are plotted in Fig. 4.1.

As depicted in Fig. 4.1, µ′ is negative just above its resonance frequency, fs, until it
crosses back over zero at its plasma frequency, fp. Additionally, µ′′ peaks at fs before
returning to zero at fp. An important feature of this model is that µ′′ will be greater
than or equal to zero as long as fp > fs. This is expected as a positive µ′′ implies power
dissipation, which is expected as a signal is supplied and reflected from the metamaterial.

4.2 The Effective Impedance of an LGR Filled with

Magnetic Material

As we load SRRs with a complex effective permeability into the bore of an LGR, the
relative effective permeability of the LGRs bore will change. We must account for this
when we find the impedance of the coupled LGR. To do this, we will complete a similar
analysis as shown in Chapter 3.1, but, this time, we will account for the magnetic material
filling the LGRs bore. To begin, we must analyze the equivalent circuit model shown in
Fig. 4.2.
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4.2. The Effective Impedance of an LGR Filled with Magnetic Material
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Figure 4.1: The real, µ′, and imaginary, µ′′, components of the SRR relative perme-
ability plotted as a function of frequency when fp = 1.05 GHz, fs = 1 GHz, and
γ/(2π) = 10 MHz.

Figure 4.2: The equivalent circuit model of an filled LGR inductively coupled to coupling
loop of inductance, L1. Figure modified from [14].

L1 denotes the inductance of the coupling loop which is inductively coupled to the LGR,
which now has inductance L. For this derivation we will assume the bore of the LGR is
filled with a magnetic material having relative permeability µr = µ′ − jµ′′. This causes
the inductance of the LGR to go from L = L0 to L = (µ′ − jµ′′)L0. Again, the effective
capacitance and resistance of the LGR are denoted as C0 and R0, respectively. Lastly,
the mutual inductance between the coupling loop and the resonator is denoted M . For
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4.2. The Effective Impedance of an LGR Filled with Magnetic Material

an empty LGR bore, the mutual inductance was given by M0 = k
√
L0L1. Now, however,

as the inductance of the bore is being multiplied by µr, the mutual inductance becomes
M = k

√
µrL0L1. From this, we can make use of the result M2 = k2µrL0L1. Lastly, recall

that the resistance of the LGR bore has frequency dependence given by R = R0

√
ω/ω0.

Similarly to the circuit analysis used to determine the effective impedance of a coupling
loop inductively coupled to an empty LGR, Kirchhoff’s voltage law will be exploited in
this problem [17]. Again, there is a current i1 in the coupling loop, and thus, by Faraday’s
Law, a current i2 is induced in the LGR. Applying Kirchhoff’s voltage law to the coupling
loop we obtain

V1 = jωL1i1 + jωMi2, (4.3)

where V1 is the voltage applied to the coupling loop. Now, analyzing the circuit loop of
the LGR we obtain,

0 = jωMi1 −
ji2
ωC0

+ i2R + jωµ′L0i2 + ωµ′′L0i2. (4.4)

Solving Eq. (4.4) for i2 we obtain,

i2 =
−jωM

R + ωµ′′L0 + j(ωµ′L0 − 1
ωC0

)
i1. (4.5)

The effective impedance is defined as Zf = V1/i1. Therefore, in order to solve for Zf we
can combine Eqs. (4.3) and (4.5) and factor out i1 as follows,

Zf = jωL1 +
ω3M2C0

RωC0 + ω2C0µ′′L0 + j(ω2µ′L0C0 − 1)
. (4.6)

Now, in order to remove the imaginary term of Zf from the denominator of the equation,
we must multiply the numerator and denominator of Eq. (4.6) by the complex conjugate
of the denominator. From this, we obtain,

Zf = jωL1 + ω3M2C0
RωC0 + ω2C0µ

′′L0 − j(ω2µ′L0C0 − 1)

(RωC0 + ω2C0µ′′L0)2 + (ω2µ′L0C0 − 1)2
. (4.7)

We can now utilize the result, M2 = k2µrL0L1 which, as µr = µ′ − jµ′′, can be written
as M2 = k2(µ′ − jµ′′)L0L1. Using the result in Eq. (4.7), and separating the effective
impedance as Zf = Rf + jXf we obtain,

Rf =
ω2k2L0L1(µ

′RωC0 + µ′′)

(R
√
ωC0 +

√
ω3C0µ′′L0)2 + (

√
ω3C0µ′L0 − 1√

ωC0
)2
, (4.8)
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4.3. Plotting |S11,f |

which denotes the real component of the effective impedance, and,

Xf = ωL1 −
ω2k2L0L1[µ

′′(RωC0 + ω2C0µ
′′L) + µ′(ω2µ′L0C0 − 1)]

(R
√
ωC0 +

√
ω3C0µ′′L0)2 + (

√
ω3C0µ′L0 − 1√

ωC0
)2

, (4.9)

which denotes the imaginary component of the effective impedance. Finally, to obtain
the desired form, we must express Eqs. (4.8) and (4.9) in terms of ω0, Q0, and R0 by
re-expressing L0 and C0 as L0 = Q0R0/ω0, C0 = 1/ω0Q0R0, and R = R0

√
ω/ω0. These

substitutions allow us to obtain the desired form of the real and imaginary components
of Zf in Eqs. (4.10) and (4.11), respectively.

Rf =
ωL1(ω/ω0)k

2[ µ
′

Q0

√
ω/ω0 + µ′′(ω0/ω)]

[ 1
Q0

√
ω/ω0 + µ′′(ω/ω0)]2 + [µ′(ω/ω0)− (ω0/ω)]2

(4.10)

Xf = ωL1

(
1−

(ω/ω0)k
2[µ′′[ 1

Q0

√
ω/ω0 + µ′′(ω/ω0)] + µ′[µ′(ω/ω0)− (ω0/ω)]]

[ 1
Q0

√
ω/ω0 + µ′′(ω/ω0)]2 + [µ′(ω/ω0)− (ω0/ω)]2

)
(4.11)

4.3 Plotting |S11,f|
Equation (3.12) models the magnitude of the reflection coefficient of the signal from an

inductively coupled empty LGR. This model can be expanded to include measurements in
which the LGR bore is filled with magnetic material. This changes the notation slightly
to,

|S11,e/f | =
√

[(|Ze/f |2/Z2
0)− 1]2 + [2(Xe/f/Z0)]2

[(|Ze/f |2/Z2
0) + 1] + 2(Re/f/Z0)

, (4.12)

where |Ze/f |2 = R2
e/f + X2

e/f and Z0 is still the characteristic impedance of the transmission

line. Therefore, using this equation in conjunction with Eqs. (4.10) and (4.11) we can plot
the reflected signal of an inductively coupled LGR, |S11,e/f |, as a function of frequency. In
order to do this, we will use the following parameters f0 = 1 GHz, Q0 = 500, L1 = 12 nH,
and Z0 = 50 Ω, and k = 0.065. Also noting that ω, the angular frequency, is defined as
2πf . By defining these fixed values while varying µ′ and µ′′, we were able to explore the
effect that varying the real and imaginary components of the permeability of the magnetic
material filling the resonator’s bore will have on the resonance peaks.

Initially, values of µ′ = 1 and µ′′ = 0 were plotted. This curve corresponds to the
near-critical coupling of an LGR with an empty bore and is displayed in blue in Fig. 4.3.
Next, values of µ′ = 1.1 and µ′′ = 0 were plotted. The resulting curve is shown in red in
Fig. 4.3. As shown, when µ′ is increased above 1, the resonant frequency is lowered by a
factor equal to

√
1/µ′. Lastly, values of µ′ = 1 and µ′′ = 0.01 were plotted. This result is

shown in cyan in Fig. 4.3 and illustrates that when µ′′ > 0, the produced curve is much
broader and the resonance is no longer critically coupled.
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4.4. Plotting |S11,f | for Frequency Dependent Permeability
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Figure 4.3: |S11,f | plotted as a function of frequency for various permeability values.

4.4 Plotting |S11,f| for Frequency Dependent

Permeability

We will also explore the effect the frequency dependent permeability given in Eqs. (4.1)
and (4.2) has on the magnitude of the reflection coefficient, |S11,f |. In order to do this, we
will again plot Eq. (4.12) in conjunction with Eqs. (4.10) and (4.11). However, this time,
the real, µ′, and imaginary, µ′′, components of the relative permeability will be defined by
Eqs. (4.1) and (4.2), thus making these values frequency dependent. Similarly to in the
plots shown in Figs. 4.1 and 4.3, the following parameters are set: f0 = 1 GHz, Q0 = 500,
L1 = 12 nH, and Z0 = 50 Ω, k = 0.065, and fs = 1 GHz. This time we will be varying
fp and γ to explore the effect they have on the produced resonance curves. Using the
outlined values and equations, |S11,f | is plotted as a function of frequency and displayed
in Fig. 4.4.

As expected, a double resonance is seen. |S11,f | was originally plotted with fp = 1.05 GHz
and γ/(2π) = 10 MHz. These values were then varied to explore their effect on the pro-
duced resonance curves. As shown by the red curve, when fp was decreased to 1.03 MHz,
the double resonance peaks shifted closer together. Additionally, the primary resonance
peak, while still higher in magnitude than the secondary peak, decreased in magnitude.
Moreover, the secondary peak increased in magnitude. Then, as shown by the magenta
curve, when fp was increased to 1.07 MHz, the double resonance peaks shifted further
apart and the primary peak increased in magnitude while the secondary peak decreased
in magnitude. Next, the damping constant, γ, was varied while fp stayed constant at
1.05 GHz. As expected, when γ was decreased, as illustrated by the cyan curve, the
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4.5. Investigating the Effect of Negative µ′′ on |S11,f |

Figure 4.4: |S11,f | plotted as a function of frequency for various fp and γ values.

resonance peaks became sharper and increased in magnitude. On the other hand, when
γ was increased, the resonance peaks flattened.

4.5 Investigating the Effect of Negative µ′′ on |S11,f |
Finally, we can investigate what effect a negative imaginary component of the perme-

ability, µ′′, would have on the expected |S11,f | plot. From Eq. (4.2) we can deduce that if
the magnetic plasma frequency, fp, of the metamaterial is less than its resonant frequency,
fs, µ

′′ will be negative. We can plot the resulting permeability using Eqs. (4.1) and (4.2)
and the following test parameters: fs = 1 GHz, fp = 0.95 GHz, and γ/(2π) = 10 MHz.
The resulting plots are displayed in Fig. 4.5. As shown in Fig. 4.5, the imaginary compo-
nent of the permeability, as shown in red, becomes negative at the resonance frequency.
This is opposite to the effect seen in Fig. 4.1 when fp > fs. The real component of the
permeability, as plotted in blue, crosses over zero and becomes negative at its magnetic
plasma frequency, before spiking back up to a positive value at the resonant frequency.
Thus, the negative portion of µ′ occurs just below the resonant frequency instead of just
above, as seen in Fig. 4.1. Using these values, and including test values of f0 = 1 GHz,
Q0 = 500, L1 = 12 nH, and Z0 = 50 Ω, and k = 0.065, we can plot the expected |S11,f |
curve produced from an LGR filled with a magnetic material with fs > fp, and thus
negative µ′′. To do this, we will again use Eqs. (4.1), (4.2), (4.10), and (4.11) to plot Eq.
(4.12). The resulting plot of |S11,f | as a function of frequency is displayed in Fig. 4.6.
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Figure 4.5: The real, µ′, and imaginary, µ′′, components of the SRR relative perme-
ability plotted as a function of frequency when fp = 0.95 GHz, fs = 1 GHz, and
γ/(2π) = 10 MHz.
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Figure 4.6: |S11| as a function of frequency when fp = 0.95 GHz, fs = 1 GHz, and
γ/(2π) = 10 MHz.

As plotted in Fig. 4.6, the expected |S11| curve for an LGR filled with a magnetic
material with a negative imaginary component of permeability is positive. This is an
unphysical result as it suggests that the reflected voltage is greater than the voltage
supplied to the LGR.
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4.6 Experimentally Determining |S11| for an Array

of SRRs

In this section, we will experimentally measure the |S11| signals over a range of mi-
crowave frequencies for SRR arrays using a LGR. We will load arrays of N = 1, 2, 3, and
4 SRRs into the one-loop-one-gap resonator. To begin, the coupling loop was oriented in
order to acquire near-critical coupling. This position was found to be when the plane of
the coupling loop was perpendicular to the bore axis. The coupling loop was then secured
in this position using a set screw. Then, SRRs were placed as far as possible from the
coupling loop as possible with their outermost slit opposite to the LGR’s gap. As the
array increased from one SRR, a 21 mm spacer was placed in between the SRRs. The
LGR loaded with four SRRs is pictured in Fig. 4.7. Sweeps of the reflection coefficient

Figure 4.7: Array of four SRRs loaded into the one-loop-one-gap LGR spaced at approx-
imately 21 mm apart.

over frequencies from 0.7 GHz to 1.3 GHz were taken for arrays of N = 1, 2, 3, and 4
SRRs. These signals were then converted to a linear scale using Eq. (2.1) and the resulting
plots are shown in Fig. 4.8.
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Figure 4.8: |S11| as a function of frequency for the one-loop-one-gap LGR when loaded
with N SRRs spaced at approximately 21 mm apart.

Figure 4.8 shows |S11| plotted as a function of frequency for the five data sets collected.
As expected, for an empty LGR a single resonance peak at about 0.9 GHz was measured.
Then, when the bore of the LGR was filled with one SRR, a second resonance peak
appeared at just below 1.1 GHz. As more SRRs were added, the peaks spread further
apart. And, when three SRRs and four SRRs were loaded, a third dip appeared at a
frequency of about 1 GHz. Finally, away from the resonances, |S11| was observed to
decrease as frequency increased due to losses in the coaxial cable leading to the coupling
loop. These observations are all consistent with what was shown in Fig. 3(a) of S. L.
Madsen and J.S. Bobowski’s paper for a similar experimental set-up [6].
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Chapter 5

Permittivity of Cut Wire Arrays

5.1 Modelling Effective Permittivity

Just as SRR arrays have a negative permeability over a small range of microwave
frequencies, cut wire arrays are known to display a negative permittivity at microwave
frequencies. Using Maslovski et al.’s model describing the effective permittivity of an
array of cut wires we were able to explore the permittivity of cut wire arrays of different
dimensions [11]. To begin, we considered their model for ideally conducting wires, as
denoted in Eq. (1.12). We considered an array of wires aligned with the z-axis with an
electric field parallel to these wires. With these conditions, Eq. (1.12) reduced to,

εr = 1− 2π

(ka)2 log( a2

4r0(a−r0))
, (5.1)

where εr is the relative effective permittivity, k is the wavenumber, a is the grid period,
and r0 is the wire radius. Note that k = 2π/λ where λ denotes wavelength. Using this
equation we were able to reproduce the solid lines plotted in Fig. 3 of Maslovski et al.’s
paper. To do this, we set r0/a = 0.01 and 0.1 in Eq. (5.1) and plotted εr as a function of
ka for both ratios. The resulting plots are displayed in Fig. 5.1.
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Figure 5.1: The effective permittivity of an array of ideally conducting wires as a function
of ka. The plot produced when r0/a = 0.01 is shown in red and the plot produced when
r0/a = 0.1 is shown in blue.
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5.2 Designing Cut Wire Arrays

5.2.1 Modelling Possible Array Dimensions

Now, using this model, we designed a model for our cut wire array. Based on the
SRRs and LGRs that we will be using, we have a predetermined grid period, a0, of
21.6 mm. Using this value our goal is to determine suitable radii, r, for our cut wires to
approximately satisfy the r0/a = 0.1 ratio. This ratio was chosen as using this ratio we
observed in Fig. 5.1 a larger effect on the permittivity. Using the selection of aluminum
rod sizes from the McMaster Carr website, aluminum rods with diameters of 3/16-inches
and 4.00 mm were chosen. This gives r0 values of 2.38 mm and 2.00 mm, respectively.
Next, in order to plot relative effective permittivity in terms of frequency by using of Eq.
(5.1), wavenumber k was represented in terms of frequency using k = 2πf /c. This gives
the following,

εr = 1− c2

2π(fa)2 log( a2

4r0(a−r0))
, (5.2)

where c is the speed of light in a vacuum. Eq. (5.2) was then plotted using r0 values of
2.38 mm and 2.00 mm, shown in cyan and magenta respectively. The resonant frequencies
of the SRRs and LGRs to be used alongside these cut wire arrays range from 0.6 to 1.2 GHz
so the horizontal axis was set to plot this frequency range.
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Figure 5.2: εr as a function of frequency. The plot produced for ideal conductors when
r0 = 2.38 mm is shown in cyan and when r0 = 2.00 mm is shown in magenta. The real
component of εr when losses are considered is plotted in blue (for r0 = 2.38 mm) and red
(for r0 = 2.00 mm).
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5.2. Designing Cut Wire Arrays

Equations (5.1) and (5.2) assume the cut wires used are ideally conducting and thus
experience no losses. Maslovski et al. also proposed a correction to this model for lossy
or loaded wires, which experience some surface impedance Zs [20]. This impedance is
given by Eq. (1.14) and the corrected permittivity is denoted by Eq. (1.15). Again, as
we considered an array with wires aligned with the z-axis with an electric field parallel to
these wires. Eq. (1.15) can be reduced to,

εr = 1− 2π

(ka)2 log( a2

4r0(a−r0))− jka
a
r0
Zs

η

. (5.3)

Substituting Eq. (1.14) into Eq. (5.3) we obtain a complex effective relative permittivity
which can be expressed as εr = ε′ − jε′′ where ε′, the real component of permittivity, is
given by,

ε′ =
(B + b)2 + b2 − 2π(B + b)

(B + b)2 + b2
, (5.4)

and ε′′, the imaginary component of permittivity, is given by,

ε′′ =
2πb

(B + b)2 + b2
. (5.5)

For both Eqs. (5.4) and (5.5),

b ≡ ka2

r0

√
ωε0
2σ

(5.6)

and,

B ≡ (ka)2 log

(
a2

4r0(a− r0)

)
. (5.7)

The real part of the permittivity, as denoted in Eq. (5.4), was plotted as a function of
frequency using r0 values of 2.38 mm and 2.00 mm. The produced functions are plotted in
blue and red on Fig. 5.2. This plot shows that when the real component of the conductor’s
losses is taken into account, the relative effective permittivity shifts very slightly upwards,
towards the horizontal axis. However, the effect of losses is nearly negligible for good
conductors.

The imaginary part of the permittivity was also plotted as a function of frequency using
r0 values of 2.38 mm and 2.00 mm. This plot is shown in Fig. 5.3. This figure shows that
ε′′ asymptotically approaches zero as frequency increases.
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Figure 5.3: The imaginary component of εr, ε
′′, plotted as a function of frequency.

5.2.2 Modelling Permittivity of Our Array

Due to supply availability, our actual cut wire arrays were composed of aluminum wires
of both 1/8-inch and 3/16-inch diameters. These result in radii of 1.59 mm and 2.38 mm.
These are very similar and identical to 2.00 mm and 2.38 mm and, as such, are expected
to yield similar results when Maslovski et al.’s models are plotted. To further explore
our exact array dimensions, εr was plotted as a function of frequency using the ideally
conducting wire model, denoted in Eq. (5.2). These plots are shown in Fig. 5.4. As
predicted by Fig. 5.2, over the range of 0.6 GHz to 1.2 GHz, εr is modelled to be negative
and increasing logarithmically as frequency increases.
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Figure 5.4: εr as a function of frequency modelled for ideal conductors.
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5.3 Composing Cut Wire Arrays

5.3.1 One-Loop-One-Gap Resonator Arrays

Using aluminum wires of both 1/8-inch and 3/16-inch diameter, cut wire arrays were
assembled. These arrays were then loaded into an LGR bore and their effect of the bores
permeability was analyzed. In order to create secure arrays of cut wires with consistent
dimensions, Teflon sheets were used. Teflon was used as it is expected to have no effect
on the magnetic properties of the array. To begin, we created a 1 × 1 × N array of cut
wires for measurements using the one-loop-one-gap resonator. This array consisted of
four cut wires secured between two Teflon sheets with 1/8-inch thickness. The holders
had approximate width and length of 16.4 mm and 85 mm, respectively. Similarly to the
SRR arrays previously described, a grid period of a ≈ 21.6 mm was used. This set-up is
depicted in Fig. 5.5.

(a) Schematic model of cut wire array. (b) N = 4 array loaded into
one-loop-one-gap LGR.

Figure 5.5: 1× 1×N array of cut wires with grid period a ≈ 21.6 mm

The counterbores in the a Teflon sheets had 1/16-inch depth and were created using
both 1/8-inch and 3/16-inch diameter end mills for their respective arrays. The cut wires
were cut to by a height of approximately 18.5 mm so as to fit tightly into the LGR bore
while in their holders. Additionally, Teflon rods of both 1/8-inch and 3/16-inch diameter
and a height of approximately 18.5 mm were also made. These were used to replicate
the geometry of our cut wire set-up while taking measurements with no cut wires. This
enabled us to accurately determine the effect of the addition of aluminum wires. These
Teflon rods were used as place holders for arrays of N = 1, 2, and 3.

5.3.2 Two-Loop-One-Gap Resonator Arrays

Similar cut wire arrays were constructed to be used for measurements with the two-loop-
one-gap resonator. However, this time 2×2×N arrays were made. Thus, N = 1, 2, 3 and 4
correspond to four, eight, twelve, and sixteen cut wires, respectively. The wires used had

28



5.4. Measuring |S11| of Cut Wire Arrays

the same dimensions as for the 2×2×N arrays. A side-view of the array is shown in Fig.
5.6(a) and the array loaded into the two-loop-one-gap LGR is depicted in Fig. 5.6(b).

(a) Schematic model of cut wire array. (b) N = 4 array loaded into two-loop-one-gap
LGR.

Figure 5.6: 2× 2×N array of cut wires with grid period a ≈ 21.6 mm

It is important to note that there are sixteen cut wires in total. Moreover, the bottom
at top Teflon sheets have 1/8-inch thickness and the middle sheet has 1/4-inch thickness
and the grid period of the cut wire array is a ≈ 21.6 mm. The holders had approximate
width and length of 39 mm and 85 mm, respectively.

5.4 Measuring |S11| of Cut Wire Arrays

5.4.1 One-loop-one-gap Loop Gap Resonator (LGR)

3/16-inch Diameter Aluminum Rods

In order to explore the permeability of cut wire arrays, we measured the reflection
coefficient of the signal, |S11|, for arrays of different numbers of cut wires. Again, the
coupling loop of the one-loop-one-gap resonator was oriented perpendicular to the bore
axis in order to acquire near-critical coupling and secured. We began by measuring the
reflection coefficient, |S11|, of the empty LGR. We then repeated this measurement for
arrays of four (N = 4), three (N = 3), two (N = 2), one (N = 1), and zero (N = 0)
aluminum cut wires of 3/16-inch diameter. The LGR loaded with four aluminum cut
wires is displayed in Fig. 5.5(b). As an aluminum cut wire was removed, a Teflon rod of
the same dimensions filled its place between the two Teflon sheets. For consistency, these
Teflon rods were placed closest to the coupling loop to keep the aluminum cut wires as far
as possible from the coupling loop. Thus, the N = 0 case describes a situation in which
four Teflon rods were placed between the Teflon sheets. The resulting |S11| curves were
converted to a linear scale using Eq. (2.1) and plotted as shown in Fig. 5.7(a).
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Figure 5.7: |S11| as a function of frequency measured for an empty bore and for a 1-D
array of N 3/16-inch diameter aluminum rods.

From Fig. 5.7(a) we can qualitatively conclude that the addition of cut wires to the
bore of the resonator has a very minimal and non-systematic effect on the measured |S11|
curves. Each resonance occurs at a frequency of approximately 0.92 GHz and the dips
have similar width and depth. This effect is further exemplified in Fig. 5.7(b) in which
only arrays of N = 0 and N = 4 are overlayed. This |S11| curves are nearly identical
despite the large difference in array composition. This was not the result we expected. As
we add aluminum cut wires to the bore, the open volume of the bore will decrease. Thus,
as the inductance of the LGR is proportional to the volume, we expected the inductance
of the LGR to decrease as arrays of cut wires are loaded into the resonator’s bore. This,
in turn, would be expected to increase the resonance frequency denoted by Eq. (1.21).
However, for the one-loop-one-gap resonator, we observed no systematic changes as the
bore of the LGR is filled with cut wires.

1/8-inch Diameter Aluminum Rods

These measurements were replicated with arrays N 1/8-inch aluminum cut wires. The
resulting reflection coefficients, |S11|, were plotted as a function of frequency and are
displayed in Fig. 5.8. Again, the addition of the aluminum cut wires had nearly no effect
on the produced |S11| curves.
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Figure 5.8: |S11| as a function of frequency measured for an empty bore and for a 1-D
array of N 1/8-inch diameter aluminum rods.

5.4.2 Two-loop-one-gap Loop Gap Resonator (LGR)

3/16-inch Diameter Aluminum Rods

This experimental procedure was then replicated using the two-loop-one-gap resonator.
Again, to begin, we oriented the coupling loop in order to critically couple the LGR with
the coupling loop. Once this orientation, in which the plane of the coupling loop was
nearly parallel with the bore’s axis, was found, the coupling loop was secured with a set
screw and arrays of 3/16-inch diameter aluminum rods were loaded into the bore of the
LGR. This time, however, we were working with 2× 2×N arrays of cut wires. The array
set-up displayed in Fig. 5.6 was used. This array was centered in the bore of the resonator
not containing the coupling loop. This experimental set-up is depicted for an N = 4 array
of cut wires in Fig. 5.6(b). Similarly to in the one-loop-one-gap case, when the number of
aluminum rods was reduced, they were removed from the side closest to the coupling loop
first and replaced with Teflon rods. The resulting linearized plots of |S11| as a function of
frequency for an empty resonator and for when the bore was filled with various arrays of
aluminum wires of 3/16-inch diameter are displayed in Fig. 5.9.

Unlike with the one-loop-one-gap resonator, these measurements show that the reso-
nance frequency decreases as N increases. This does not agree with what is expected
from Eq. (1.21). To further explore how the resonance peaks change with arrays of cut
wires, we plotted |S11| as a function of (f/f0)− 1 as shown in Fig. 5.10 . While the plots
vary slightly in depth and width, there are no observed systematic changes as N changes.
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Figure 5.9: |S11| as a function of frequency for 2× 2×N arrays of N 3/16-inch diameter
aluminum rods.
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Figure 5.10: |S11| as a function as a function of (f/f0) − 1 for 2 × 2 × N arrays of N
3/16-inch diameter aluminum rods.

1/8-inch Diameter Aluminum Rods

Lastly, this procedure was reproduced using 1/8-inch diameter aluminum cut wires.
Similarly to what we observed with the 3/16-inch diameter rods, the resonance frequency
decreases as N increases. This result is displayed in Fig. 5.11. When the reflection
coefficient of the signal, |S11|, is plotted as a function of (f/f0)− 1, as shown in Fig. 5.12,
no systematic changes are observed as N is varied.
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Figure 5.11: |S11| as a function of frequency for 2× 2×N arrays of N 1/8-inch diameter
aluminum rods.
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Figure 5.12: |S11| as a function as a function of (f/f0) − 1 for 2 × 2 × N arrays of N
1/8-inch diameter aluminum rods.

Overall, as we add cut wires to the bore of the LGR, we qualitatively observed very
minimal changes in the produced |S11| reflections. No additional resonance peaks are
observed and the width and depth of the LGR’s resonance is nearly independent of cut
wire array size. This suggests that, as |S11| depends on permeability of the material
inside of the LGR’s bore, the addition of cut wires has a very minimal effect on the bore’s
permeability.
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Chapter 6

Modelling the Effective Impedance
of a Partially Filled LGR

In Chapter 4.2, we found the effective impedance of the LGR with a completely filled
bore, Zf , and represented it in terms of its real, Eq. (4.10), and imaginary, Eq. (4.11),
components as Zf = Rf + jXf . Now, we will explore how this effective impedance varies
when the resonator bore is only partially filled with the magnetic material. First, we will
find the inductance of the empty-bore resonator. To do this, we must define our resonator
length as s and its cross-sectional area as A. Then, using the formula for inductance of a
solenoid, L = µ0N2A

s
, substituting the number of turns, N = 1, we obtain the inductance

of the empty-bore resonator:

L0 =
µ0A

s
. (6.1)

We will now suppose the LGR has been partially filled with the magnetic material with
relative permeability µr = µ′ − jµ′′. This material has length x < s and a filling factor,
η, which is defined as η = x/s. In order to find the inductance of the empty portion of
this LGR, Le, we must redefine the length as s − x. This gives us the inductance of the
empty portion of the bore to be

Le =
µ0A

s− x
. (6.2)

To simplify this equation, we can factor out an s in the denominator and then substitute
in Eq. (6.1) to obtain

Le =
L0

1− η
. (6.3)

We can do a similar analysis for the inductance of the filled portion of the bore. However,
this time we must change the length to x as well as include the relative permeability of
the magnetic material filling the bore. This gives us the inductance of the filled portion
of the bore,

Lf =
µ0µrA

x
. (6.4)

Similarly, in order to put this equation in terms of L0 we can substitute in x = ηs and
then define µ0A/s as L0 using Eq. (6.1). This gives us the desired result for the impedance
of the filled portion of the bore,

Lf =
µrL0

η
. (6.5)
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Now, we will argue that the effective inductance, L, of the partially-filled LGR can be
determined by the parallel combination of Le and L0. We can imagine that if there was a
current applied through a coupling loop on one side of the bore, a magnetic field, ~B, would
permeate the entire bore of the LGR. Thus, the magnetic flux, Φ would be equal through
all cross-sections of the LGR – independent of whether there was magnetic material
filling that area. This means that the induced emf, ε, is equal for the region containing
the magnetic material and for the empty region as ε = −dΦ/dt and the magnetic flux
through the entire resonator bore is unchanged. Thus, as the induced emf is the same
through each region, we can combine Le and L0 as though they were in parallel in a simple
circuit. This set-up is analogous as the voltage change over two inductors in parallel is
equal, similarly to the induced emf through each region of the LGR. Using this model we
obtain,

1

L
=

1

Le

+
1

Lf

. (6.6)

From here, we can obtain a common denominator, take the reciprocal of each side, and
substitute in Eqs. (6.3) and (6.5) to obtain

L =
µrL

2
0

η(1− η)
× η(1− η)

L0η + µrL0(1− η)
. (6.7)

We can now cancel terms and substitute in µr = µ′ − jµ′′. This gives us,

L = L0
(µ′ − jµ′′)

(µ′ − jµ′′)− η(µ′ − jµ′′) + η
. (6.8)

Next, we can collect like terms and multiply by the complex conjugate of the denominator
in order to remove imaginary terms from the denominator. This yields,

L = L0
(µ′ − jµ′′)

(µ′(1− η) + η)− jµ′′(1− η)
×(µ′(1− η) + η) + jµ′′(1− η)

(µ′(1− η) + η) + jµ′′(1− η)
. (6.9)

From here, the denominator and numerator are multiplied out and the imaginary and real
components from the numerator are separated in order to write the effective inductance
of the partially filled LGR as:

L = L0

(
|µr|2(1− η) + µ′η

[η + µ′(1− η)]2 + [µ′′(1− η)]2
− j µ′′η

[η + µ′(1− η)]2 + [µ′′(1− η)]2

)
, (6.10)

where |µr|2 = (µ′)2 + (µ′′)2. Equation (6.10) can be expressed as L = `L0 where
` = `′ - j`′′. Here, the real component of `, `′, is denoted,

`′ =
|µr|2(1− η) + µ′η

[η + µ′(1− η)]2 + [µ′′(1− η)]2
, (6.11)
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and its imaginary component, `′′ is denoted,

`′′ =
µ′′η

[η + µ′(1− η)]2 + [µ′′(1− η)]2
. (6.12)

Before moving on, we will show that the results we obtained for the effective inductance
of the partially filled LGR bore, L, make sense for when η = 0, η = 1, and µr = 1. First,
when η = 0 we obtain L = L0. This makes sense as if the filling factor is zero, the LGR is
empty and thus should have the inductance given for an empty bore. Next, when η = 1
we obtain L = L0(µ

′ − jµ′′). This denotes the inductance of the LGR when its bore is
completely filled with a magnetic material of relative permeability µr = µ′ − jµ′′. Again,
this makes sense, as when the filling factor is one, the LGR bore is completely filled thus
has the inductance expected for an LGR with a filled bore. Lastly, when µr = 1, L = L0.
This makes sense as µr = µ

µ0
. So, if µr = 1, the permeability of the magnetic material, µ

is equal to the permeability of free space, µ0. Thus, it follows that the inductance would
be equal to the inductance of an LGR with an empty bore.

Now, we can modify Eqs. (4.10) and (4.11) so they represent the effective impedance of
an LGR with a partially filled bore. Previously, as the bore was completely filled with the
magnetic material, its inductance was given by L = (µ′−jµ′′)L0. Now, we have determine
the partially filled bore’s inductance is given as L = (`′ − j`′′)L0 where `′ is denoted in
Eq. (6.11) and `′′ is given by Eq. (6.12). This is the only change we made to this model
to represent a partially filled bore. Thus, Eqs. (4.10) and (4.11) can easily be modified to
represent an LGR with its bore partially filled with a magnetic material by substituting
µ′ with `′ and µ′′ with `′′. This results in the effective impedance of the partially filled
bore, Z, to be given by Z = R+ jX, where the real component of the effective impedance
is,

R =
ωL1(ω/ω0)k

2[ `
′

Q0

√
ω/ω0 + `′′(ω0/ω)]

[ 1
Q0

√
ω/ω0 + `′′(ω/ω0)]2 + [`′(ω/ω0)− (ω0/ω)]2

, (6.13)

and the imaginary component is,

X = ωL1

(
1−

(ω/ω0)k
2[`′′[ 1

Q0

√
ω/ω0 + `′′(ω/ω0)] + `′[`′(ω/ω0)− (ω0/ω)]]

[ 1
Q0

√
ω/ω0 + `′′(ω/ω0)]2 + [`′(ω/ω0)− (ω0/ω)]2

)
. (6.14)
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Chapter 7

Permeability of NIM Arrays

7.1 Composing NIM Arrays

In this section, we will explore the permeability of arrays of both SRRs and aluminum
cut wires. In order to do this, the array configurations in Figs. 5.5 and 5.6 were modified
to include SRRs. The 1× 1×N array composition is shown on the left of Fig. 7.1 and an
SRR is shown on the right. Again, Teflon sheets of 1/8-inch thickness were used to secure

Figure 7.1: 1× 1×N array of SRRs and cut wires with grid period a ≈ 21.6 mm beside
single SRR.

the wires in the array. To ensure a distance of a/2 between the center of the cut wire
and the SRR, the cut wire indents could not be centred on the Teflon holders. We had to
account for the fact that the SRR was attached to a substrate with a total thickness of
1.54 mm. Thus, to create this consistent a/2 distance, the Teflon holders had length of
approximately 10.4 mm from one edge to the centre of the cut wire indent, and 8.2 mm
from here to the opposite edge. They had an approximate width of 16.5 mm. In Fig. 7.1,
the black side depicts where the SRR is secured on its green substrate.

A similar modification, which is shown in Fig. 7.2, was used to modify the 2 × 2 × N
arrays of cut wires to also incorporate SRRs. Comparably to the arrays of solely cut
wires, the top Teflon sheets used to secure the array in place had 1/8-inch thickness while
the centre sheet had 1/4-inch thickness. The 1/16-inch counterbores used to hold the cut
wires were also slightly off-centred as for the one dimensional arrays to ensure a consistent
distance of a/2 between the cut wires and the SRRs. However, the width of these Teflon
sheets was approximately 39 mm. The arrays displayed in Fig. 7.1 and 7.2 are shown
loaded into the bores of their respective LGR in Fig. 7.3(a) and (b), respectively.

37



7.2. Measuring |S11| of NIM Arrays

Figure 7.2: 2× 2×N array of SRRs and cut wires with grid period a ≈ 21.6 mm beside
2× 2 plane of SRRs.

(a) 1×1×N array in one-loop-one-gap
LGR

(b) 2× 2×N array in two-loop-one-gap LGR

Figure 7.3: Experimental set-up fpr N = 4 arrays of SRRs and aluminum cut wires loaded
into LGRs.

7.2 Measuring |S11| of NIM Arrays

7.2.1 One-loop-one-gap

To begin, we explored the 1×1×N array using the one-loop-one-gap LGR. As previously
described, the coupling loop was set perpendicular to the bore axis to acquire near-critical
coupling and secured. Then, a single SRR and a single Teflon rod (3/16-inch diameter)
were loaded into the bore as far from the coupling loop as possible. In addition, the SRR
was loaded in first followed by the Teflon rod to reduce the end effects on the SRR, which
can occur as the induced magnetic field loops around the edges and into the bore of the
LGR. This process was repeated using a single SRR and a single aluminum rod (3/16-
inch diameter) and subsequently carried out for arrays of N = 2, 3, and 4 SRRs and
both aluminum and Teflon rods of both 1/8-inch and 3/16-inch diameter. The loaded
LGR used for these measurements is pictured in Fig. 7.3(a). The plots of |S11| as a
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7.2. Measuring |S11| of NIM Arrays

function of frequency, shown in Appendix A, show little variation when aluminum rods
are used instead of Teflon rods. The only minimal change observed was, as the volume
of aluminum of the bore increased, the resonance peaks shifted slightly closer together.
Moreover, the resonance curves show similar qualitative features to those displayed in Fig.
4.8, in which the reflection coefficient SRR arrays was measured. The most significant
shift was observed between the N = 4 arrays of 3/16-inch diameter wires, as shown in
Fig. 7.4. However, the variation in |S11| curve is still very minimal. This suggests that
the aluminum rods have an insignificant effect on the permeability of the NIM.
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Figure 7.4: |S11| as a function of frequency when four SRRs and four 3/16-inch diameter
aluminum cut wires (shown in red) or four 3/16-inch diameter Teflon rods (shown in blue)
are loaded in the bore of the LGR.

7.2.2 Two-loop-one-gap

Similar measurements were taken using the 2×2×N NIM array using the two-loop-one
gap LGR using the experimental set-up depicted in Fig. 7.3(b). Again, we loaded in the
NIM in the bore opposite the coupling loop and did not place the SRRs at the edge of
the bore to reduce end effects. The obtained |S11| curves are displayed in Appendix B.
Once again, the addition of cut wires had a very minimal effect on the produced resonance
peaks. The only minimal change observed was when aluminum cut wires were added to
the array, the resonant frequencies of |S11| were slightly lower. This effect becomes slightly
more prominent as the volume of aluminum loaded into the bore of the LGR increases
and is most pronounced when comparing the N = 4 arrays of 3/16-inch diameter wires,
as shown in Fig. 7.5.

This result is consistent with what we observed when we filled the bore of the two-loop-
one-gap resonator with only aluminum cut wires (no SRRs) and compared the results to
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Figure 7.5: |S11| as a function of frequency when sixteen SRRs and sixteen 3/16-inch
diameter aluminum cut wires (shown in red) or sixteen 3/16-inch diameter Teflon rods
(shown in blue) are loaded in the bore of the LGR.

when the bore was filled with Teflon rods. For these measurements, we observed that
as the volume of aluminum in the bore increased, the resonance frequency of the single
resonance dip decreased. However, despite the small decrease in resonance frequency
observed as the volume of aluminum in the bore increases, the shape and depth of the
resonance curves do not change with the addition of the aluminum rods. So, in conclusion,
similarly to for the 1× 1×N NIM arrays, the addition of cut wires has little to no effect
on the produced resonance curves and thus an insignificant effect on the permeability of
the NIM.

7.3 Determining the Permeability of NIM Arrays

In order to determine the permeability of the 1-D array of SRRs and cut wires, we can
fit the |S11| curves using Pendry et al.’s model [1] which we stated in Eqs. (4.1) and (4.2).
However, this model must be modified to fit data with three resonance peaks. Thus,
Eqs. (4.1) and (4.2) will be extended to Eqs. (7.1) and (7.2), respectively. It has been
shown that an NIM with an |S11| curve with three defined resonant dips will observe a
permeability with two resonances [6].

µ′ = 1− [1− (fs,1/fp,1)
2][1− (fs,1/f)2]

[1− (fs,1/f)2]2 + [γ1/(2πf)]2
− [1− (fs,2/fp,2)

2][1− (fs,2/f)2]

[1− (fs,2/f)2]2 + [γ2/(2πf)]2
(7.1)

µ′′ =
[γ1/(2πf)][1− (fs,1/fp,1)

2]

[1− (fs,1/f)2]2 + [γ1/(2πf)]2
+

[γ2/(2πf)][1− (fs,2/fp,2)
2]

[1− (fs,2/f)2]2 + [γ2/(2πf)]2
(7.2)
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By combining these equations with the model we have for the effective impedance of LGR
partially filled with magnetic material, as denoted in Eqs. (6.11) to (6.14), we are able
to fit the data we have collected for a partially filled resonator using the MATLAB code
shown in Appendix C. From this fit we will extract parameters for resonant frequency, fs,
magnetic plasma frequency, fp, and γs/(2π), for both resonances expected for the NIM
permeability. Using the fit values found in Table 2 in “The Complex Permeability of Split-
Ring Resonator Arrays Measured at Microwave Frequencies” by S.L. Madsen and J.S.
Bobowski [6], we set the following initial parameters: fp,1 = 0.930 GHz, fs,1 = 0.850 GHz,
γ = γs,1

√
f/fs,1, γs,1/(2π) = 33 MHz, fp,2 = 1.031 GHz, fs,2 = 1.015 GHz, γ = γs,2

√
f/fs,2,

and γs,2/(2π) = 11 MHz. These parameters provide only a starting point for the fit and
will be modified for our data set. Additionally, k = 0.3ksc where ksc is initially set to 1 but
will be specified to each data set as it depends on the specific coupling loop orientation.
Additionally, L1=42.54 nH L1,sc where L1,sc is initially set to 1.75. In our first fit, we
will determine ksc and L1,sc which will then be used for all subsequent fits. Now, we can
plot |S11| as a function of frequency for the data we have collected and fit it to |S11| as
determined by the following model,

|S11| =
√

[(|Z|2/Z2
0)− 1]2 + [2(X/Z0)]2

[(|Z|2/Z2
0) + 1] + 2(R/Z0)

, (7.3)

where |Z|2 = R2 +X2 and R and X are given by Eqs. (6.13) and (6.14), respectively. The
following values are assumed Z0 = 50Ω, f0 = 857.7 MHz, and Q0 = 49.08. The first data
set we will fit was collected while an N = 4 array of SRRs and 3/16-inch Teflon rods was
loaded into the LGR bore. This data set and fit is shown in Fig. 7.6(a).
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Figure 7.6: |S11| as a function of frequency measured for one-loop-one-gap resonator filled
with four SRRs and four 3/16-inch diameter rods and fit using Pendry et al.’s model
modified for a partially filled LGR.

From here, we determined and set ksc to 1.54 and L1,sc to 1.1339. The obtained parameters
for fp,1, fs,1, γs,1/(2π), fp,2, fs,2, and γs,2/(2π) are presented in Table 7.1. The same fit was
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7.3. Determining the Permeability of NIM Arrays

Table 7.1: Best fit parameters for one-loop-one-gap resonator filled with four SRRs and
four 3/16-inch diameter Teflon rods.

fs,1 (GHz) fp,1 (GHz) γs,1/(2π) (MHz) fs,2 (GHz) fp,2 (GHz) γs,2/(2π) (MHz)

0.8445±0.0001 0.9272±0.0003 29.0±0.2 1.0211±0.0003 1.0325±0.0003 24.0±0.5

then repeated for the |S11| curve measured from the N = 4 array of SRRs and 3/16-inch
aluminum cut wires. For this fit, we fixed the values of ksc and L1,sc to be 1.54 and 1.1339,
respectively. The measured |S11| curve and obtained fit for this NIM are presented in Fig.
7.6(b). Additionally, the obtained best fit parameters are shown in Table 7.2.

Table 7.2: Best fit parameters for one-loop-one-gap resonator filled with four SRRs and
four 3/16-inch diameter aluminum cut wires.

fs,1 (GHz) fp,1 (GHz) γs,1/(2π) (MHz) fs,2 (GHz) fp,2 (GHz) γs,2/(2π) (MHz)

0.8520±0.0002 0.9298±0.0003 30.2±0.3 1.0254±0.0003 1.0365±0.0004 23.2±0.5

From the parameters obtained from the fits, we are able to find the relative effective
permeability of our array by plotting Eqs. (7.1) and (7.2). The resulting plots of both
µ′, the permeability’s real component, and µ′′, the permeability’s imaginary component,
are shown for both N = 4 arrays of Teflon rods with SRRs and aluminum cut wires with
SRRs in Fig. 7.7. By analyzing Fig. 7.7, we can see that the addition of aluminum (as
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Figure 7.7: The relative effective permeability for one-dimensional arrays of four Teflon
rods and four SRRs compared with four aluminum cut wires and four SRRs.
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7.3. Determining the Permeability of NIM Arrays

shown by the solid line plots) had little effect on the permeability of arrays of just SRRs
(as shown by the dashed line plots). In fact, the permeability of our NIM is almost entirely
due to SRRs and that the cut wires provide only small perturbation, which is essentially
negligible. Permeability defines the magnetization a given material gains from a magnetic
field [5]. Thus, as cut wire arrays are only expected to produce an electric response, and
thus modify the permittivity, it was expected their addition to the SRR array would have
a minimal effect on its permeability. Another important result from Fig. 7.7 is that µ′′

is found to be always positive. This implies power loss, rather than the power gain some
previous research has predicted, in the NIM [14].
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Chapter 8

Further Investigations

8.1 Applying Current to Cut Wire Arrays

Throughout all of of these measurements, the LGR’s bore has only been exposed to the
uniform magnetic field induced from the AC signal supplied to the coupling loop while
the electric field has remained at approximately zero. An area for further research is to
investigate the effect of supplying the cut wires within the LGR’s bore with current. This,
in turn, is expected to vary the LGR bore’s magnetic field. In principle, this allows us to
artificially mimic the effect of an electric field within the cut wires, while the LGR’s bore
still experiences a purely magnetic field. For the preliminary steps of this investigation,
we have designed the experimental set-up displayed in Fig. 8.1.

Figure 8.1: Initial experimental set-up for applying current to cut wire arrays. The
following equipment is labelled: 1 is an EM shield containing the LGR; 2,6, and 10 are
circulators; 3 and 7 are power splitters, 4 is an attenuator; 5 is a VNA; 8 and 9 are phase
shifters.

Figure 8.1 shows an EM shield (1) which contains a one-loop-one-gap resonator. In
order to apply current to the cut wires within the resonator’s bore, the wires were cut
to be long enough to be accessible from outside of the EM shield. To secure these wires,
three holes, one for each wire, were drilled through both sides of the LGR and EM shield.
Then, we secured copper electrodes to each end of the wires using a clamp. In order to
avoid direct contact with the aluminum LGR, we wrapped masking tape around each cut
wire where it passed through the LGR’s shell. The EM shield was used to prevent the
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LGR from interacting with the outer portion of the cut wires and also limit other radiative
losses due to the laboratory surroundings [21]. Again, the VNA (5) was used as a power
source. The transmitting port of the VNA supplied an AC current to a power splitter
(3), which directed half of the signal to a circulator (2) and the other half through an
attenuator (4). The signal supplied to port 1 of the circulator (2) was transmitted to the
coupling loop of the LGR via port 2. Then, the signal reflected back to port 2 was passed
to the receiving port of the VNA via port 3 of the circulator. The other half of the signal
travelled through the attenuator (4) and was supplied to a phase shifter (8). From here,
the signal was split again at the second power splitter (6). Then half of the remaining
signal was directed through a circulator (6) and set to power the copper electrode on
the right hand side of the EM shield. The other half of the signal was directed through
another phase shifter (9) and circulator (10) before it powered the left copper electrode.

The first phase shifter (8) functioned to adjust the phase of the current in the wires
relative to the oscillating magnetic field in the bore of the resonator. The second phase
shifter (9), was used to set the desired phase of the signals supplied to the copper elec-
trodes. The signal supplied to the left electrode was set to be 180◦s out of phase with the
right electrodes signal. Thus, while one AC signal was at its maximum, the other was at
its minimum, and they crossed zero simultaneously. This experimental set-up allowed us
to control the phase of the signals being delivered to the copper electrodes and thus to
the cut wire array.

By supplying a current through the cut wires, a magnetic field will be induced which
circles the wires. This is expected to result in a non-uniform magnetic field within the
LGR bore which will allow us to further explore the permeability of the cut wire array.
Ultimately, we predict that we may observe a negative imaginary component of the effec-
tive relative permeability, µ′′, for specific phases of the current in the cut wires relative
to the oscillating magnetic field.

8.2 Incorporating Other Metamaterials

Another aspect a future project could investigate is the incorporation of other metama-
terials. Specifically, we could make use of complementary split-ring resonators (CSRRs),
the dual of the SRR [22]. This structure was originally proposed in 2004 by Falcone et
al. and was created to provide the negative permittivity component of an NIM array.
These CSRRs essentially act as a single electric dipole with negative polarizability. They
composed their CSRRs by etching out SRR like dimensions into a planar circuit board
and a thin metallic plate [23]. CSRRs are quite compact and thus may be easier to work
with than cut wires for higher dimension NIM arrays.
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Chapter 9

Conclusion

The complex permeability, µr = µ′ − jµ′′, of metamaterials was characterized using
LGRs. The metamaterials we worked with included SRR arrays, which have a negative
permeability over a small range of microwave frequencies just above their resonant fre-
quency, as well as cut wire arrays, which are designed to have a negative permittivity
at microwave frequencies. To characterize these arrays, the experimental procedure pre-
sented by S. L. Madsen and J. S. Bobowski to measure the permeability of SRR arrays
was adapted to incorporate arrays of cut wires as well as arrays of SRRs and cut wires
[6]. The motivation behind this project was to explore the effect the addition of cut wires
has to the permeability of an array of SRRs. Previous investigations, including numerical
simulations and experimental measurements, have suggested that the imaginary compo-
nent of the permeability is negative for cut wire arrays [6] [7]. This is an unphysical result
as it describes power gain in the metamaterial.

To determine the permeability of these metamaterials, LGRs were used. An SMA cable
connected the LGR’s coupling loop to a VNA. This allowed us to supply a signal to and
extract the reflection coefficient, |S11|, from the LGR’s bore. In order to model |S11|, we
represented the LGR as an LRC circuit. From here, Kirchhoff’s voltage law was applied to
find the effective impedance of the LGR which was used to model the expected |S11| curve
[5] [19]. However, as the LGR bore was loaded with magnetic material, the expected |S11|
curve varied as the bore’s inductance varied. To account for this, we used Pendry et al.’s
model for the permeability of SRR arrays which accounts for the frequency dependence
of permeability [1].

Initially, we measured the |S11| curves for arrays of aluminum cut wires. Overall, we
qualitatively observed minimal and non-systematic changes in the produced |S11| reflec-
tions for arrays comprised of various numbers of cut wires. Thus, as |S11| depends on the
permeability of the material loaded inside the LGR’s bore, the addition of cut wires had
a very small effect on the bore’s permeability. Lastly, we measured |S11| for arrays con-
taining both SRRs and cut wires. Using the model we derived for |S11|, we extracted the
resonant frequency, magnetic plasma frequency, and damping constant for arrays of SRRs
and arrays of both SRRs and cut wires. From these parameters, we plotted the relative
effective permeability of the arrays and found that the addition of aluminum cut wires
had little effect on the permeability of arrays of solely SRRs. In fact, the permeability if
the metamaterial was almost entirely due to SRRs. This was anticipated as the cut wires
are expected to only provide an electric response. Moreover, the imaginary component,
µ′′, of the permeability of the array was found to be positive over the entire frequency
range which is expected for power dissipation in the metamaterial.
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Appendix A

|S11| Measurements of 1× 1×N NIM
Arrays

Appendix A contains the remaining experimental |S11| curves plotted as a function of
frequency for 1× 1×N arrays of SRRs and 3/16-inch or 1/8-inch aluminum cut wires or
Teflon rods. Measurements were taken using the one-loop-one-gap resonator.

0.7 0.8 0.9 1 1.1 1.2 1.3

Frequency (GHz)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|S
1

1
|

Aluminum
Teflon

Figure A.1: |S11| as a function of frequency when a single SRR and one 3/16-inch diameter
aluminum cut wire (shown in red) or one 3/16-inch diameter Teflon rod (shown in blue)
are loaded in the bore of the LGR.
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Figure A.2: |S11| as a function of frequency when a single SRR and one 1/8-inch diameter
aluminum cut wire (shown in magenta) or one 1/8-inch diameter Teflon rod (shown in
black) are loaded in the bore of the LGR.
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Figure A.3: |S11| as a function of frequency when two SRRs and two 3/16-inch diameter
aluminum cut wires (shown in red) or two 3/16-inch diameter Teflon rods (shown in blue)
are loaded in the bore of the LGR.
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Figure A.4: |S11| as a function of frequency when two SRRs and two 1/8-inch diameter
aluminum cut wires (shown in magenta) or two 1/8-inch diameter Teflon rods (shown in
black) are loaded in the bore of the LGR.
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Figure A.5: |S11| as a function of frequency when three SRRs and three 3/16-inch diameter
aluminum cut wires (shown in red) or two 3/16-inch diameter Teflon rods (shown in blue)
are loaded in the bore of the LGR.
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Figure A.6: |S11| as a function of frequency when three SRRs and three 1/8-inch diameter
aluminum cut wires (shown in magenta) or three 1/8-inch diameter Teflon rods (shown
in black) are loaded in the bore of the LGR.
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Figure A.7: |S11| as a function of frequency when four SRRs and four 1/8-inch diameter
aluminum cut wires (shown in magenta) or four 1/8-inch diameter Teflon rods (shown in
black) are loaded in the bore of the LGR.
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Appendix B

|S11| Measurements of 2× 2×N NIM
Arrays

Appendix B contains the remaining experimental |S11| curves plotted as a function of
frequency for 2× 2×N arrays of SRRs and 3/16-inch or 1/8-inch aluminum cut wires or
Teflon rods. Measurements were taken using the two-loop-one-gap resonator.
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Figure B.1: |S11| as a function of frequency when four SRRs and four 1/8-inch diameter
aluminum cut wires (shown in magenta) or four 1/8-inch diameter Teflon rods (shown in
black) are loaded in the bore of the LGR.
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Figure B.2: |S11| as a function of frequency when a four SRR and four 1/8-inch diameter
aluminum cut wires (shown in magenta) or four 1/8-inch diameter Teflon rods (shown in
black) are loaded in the bore of the LGR.
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Figure B.3: |S11| as a function of frequency when eight SRRs and eight 3/16-inch diameter
aluminum cut wires (shown in red) or eight 3/16-inch diameter Teflon rods (shown in blue)
are loaded in the bore of the LGR.

54



Appendix B. |S11| Measurements of 2× 2×N NIM Arrays

0.6 0.7 0.8 0.9 1 1.1 1.2

Frequency (GHz)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|S
1

1
|

Aluminum
Teflon

Figure B.4: |S11| as a function of frequency when eight SRRs and eight 1/8-inch diameter
aluminum cut wires (shown in magenta) or eight 1/8-inch diameter Teflon rods (shown
in black) are loaded in the bore of the LGR.

0.6 0.7 0.8 0.9 1 1.1 1.2

Frequency (GHz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|S
1

1
|

Aluminum
Teflon

Figure B.5: |S11| as a function of frequency when twelve SRRs and twelve 3/16-inch
diameter aluminum cut wires (shown in red) or twelve 3/16-inch diameter Teflon rods
(shown in blue) are loaded in the bore of the LGR.
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Figure B.6: |S11| as a function of frequency when twelve SRRs and twelve 1/8-inch di-
ameter aluminum cut wires (shown in magenta) or twelve 1/8-inch diameter Teflon rods
(shown in black) are loaded in the bore of the LGR.
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Figure B.7: |S11| as a function of frequency when sixteen SRRs and sixteen 1/8-inch
diameter aluminum cut wires (shown in magenta) or sixteen 1/8-inch diameter Teflon
rods (shown in black) are loaded in the bore of the LGR.
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Appendix C

|S11| MATLAB Fit for Arrays of
NIMs

Appendix C contains the MATLAB code used to fit the |S11| curves measured from a one-
loop-one-gap LGR partially filled with magnetic material. This fit makes use of Pendry
et al.’s model for SRR permeability, as given by Eqs. (7.1) and (7.2), as well as the model
derived for effective impedance of a partially filled bore, as given by Eqs. (6.11) to (6.14).
These equations are used in conjunction with Eq. (4.12) to fit the experimentally mea-
sured |S11| curves. This specific fit was done for an N = 4 1-D array of 3/16-inch diameter
aluminum cut wires and SRRs.

1 % Ava Corne l l
2 % February 15 , 2021
3 % Modif ied from :
4 % Jake Bobowski
5 % January 12 , 2021
6 % Try en t e r i ng the f i t f unc t i on f o r a LGR with i t s bore
7 % p a r t i a l l y loaded with a s i n g l e SRR and cut wire .
8 c l e a r v a r s ;
9 format longE ;

10

11 % Fir s t , en te r the r e a l and imaginary par t s o f the r e l a t i v e
pe rmeab i l i t y .

12 % Use the model proposed by Pendry . However , i t i s p o s s i b l e
13 % to a l s o use the Lorenzt ian model . Note a l s o that one can sum

c r e a t e a
14 % s u p e r p o s i t i o n o f the se r e l a t i v e p e r m e a b i l i t i e s to caputre

a d d i t i o n a l
15 % f e a t u r e s pre sent in the data . This s u p e r p o s i t i o n should s t i l l

obey the
16 % Kramers−Kronig r e l a t i o n between the r e a l and imaginary par t s .
17

18 % Star t w i l l a range o f f r e q u e n c i e s
19 f s t a r t = 700 e6 ; % Hz
20 f s t o p = 1300 e6 ; % Hz
21 f = l i n s p a c e ( f s t a r t , f s top , 5000) ;
22
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23 % Enter some parameters f o r Pendry ’ s pe rmeab i l i t y model . Values
from Table 2 o f ”The

24 % Complex Permeab i l i ty o f Sp l i t −Ring Resonator Arrays Measured
at Microwave Frequenc ie s ” by Madsen and Bobowski .

25 f s 1 = 850 e6 ; % Hz
26 fp1 = 930 e6 ; % Hz
27 gS1 = 33∗1 e6 ; % Hz
28 g1 = gS1 ∗( f / f s 1 ) . ˆ ( 0 . 5 ) ;
29 f s 2 = 1015 e6 ; % Hz
30 fp2 = 1031 e6 ; % Hz
31 gS2 = 11∗1 e6 ; % Hz
32 g2 = gS2 ∗( f / f s 2 ) . ˆ ( 0 . 5 ) ;
33 mu1 = 1 − (1 − ( f s 1 / fp1 ) ˆ2) ∗(1 − ( f s 1 . / f ) . ˆ 2 ) . / ( ( 1 − ( f s 1 . / f )

. ˆ 2 ) . ˆ2 + ( g1 . / f ) . ˆ 2 )− (1 − ( f s 2 / fp2 ) ˆ2) ∗(1 − ( f s 2 . / f ) . ˆ 2 )

. / ( ( 1 − ( f s 2 . / f ) . ˆ 2 ) . ˆ2 + ( g2 . / f ) . ˆ 2 ) ;
34 mu2 = ( g1 . / f ) ∗(1 − ( f s 1 / fp1 ) ˆ2) . / ( ( 1 − ( f s 1 . / f ) . ˆ 2 ) . ˆ2 + ( g2 . / f )

. ˆ 2 ) +(g2 . / f ) ∗(1 − ( f s 2 / fp2 ) ˆ2) . / ( ( 1 − ( f s 2 . / f ) . ˆ 2 ) . ˆ2 + ( g2 . /
f ) . ˆ 2 ) ;

35

36 % Plot the r e l a t i v e pe rmeab i l i t y components
37 %plo t ( f , mu1 , ’ r ’ ) ;
38 %hold on ;
39 %plo t ( f , mu2 , ’b ’ ) ;
40 %hold o f f ;
41 %f i g u r e ;
42

43 % Now ente r the s c a l e d inductance (\ e l l ) o f the p a r t i a l l y − f i l l e d
LGR bore .

44 % These e x p r e s s i o n s should correspond Eqs . ( 6 . 1 1 ) and ( 6 . 1 2 ) .
45 N = 4 ;
46 spacer = 2 0 . 3 2 ;
47 t h i c k n e s s = 1 . 5 4 ;
48 LGRlength = 1 1 2 . 0 0 ;
49 x = N∗( spacer + t h i c k n e s s ) /( LGRlength ) ; % x i s the f i l l i n g

f a c t o r
50 murSq = mu1.ˆ2 + mu2 . ˆ 2 ;
51 l 1 = (mu1∗x + murSq∗(1 − x ) ) . / ( ( x + mu1∗(1 − x ) ) . ˆ2 + mu2.ˆ2∗ ( 1

− x ) ˆ2) ;
52 l 2 = mu2∗x . / ( ( x + mu1∗(1 − x ) ) . ˆ2 + mu2.ˆ2∗ ( 1 − x ) ˆ2) ;
53

54 % Plot the s c a l e d inductance components
55 %f i g u r e ;
56 %plo t ( f , l1 , ’ r ’ ) ;
57 %hold on ;
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58 %plo t ( f , l2 , ’b ’ ) ;
59 %plo t ( f , lmag , ’ g ’ ) ;
60 %hold o f f ;
61

62 % OK, now ente r the e x p r e s s i o n s needed to cons t ruc t the
impedance o f the

63 % coupled LGR with i t s bore p a r t i a l l y −loaded with a SRR/ cut wire
64 % array .
65 f 0 = 857 .7 e6 ; % Hz
66 Q0 = 4 9 . 0 8 ;
67

68 % Here , then , i s the impedance o f an i n d u c t i v e l y couple two−loop
, one−gap

69 % LGR with one o f i t s bores p a r t i a l l y loaded with a SRR array .
These

70 % e x p r e s s i o n s should correspond to Eqs . ( 6 . 1 3 ) and ( 6 . 1 4 ) .
71 L1 = 42.54 e −9; % Henr ies
72 k = 0 . 3 ;
73 R1 = (2∗ pi ∗ f ∗L1) . ∗ ( f / f 0 ) .∗ k ˆ 2 .∗ ( ( l 1 /Q0) . ∗ ( f / f 0 ) . ˆ 0 . 5 + l 2 . ∗ ( f 0 . /

f ) ) . / ( ( ( 1 /Q0) ∗( f / f 0 ) . ˆ 0 . 5 + ( f / f 0 ) .∗ l 2 ) . ˆ2 + ( ( f / f0 ) .∗ l 1 − f 0
. / f ) . ˆ 2 ) ;

74 X1 = 2∗ pi ∗ f ∗L1 .∗ ( 1 − ( f / f 0 ) ∗k ˆ2 .∗ ( l 2 .∗ ( ( 1 /Q0) ∗( f / f 0 ) . ˆ 0 . 5 + l 2
. ∗ ( f / f 0 ) ) + l 1 . ∗ ( l 1 . ∗ ( f / f 0 ) − f 0 . / f ) ) . / ( ( ( 1 /Q0) ∗( f / f 0 ) . ˆ 0 . 5 +
( f / f 0 ) .∗ l 2 ) . ˆ2 + ( ( f / f 0 ) .∗ l 1 − f 0 . / f ) . ˆ 2 ) ) ;

75 Z1mag = (R1.ˆ2 + X1. ˆ 2 ) . ˆ 0 . 5 ;
76

77 % Plot the impedance components
78 %f i g u r e ;
79 %plo t ( f , R1 , ’ r ’ ) ;
80 %hold on ;
81 %plo t ( f , X1 , ’b ’ ) ;
82 %plo t ( f , Z1mag , ’ g ’ ) ;
83 %hold o f f ;
84

85 % Now c a l c u l a t e the r e f l e c t i o n c o e f f i c i e n t S11
86 Z0 = 50 ;
87 o f f S l o p e = 40 .8 e9 ;
88

89 ReS11 = ( ( Z1mag/Z0) . ˆ2 − 1) . / ( ( ( Z1mag/Z0) . ˆ2 + 1) + 2∗R1/Z0) ;
90 ImS11 = 2∗(X1/Z0) . / ( ( ( Z1mag/Z0) . ˆ2 + 1) + 2∗R1/Z0) ;
91 S11mag = ( ReS11 .ˆ2 + ImS11 . ˆ 2 ) . ˆ 0 . 5 − f / o f f S l o p e ;
92

93 % Plot the r e f l e c t i o n c o e f f i c e n t s
94 %f i g u r e ;
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95 %plo t ( f , ReS11 , ’ r ’ ) ;
96 %hold on ;
97 %plo t ( f , ImS11 , ’b ’ ) ;
98 %plo t ( f , S11mag , ’ g ’ ) ;
99 %hold o f f ;

100

101

102 % Import the data and p lo t i t with the c a l c u l a t e d r e f l e c t i o n
c o e f f i c i e n t . Try

103 % adju s t i ng the pe rmeab i l i t y parameters u n t i l the c a l c u l a t e d S11
104 % approximately matches the measured S11 .
105 M = dlmread ( ’ one−loop one−gap LGR − 4 SRRs − 4 Aluminum rods . txt

’ ) ;
106 fdata = M( : , 4 ) ’ ;
107 S11 = M( : , 5 ) ’ ;
108

109 f i g u r e ;
110 p lo t ( f , S11mag , ’ r ’ ) ;
111 hold on ;
112 p lo t ( fdata , S11 , ’ ko ’ ) ;
113 hold o f f ;
114

115

116 % This stop i s used to stop the program . I f you are j u s t
ad ju s t i ng

117 % parameter va lues to t ry to f i n d good s t a r t i n g values ,
uncomment the stop

118 % below . I f you ’ d l i k e to a c t u a l l y do the best−f i t , then
comment out the

119 % stop .
120

121 %stop ;
122 c l e a r v a r s ;
123

124 % Enter the value o f the f i l l i n g f a c t o r .
125 N = 4 ;
126 spacer = 2 0 . 3 2 ;
127 t h i c k n e s s = 1 . 5 4 ;
128 LGRlength = 1 1 2 . 0 0 ;
129 x = N∗( spacer + t h i c k n e s s ) /( LGRlength ) ;
130

131

132 % Import the data .
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133 M = dlmread ( ’ one−loop one−gap LGR − 4 SRRs − 4 Aluminum rods . txt
’ ) ;

134 fdata = M( : , 4 ) ’ ;
135 S11 = M( : , 5 ) ’ ;
136

137

138 % The f i t parameters w i l l be b (1 ) , b (2 ) , b (3 ) , . . .
139 syms f
140 b = sym( ’b ’ , [ 1 6 ] ) ;
141 % b (1) = f s 1 (GHz)
142 % b (2) = fp1 (GHz)
143 % b (3) = gS1 (MHz)
144 % b (4) = f s 2 (GHz)
145 % b (5) = fp2 (GHz)
146 % b (6) = gS2 (MHz)
147 % b (7) = o f f S l o p e (GHz)
148

149 % Now ente r the e x p r e s s i o n s f o r mu1 ( r e a l part ) and mu2 (
imaginary part ) .

150 % I n s e r t the appropr ia t e f i t parameter symbols in p lace o f fsm
fpm and g .

151 g1 = s q r t (b (3 ) ˆ2) ∗1 e6 ∗( f /(b (1 ) ∗1 e9 ) ) . ˆ ( 0 . 5 ) ;
152 g2 = s q r t (b (6 ) ˆ2) ∗1 e6 ∗( f /(b (4 ) ∗1 e9 ) ) . ˆ ( 0 . 5 ) ;
153 mu1 = 1 − ((1 −(b (1 ) . / ( b (2 ) ) ) . ˆ 2 ) .∗(1 −((b (1 ) ∗1 e9 ) . / f ) . ˆ 2 ) )

./((1 − ( ( b (1 ) ∗1 e9 ) . / f ) . ˆ 2 ) .ˆ2+( g1 . / f ) . ˆ 2 ) −((1−(b (4 ) . / ( b (5 ) ) )

. ˆ 2 ) .∗(1 −((b (4 ) ∗1 e9 ) . / f ) . ˆ 2 ) ) ./((1 − ( ( b (4 ) ∗1 e9 ) . / f ) . ˆ 2 ) .ˆ2+( g2

. / f ) . ˆ 2 ) ;
154 mu2 = ( ( g1 . / f ) .∗(1 −(b (1 ) . / ( b (2 ) ) ) . ˆ 2 ) ) ./((1 − ( ( b (1 ) ∗1 e9 ) . / f ) . ˆ 2 )

.ˆ2 .+( g1 . / f ) . ˆ 2 ) +((g2 . / f ) .∗(1 −(b (4 ) . / ( b (5 ) ) ) . ˆ 2 ) ) ./((1 − ( ( b (4 )
∗1 e9 ) . / f ) . ˆ 2 ) .ˆ2 .+( g2 . / f ) . ˆ 2 ) ;

155

156 % Now ente r the e x p r e s s i o n s f o r l 1 ( r e a l part ) and l 2 ( imaginary
part ) .

157 l 1 = (mu1 . ∗ ( x + mu1∗(1 − x ) ) + mu2.ˆ2∗ ( 1 − x ) ) . / ( ( x + mu1∗(1 − x
) ) . ˆ2 + mu2.ˆ2∗ ( 1 − x ) ˆ2) ;

158 l 2 = mu2∗x . / ( ( x + mu1∗(1 − x ) ) . ˆ2 + mu2.ˆ2∗ ( 1 − x ) ˆ2) ;
159 lmag = ( l 1 . ˆ2 + l 2 . ˆ 2 ) . ˆ 0 . 5 ;
160

161 % Enter va lues f o r L1 , f0 , Q0 , and k p r e v i o u s l y determined form
f i t s to the

162 % empty−bore LGR. L1 and k est imated f o r t h i s s p e c i f i c f i t .
163 L1 = 42.54∗1 e −9∗1.1339;
164 f 0 = 0.8577∗1 e9 ;
165 Q0 = 4 9 . 0 8 ;
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166 k = 0 . 3 ∗ 1 . 5 4 ;
167

168 % Now ente r the e x p r e s s i o n s f o r R and X, the r e a l and imaginary
components o f the impedance o f the coupled LGR

169 % with a p a r t i a l l y − f i l l e d bore .
170 R1 = (2∗ pi ∗ f ∗L1) . ∗ ( f / f 0 ) .∗ k ˆ 2 .∗ ( ( l 1 /Q0) . ∗ ( f / f 0 ) . ˆ 0 . 5 + l 2 . ∗ ( f 0 . /

f ) ) . / ( ( ( 1 /Q0) ∗( f / f 0 ) . ˆ 0 . 5 + ( f / f 0 ) .∗ l 2 ) . ˆ2 + ( ( f / f0 ) .∗ l 1 − f 0
. / f ) . ˆ 2 ) ;

171 X1 = 2∗ pi ∗ f ∗L1 .∗ ( 1 − ( f / f 0 ) ∗k ˆ2 .∗ ( l 2 .∗ ( ( 1 /Q0) ∗( f / f 0 ) . ˆ 0 . 5 + l 2
. ∗ ( f / f 0 ) ) + l 1 . ∗ ( l 1 . ∗ ( f / f 0 ) − f 0 . / f ) ) . / ( ( ( 1 /Q0) ∗( f / f 0 ) . ˆ 0 . 5 +
( f / f 0 ) .∗ l 2 ) . ˆ2 + ( ( f / f 0 ) .∗ l 1 − f 0 . / f ) . ˆ 2 ) ) ;

172 Z1mag = (R1.ˆ2 + X1. ˆ 2 ) . ˆ 0 . 5 ;
173

174 % Here are the exp r e s s i on f o r c a l c u l a t i n g S11 from R and X. the
o f f S l o p e

175 % parameter i s used to take in to account l o s s e s a s s o c i a t e d with
the l eng th s

176 % of c o a x i a l cab l e that l ead up to the coup l ing loop . These
l o s s e s grow as

177 % frequnecy i n c r e a s e s .
178 Z0 = 50 ;
179 o f f S l o p e = 40.8∗1 e9 ;
180 ReS11 = ( ( Z1mag/Z0) . ˆ2 − 1) . / ( ( ( Z1mag/Z0) . ˆ2 + 1) + 2∗R1/Z0) ;
181 ImS11 = 2∗(X1/Z0) . / ( ( ( Z1mag/Z0) . ˆ2 + 1) + 2∗R1/Z0) ;
182 S11mag = ( ReS11 .ˆ2 + ImS11 . ˆ 2 ) . ˆ 0 . 5 − f / o f f S l o p e ;
183

184 % We now d e f i n e the model func t i on r equ i r ed f o r MATLAB’ s f i t t i n g
rou t in e

185 % f i tn lm .
186 S11fcn = matlabFunction (S11mag) ;
187 mdlS11 = @(b , f ) S11fcn (b (1 ) , b (2 ) , b (3 ) , b (4 ) , b (5 ) , b (6 ) , f ) ;
188

189 % Here , we c a l l the f i t t i n g rou t in e and prov ide some i n t i t i a l
parameter

190 % est imate s .
191 r e s = f i tn lm ( fdata , S11 , mdlS11 , [ 0 . 8 5 , . 930 , 33 , 1 . 015 , 1 . 031 ,

1 1 ] )
192

193 % Extract the best− f i t paramters .
194 f s 1 = r e s . C o e f f i c i e n t s . Estimate (1 ) ;
195 fp1 = r e s . C o e f f i c i e n t s . Estimate (2 ) ;
196 gS1 = r e s . C o e f f i c i e n t s . Estimate (3 ) ;
197 f s 2 = r e s . C o e f f i c i e n t s . Estimate (4 ) ;
198 fp2 = r e s . C o e f f i c i e n t s . Estimate (5 ) ;
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199 gS2 = r e s . C o e f f i c i e n t s . Estimate (6 ) ;
200 %o f f S l o p e = r e s . C o e f f i c i e n t s . Estimate (7 ) ;
201

202 % Put the paramter va lue s in to a l i s t .
203 param = [ f s1 , fp1 , gS1 , f s2 , fp2 , gS2 ] ;
204 param ’
205

206 % A bunch o f f requency va lue s
207 xx = l i n s p a c e (min ( fdata ) − 10e7 , max( fdata ) , 5000) ;
208

209 % Plot the S11 data and the f i t f unc t i on toge the r .
210 f i g u r e ;
211 p lo t ( fdata , S11 , ’ or ’ )
212 hold on ;
213 p lo t ( fdata , mdlS11 (param , fdata ) , ’ Color ’ , ’ k ’ , ’ LineWidth ’ ,

2) ;
214 hold o f f ;
215

216 % Plot the r e a l and imaginary components o f the r e l a t i v e
pe rmeab i l i t y .

217 g1 = s q r t ( gS1 ˆ2) ∗1 e6 ∗( xx /( f s 1 ∗1 e9 ) ) . ˆ ( 0 . 5 ) ;
218 g2 = s q r t ( gS2 ˆ2) ∗1 e6 ∗( xx /( f s 2 ∗1 e9 ) ) . ˆ ( 0 . 5 ) ;
219 mu1 = 1 − ((1 −( f s 1 . / fp1 ) . ˆ 2 ) .∗(1 −( f s 1 ∗1 e9 . / xx ) . ˆ 2 ) ) ./((1 −( f s 1 ∗1

e9 . / xx ) . ˆ 2 ) .ˆ2+( g1 . / xx ) . ˆ 2 )− ((1 −( f s 2 . / fp2 ) . ˆ 2 ) .∗(1 −( f s 2 ∗1 e9
. / xx ) . ˆ 2 ) ) ./((1 −( f s 2 ∗1 e9 . / xx ) . ˆ 2 ) .ˆ2+( g2 . / xx ) . ˆ 2 ) ;

220 f i g u r e ;
221 p lo t ( xx , mu1 , ’−−b ’ ) ;
222 hold on ;
223

224 mu2 = ( ( g1 . / xx ) .∗(1 −( f s 1 . / fp1 ) . ˆ 2 ) ) ./((1 −( f s 1 ∗1 e9 . / xx ) . ˆ 2 ) .ˆ2 .+(
g1 . / xx ) . ˆ 2 ) +((g2 . / xx ) .∗(1 −( f s 2 . / fp2 ) . ˆ 2 ) ) ./((1 −( f s 2 ∗1 e9 . / xx )
. ˆ 2 ) .ˆ2 .+( g2 . / xx ) . ˆ 2 ) ;

225 p lo t ( xx , mu2 , ’−−r ’ ) ;
226 hold o f f ;
227

228 % Write the best i f t parameters and the best− f i t | S11 | curve ,
mu1 , and mu2 to txt f i l e s .

229 M = [ xx ; mdlS11 (param , xx ) ; mu1 ; mu2 ] ’ ;
230 dlmwrite ( ’ one−loop one−gap LGR − 4 SRRs − 4 Aluminum rods − best

f i t parameters . txt ’ , param ’ , ’ d e l i m i t e r ’ , ’\ t ’ , ’ p r e c i s i o n ’ ,
9)

231 dlmwrite ( ’ one−loop one−gap LGR − 4 SRRs − 4 Aluminum rods − best
f i t data . txt ’ , M, ’ d e l i m i t e r ’ , ’\ t ’ , ’ p r e c i s i o n ’ , 9)
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