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Abstract

Tumor heterogeneity can be observed between and within tumors through med-

ical imaging such as positron emission tomography (PET). Heterogeneity arises

due to the genetic diversity in cancer cell populations and the dynamic microenvi-

ronments. Understanding the relationship between tumor tissue microparameters

and quantitative PET radiomic features can offer a better strategy for caner diag-

nosis and treatment. Our goal was to develop a multiscale mathematical model

for realistic tumor growth in vascularized tissue, and to generate synthetic PET

images from the simulated images to study this relationship. The hybrid mathe-

matical model used in the simulation combines an agent grid and partial differ-

ential equations to model the dynamic tumor microenvironments. The status of

the cell and its behaviour is determined by the local concentration of oxygen and

glucose which diffuse from the vessels to tissue. The simulated cell maps were

converted to synthetic PET images by translating the spatial locations of the cells

to the corresponding pseudo-standardized tracer uptake values of the PET tracer

18F-fluorodeoxyglucose, which are unique to each cell type. Using different com-

binations of tissue microparameters, we were able to generate tumors with distinct

phenotypic profiles that were visually distinguishable in the translated synthetic

PET images. Four radiomic features were computed from the resulting images and

this demonstrated that unique tumor phenotypes can be linked to radiomic PET fea-

tures. Moreover, the identified optimal radiomic features can be used as biomarkers

for tumor assessment.
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Chapter 1

Introduction and Motivation

Cancer refers to a class of diseases characterized by cells that proliferate at un-

controlled rates and spread throughout the body resulting in destruction of normal

tissue. In fact, cancer accounted for about 9.6 million deaths in 2018, making it

the second leading cause of death globally [7]. Benign tumors turn into malignant

tumors as they acquire hallmarks for cancer progression, which includes resistance

to programmed cell death (apoptosis), invasion of adjacent tissue, and induction of

new blood vessel growth (angiogenesis). These hallmarks along with the dynamic

tumor tissue microenvironments contribute to various phenotypes that introduce

complications for cancer treatment.

Early detection and treatment for cancer have shown to effectively prevent pro-

gression of tumor which is crucial for patient survival. The most widely used

method for cancer diagnosis is medical imaging and there are various modalities

that allow physicians to detect abnormal properties of cancerous tissue such as in-

creased metabolic activity or appearance without a surgical incision. The imaging

methods are classified into three different categories: anatomic, functional, and

molecular imaging. The typical resolution for medical images varies between each

mode: 1mm for MRI and CT; 2-5mm for PET. Oftentimes anatomical and func-

tional imaging methods are used together to acquire certain information that cannot

be obtained via one imaging modality.

• Anatomical Imaging provides detailed structural information about the anatomy

that yields high resolution clinical images. Magnetic resonance imaging
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(MRI) and computed tomography (CT) imaging are examples of anatomi-

cal imaging modalities.

• Functional Imaging highlights physiological information including metabolism

and local chemical composition. These imaging modalities include positron

emission tomography (PET) and single photon emission computed tomogra-

phy (SPECT) which provide information on tumor biological functions and

microenvironment at a limited spatial resolution. Oftentimes, functional and

anatomical images are used side by side for an integrated visualization of

tumor biology with high resolution imaging (Figure 1.1).

• Molecular Imaging is used to obtain detailed pictures of human body at

a molecular/cellular level. It provides functional information without the

needs for more invasive procedures such as biopsy or surgery.

Figure 1.1: PET/CT image of a pancreatic cancer patient. Demonstration
of how the CT scan (A) and a PET scan (B) is integrated to provide a
high resolution functional and anatomical image (C). The merged image
allows localization of the FDG uptake values in the PET scan. Figures
adapted from [5].
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There are four conventional types of cancer treatment: chemotherapy, radia-

tion therapy, immunotherapy, and surgical removal of tumors. Surgical removal is

only applicable when the tumor is accessible and has not metastasized. However,

metastasis is prevalent in most cancers and requires other treatments involving high

dose radiation that also kills healthy cells. The current strategy applied to cancer

treatment is ”one-size-fits-all”, meaning that it has been standardized to be applica-

ble to most people. However, this treatment approach is only effective in a subset

of people due to the complexity in tumor intrinsic properties and progressions pat-

terns that should be targeted differently [23]. In fact, a study performed in 2017

estimated that any particular category of standardized cancer drugs is ineffective

in 75% of the patients [1]. The inherent variability in cancer led to the growing

field of precision medicine which includes cancer genomics studies and radiomics

analysis on medical images. Careful extraction and selection of meaningful infor-

mation from these patient-specific approaches enable healthcare professionals to

deliver customized treatment for increased efficiency and survival rates.

One of the emerging fields of precision medicine is radiomics, which is a

method of converting medical images into high dimensional data with numerous

quantifiable features. Analysis of these features can elucidate the underlying patho-

physiology captured by medical images, revealing tumor characteristics that can

assist cancer diagnosis, prognosis, and the development prediction models. Quan-

titative features based on size, shape, texture, and intensity can provide unique

information about tumor heterogeneity and its microenvironments that cannot be

obtained through other laboratory techniques [15]. There are hundreds of met-

rics that have been extracted from the images with the potential to reveal tumor

characteristics that cannot be identified with human eyes [2]. The features can be

carefully selected and used as biomarkers for patient-specific treatment planning

and prognosis (Figure 1.2).

Tumor heterogeneity refers to observable variations in tumor phenotype and it

can be observed through medical imaging or histopathological studies. Examples

of heterogeneity are distinct morphologies, gene expression patterns, and sensitiv-

ity to treatment. Many research have shown that more heterogeneous tumors tend

to exhibit more aggressive growth and resilience to treatment, leading to poor pa-

tient outcomes [18]. Additionally, tumors with similar characteristics have shown
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Figure 1.2: Identification and validation of radiomic biomarkers for pre-
cision medicine. There are two ways of developing imaging biomark-
ers: extraction of hand-crafted features and data-driven deep learning
models. The identified features an be used for patient-specific decision
making and prediction of clinical outcomes. Figure from [19]

similar progression patterns regardless of the location of the tumor [14, 17, 28].

Thus, understanding how tumor tissue microparameters are linked to observable

features in medical imaging is of great interest. Unfortunately, we currently don’t

have a clear understanding of how specific tumor phenotypes are reflected in clin-

ical images. Thus, our goal is to develop a multiscale mathematical model of re-

alistic tumor growth in vascularized tissue, and use the simulated images to pro-

duce synthetic PET images showing metabolic profiles of the tumor. Performing

radiomics analysis on these synthetic PET images allows us to establish a link be-

tween specific tumor phenotypes and tissue microparameters. More accurate and

detailed characterization of the tumors using this approach enables optimized treat-

ment based on individual tumor characteristics.
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Chapter 2

Theory and Background

2.1 Cancer Biology
Cancer cells proliferate in uncontrolled manners, unlike normal cells with sophis-

ticated balance between proliferation and differentiation until programmed cell

death. Advances in cancer research revealed that cancer cells have mutations in

their cell genome that disrupt this balance resulting in uncontrolled growth. When

cancer is diagnosed in a patient, it has typically developed into solid tumor, which

is a collection of of many components such as cancer cells, healthy cells, blood

vessels, and fibroblasts. The current speculation of a solid tumor is that it origi-

nates from a single tumor cell that has accumulated genetic mutations [10]. This

cell proliferates forming a benign lesion, which progressively develops into malig-

nant tumors with interactions with environmental factors such as carcinogens. A

malignant tumor is capable of growing into normal tissue until it breaks through

the basal membrane, which causes the cancer cells to spread to distant locations

via a process called metastasis [39].

Despite of the uncontrolled proliferation patterns of tumor cells, their behaviour

is dependent on the interactions with the tumor tissue microenvironments. It relies

on external factors like signals from surrounding cells and the nutrient availability.

This motivates the evaluation of solid tumors and their surrounding microenviron-

ment as a whole, which allows us to observe the phenotypic variations in complex

tumor tissue. Progression of solid tumors leads to drastic changes in the tumor

5



environment; for example, growing tumors can alter vascular networks by enhanc-

ing or inactivating vessels, invade into normal tissue, and become resistant to the

host’s immune response. The interactions between genetic diversity in tumor cells

and modified tumor microenvironments give rise to both intra- and intertumoral

heterogeneity. Previous studies have shown that tumors with similar phenotypic

profiles show similar progression patterns and patient outcomes even if the tumors

are located in different parts of the body [14, 17, 28]. There is also evidence that

supports the claim that more heterogeneous tumors are often more aggressive and

resistant to cancer treatments [18]. Hence, understanding how tumor heterogeneity

is related to tumor prognosis and image properties is crucial for patient diagnosis

and treatment planning. The following sections will explain the causes and mech-

anism of how heterogeneity arise in solid tumors.

2.1.1 Normal and Tumor Cell Metabolism

Tumor cells proliferate at a much higher rate in comparison to normal cells due

mutations in the genes that regulate normal regulation of cell division. Because

a cell division requires a lot of energy for biosynthesis of various proteins, cancer

cells typically consume glucose and oxygen at a much higher rate relative to normal

cells. Blood is the source of oxygen and glucose which diffuses through the tissue

for cells to consume. Nutrient rich blood travels from the heart to different parts of

the body through bulk motion and diffusion happens mostly at the capillary level.

Capillaries are the ideal place for nutrients to diffuse out as the walls are made up

of only a single layer of cells and the increased surface area with a typical diameter

of ∼ 5−12µm facilitates the diffusion process [36].

To understand cancer cell metabolism and how the different nutrient consump-

tion rates arise, one needs to know the different metabolic pathways that cells take

to generate adenosine triphosphate (ATP). The three pathways are oxidative phos-

phorylation (OXPHOS), anaerobic glycolysis, and aerobic glycolysis (Figure 2.1).

A normal cell under oxygen saturated condition mainly utilizes the most efficient

OXPHOS pathway for cellular metabolism, yielding 36ATP/glucose. Tumor cells,

however, have shown to take the aerobic glycolysis pathway regardless of the pres-

ence of oxygen in the microenvironment, which only yields 4ATP/glucose; this is

6



only about one-ninth of what can be harvested through OXPHOS [35]. One of the

most common speculation for this phenomenon is that glycolysis is up to ∼ 100

folds faster than that of OXPHOS, allowing cancer cells to produce much more

ATP in a given time [20, 24]. However, this comes at a cost of increased glucose

consumption due to the low efficiency of this metabolic pathway. This is called the

Warburg Effect and it leads to the variations in glucose uptake rates that are most

conveniently observed through PET imaging.

Figure 2.1: Tumor and normal cell metabolism. The three cellular
metabolic pathways are illustrated. Tumor cells exhibit modified
metabolism that utilizes the aerobic glycolysis pathway, which is called
the Warburg effect. Figure from [35]

If a cell were to go through both OXPHOS and aerobic glycolysis, the com-

bined net chemical equation for aerobic respiration becomes

G+5O2 +29ADP+29P→ 29AT P

with glucose (G), oxygen (O2), adenosine diphosphate (ADP), and phosphate (P)
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[31].

2.1.2 Tumor Vascular Network and Alterations

The capillary network in the human body widely varies between tissue types. For

instance, the skin has a capillary density of∼ 20/mm2 [33] and the skeletal muscle

has ∼ 100− 500/mm2 [26]. Since tumor metabolism and rapid proliferation are

closely associated with the supply of nutrients from the capillaries, where the tumor

is located significantly influences the tumor progression patterns and the exhibited

phenotype. The available oxygen and nutrients decrease with distance from the

capillary. Hypoxia typically occurs at about 100µm from the vessel and necrosis

occurs at 150µm (Figure 2.2) [3]. Moreover, tumor progression results in a number

of vascular network alterations that give rise to observable heterogeneity in tumor

tissue. This includes angiogenesis and dilated capillaries up to 200µm in diameter

[11]. On the other hand, with the rapid growth of solid tumors, host vessels are

remodeled and pushed away, or even obstructed. Prolonged vessel occlusion causes

necrosis to occur, typically starting at the center of the tumor that spreads outwards

as more active vessels are removed by increasing cancer cell density [38]. Smaller

vessels are first to be closed, followed by occlusion of larger vessels in later stages

which leads to complete necrosis of the tumor.

2.1.3 Hypoxia

Hypoxia is one of the major contributors to tumor heterogeneity. It refers to a con-

dition where a cell is deprived of oxygen supply due to increased oxygen consump-

tion, inadequate oxygen diffusion from nearby blood vessels, or a combination

of both. This phenomenon arises in solid tumors either in a diffusion-dependent

(chronic) manner or as acute hypoxia if the vessel in the local environment be-

comes temporarily inactive. Thus, hypoxia itself is also a spatial and temporal

heterogeneity and the dynamics are specific to the local neighborhood. It is also

known to induce adaptive processes such as angiogenesis, which is a process where

tumor tissue grows its own blood vessels to draw extra nutrients required for rapid

proliferation. Moreover, hypoxia reduces the effectiveness of the treatment by re-

duction of the oxygen effect. The current treatment for cancer is to target cancer
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Figure 2.2: Aerobic, hypoxic, and necrotic regions with distance from the
blood vessel. Cells that are in close proximity of the vessel are viable
aerobic cells. However, with increasing distance from the vessel hy-
poxic and necrotic cells arise. Figure from [3].

cell DNA with high-energy radiation to cause damage and induce cell death. Here,

oxygen acts as a radiosensitizer in radiotherapy by participating in chemical reac-

tions that induce DNA damage. In fact, the direct effect of radiation to eliminate

cancer cells only accounts for about 35%, and the other 65% is due to the oxygen

effect [27]. Thus, hypoxic tumors require 2-3 times higher radiation dose relative

to what oxygenated tumor tissue would require to be effective (Figure 2.3) [32].

2.1.4 Apoptosis and Necrosis

There are two mechanisms for cell death, which are apoptosis and necrosis. Apop-

tosis refers to programmed cell death where cells that are damaged beyond repair

commit to death at a certain point during their cell cycle. Cellular stimuli such as

depletion of growth factors and hormones can also induce apoptosis. Apoptosis

is a delicate ATP dependent process which any amount of disruption in its regula-

tion can lead to devastating conditions like altered immune system functions and

cancer. During the cell cycle, there are multiple checkpoints that ensure the cell

is viable and is able to go through another round of division. A cell cycle arrest

9



Figure 2.3: Survival curve of normal tumor and hypoxic tumor cells. Hy-
poxic cells exhibit reduced radiation sensitivity and requires a much
higher radiation dose to achieve the equivalent effectiveness as in oxic
cells. Figure from [27]

at one of the checkpoint initiates apoptosis which involves condensing of chro-

matin and organelles [12]. These collapsed cells are engulfed by macrophages in

the body that digest the apoptotic cell and remove the waste products. The second

form of cell death is necrosis. Unlike apoptosis, necrosis is caused by external

stress, such as nutrient deficiency, and the process is independent of ATP availabil-

ity. In general, there are two modes that trigger necrosis: cell death due to extreme

hypoxia or ATP production below a threshold level. Because apoptosis involves

multiple ATP-dependent steps, necrosis is the predominant pathway for cell death

in a condition lacking ATP [12, 34]. A lump of necrotic cells called necrotic core

is a phenomena frequently observed in solid tumors. This is caused by the rapid

growth of solid tumors which makes it increasingly difficult for sufficient amount

of nutrients to reach its core. Necrosis is not programmed like apoptosis and the

process is triggered when one of the two conditions mentioned earlier is sustained

for a prolonged period of time, ranging from hours to days [12]. Along with hy-

poxia, necrosis is one of the solid tumor characteristics that we modelled through
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the tumor growth simulation.

2.2 Positron Emission Tomography
This section will go over the underlying physics of positron emission tomography,

a medical imaging method that falls under the functional imaging category. Most of

the information comes from The Oxford Handbook of Functional Brain Imaging

in Neuropsychology and Cognitive Neurosciences - Positron Emission Tomogra-

phy: Blood Flow and Metabolic Imaging [29] and Nuclear Medicine Physics: The

Basics [8].

2.2.1 Radiotracer

Radiotracer refers to a molecule that is used up by organs during normal physiolog-

ical processes with an additional radioactive atom attached. A small amount of this

radioactive substance is injected into a patient’s body to examine the metabolic ac-

tivity of specific organs and tissue. A commonly used radiotracer for PET imaging

is 18F-fluorodeoxyglucose (18F-FDG) which is an analog of 2-deoxy-D-glucose

that is taken up by cells for metabolism. The attached radionuclide is fluorine-18

which undergoes β+, emitting a positron. Although fluorine is not a physiologi-

cally relevant molecule, it is powerful for PET imaging purposes due to its half-life

of ∼ 2 hours and the ease of substituting the hydroxyl group on glucose molecules

without disturbing its biological properties. The positron emitted from the transient

radioactive decay travels for a few millimeters and annihilates with an electron in

the tissue, resulting in two photons that are emitted in opposite directions (Figure

2.4).

Cell proliferation costs large amounts of energy as it requires increased synthe-

sis of macromolecules for a successful cell division. The increased energy demand

and consequently increased glucose consumption leads to higher 18F-FDG uptake

in tumors. A PET scan captures the change in metabolism, revealing spatial and

temporal information of the tumor tissue.
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Figure 2.4: Radioisotope decay and annihilation event. The radioactive
atom attached to the radioisotope goes through a beta decay and pro-
duces a positron (β+). The positron travels a few millimeters until it
loses most of it kinetic energy and annihilates with a nearby electron
(β−). The annihilation event produces a pair of 511keV photons in op-
posite directions. If the two photons are observed by the scintillation
detectors within the coincidence time window, the annihilation event is
recorded. Figure from [29]

2.2.2 Signal Detection and Reconstruction

An illustration of a PET scanner with a patient situated inside the ring of photon de-

tectors is shown in Figure 2.5. Soon after a small amount of radiotracer is injected
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into the patient’s body, the unstable proton inside the nucleus of a radioisotope go

through a β+ decay, releasing a positron. It travels for a few millimeters until

it loses most of its kinetic energy and annihilates with an electron in tissue. The

annihilation event produces two 511keV photons traveling in opposite directions.

When these two gamma photons are detected by the PET scanner within a 6-12ns

window, they are recorded as coincident events and the line of response (LOR)

is defined. The LOR passes through the point of annihilation which eliminates

the need for collimators, which is required in other imaging methods like single-

photon emission computed tomography (SPECT) to prevent exposure from outside

of the region of interest.

Inside each gamma camera, there are scintillators containing crystals (Lu2SiO5 :

Ce or Bi4Ge3O12) that allows radiation detection. These crystals produce light

when high energy radiation is absorbed which is used to count the photons. Unless

the pair of photons is emitted from the midpoint of the LOR, there exists a time de-

lay between the detection of the two coincident photons. This is referred to as time

of light (TOF) and it enables localization of the annihilation event. The signals are

collected in the form of a sinogram (Figure 2.5 b,c) that needs to be corrected for

sources of errors such as random coincidence events, scatter, and attenuation for

a more accurate image reconstruction. The processed signal can be reconstructed

through iterative or analytical methods.

In PET imaging, the radiotracer uptake is assessed through a semi-quantitative

metric called standard uptake value (SUV). SUV is given by the equation:

SUV =
Tracer activity in tissue

Total injected dose per patient weight
.

The minimum, maximum, and mean SUV values can be computed from the region

of interest based on the individual values stored in each pixel of the image. The

computed values are used to asses the abnormal characteristics of tumor tissue,

where malignant tumors typically have SUV values over 2.5-3 [21].
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Figure 2.5: Positron emission tomography signal detection and image
construction. (a) The red circle represents one pixel of the PET image
where coincident events are recorded by the detectors along the lines of
response (LORs). The angle and displacement of the LORs are mea-
sured with respect to the red horizontal line and the center of field of
view. (b) A sinogram where the four LORs from panel (a) are added
up over the scanning period. For example, LOR4 is along the center, so
the displacement is 0 and it makes a right angle with the horizontal line,
so the angle is 90◦. The total counts along the four LORs are stored in
each position of the sinogram. (c) A sinogram of all pixels in the image
plane and darker spots indicate greater number of counts. Figure from
[29]

2.3 Radiomic Features
Radiomics is a powerful tool used to extract quantitative information from clini-

cal images. Radiomics analysis converts digital images to minable data, offering

insight into the relationship between image properties and cancer phenotypic pro-

files. Due to the significant potential for elucidating unique tumor characteristics,

it is an emerging field of research in medical physics with a main focus on de-

veloping novel biomarkers for cancer diagnosis and prognosis. The development

of machine-learning models and processes for high-throughput extraction of im-
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age features pushed the studies in the direction of developing prediction models

rather than finding biological meaning from the analysis. There have been efforts

to reconnect the prediction models and the biological significance through different

approaches such as genomics and microscopic image texture (histological) stud-

ies. The four key steps of radiomics analysis are image acquisition, segmentation,

quantitative image features extraction, and analysis of the features as shown in

Figure 2.6.

2.3.1 Image Acquisition and Segmentation

Images for radiomics analysis can be acquired through various modern imaging

techniques including CT, MRI, and PET. Numerical data can be extracted from

these images, however, there must be a standardized image reconstruction protocol

to remove variations in the intrinsic image properties that are not due to biolog-

ical effects; an alternative method would be to introduce error bars to take these

measures into account. Identifying the volume of interest through image segmen-

tation is fundamental in radiation oncology. The identified volume is called the

region of interest (ROI). There may be one or more tumor sites detected from one

image and it is important to identify all suspected lesions as the volume of inter-

est. This step is crucial since all subsequent processes depend on the segmented

volume. Currently, images can be segmented manually by radiologists or by au-

tomated computer-aided segmentation. The general consensus is that automated

segmentation yields higher reproducibility due to the individual variability in man-

ual segmentation.

2.3.2 Radiomic Features Extraction

Radiomic features extraction from the segmented images is the essence of this

pipeline. The features can be separated into two broad categories which are se-

mantic and agnostic. A subset of features in each category are shown in Table 2.1.

Semantic features are used to describe the regions of interest by visual assessment

of radiologists. Agnostic features on the other hand quantitatively capture tumor

characteristics based on mathematical and statistical analysis. The latter can be

further divided into four classes described below:
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Figure 2.6: Radiomics analysis pipeline. (a) Image acquisition via com-
puted tomography. (b) Image segmentation is performed on the lesion
to identify the ROI. (c) Radiomic features are extracted from the ROI.
The three feature categories are gray level patterns, inter-voxel relation-
ships, and shape. (d) Analysis and classification of a subset of selected
features. (e) Selected features are used as biomarkers in diagnosis and
patient prognosis. Figure from [30]
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• morphological features are used to define the shape of the defined ROI. Size,

shape, sphericity, and compactness are a subset of features that fall under

this category. For instance, compactness of a 2D segmented image can be

computed using the perimeter to surface ratio of the ROI, given by

perimeter to surface ratio =
P
A
,

where P is the perimeter and A is the area of ROI. A smaller ratio indicates

a more compact (circular) shape.

• First-order statistical features describe the individual voxel without consid-

ering the spatial relationship to the surroundings. A subset of first-order fea-

tures includes histogram-based relationships that are summarized into single

values such as mean, maximum, minimum, asymmetry, and flatness. For

example, the mean pSUV value of the region of interest can be calculated by

the following equation:

mean =
1

Np

Np

∑
i=1

X(i),

where Np is the number of voxels in the ROI and X is the set of pSUV values

of the individual voxels in the ROI.

• Second-order texture features characterize the texture of the ROI, or the spa-

tial and statistical relationships between pixels. Texture analysis was first

introduced by Haralick in 1973, which significantly enhanced the study of

intratumoral texture heterogeneity [16]. Gray level co-occurrence matrices

(GLCMs) was introduced by Haralick as one of the earliest methods for tex-

ture features extraction. This matrix (P) is an (N x N) square matrix with

N possible number of gray levels from an image. The (i,j)th entry of P tells

us the number of times a pixel with intensity i is adjacent to that of j. Note

that adjacency is defined in four directions (right-horizontal, up-vertical, left

and right upper diagonal) as shown in Figure 2.7 (a). Several matrices can

be computed using different combinations of the distance (D) and angle (θ )

parameters. An example of how the GLCM matrix is computed is shown
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in Figure 2.7 (b), and the entries indicate how often a specific offset value

occur between pixel pairs in the image.

Figure 2.7: Gray level co-occurrence matrix computation. (a) Shows how
adjacency is defined given a pixel of interest (red). The four possible
angles are labeled and any choice of distance can be used to compute
the GLCM. (b) An example of how an image matrix is translated to
a GLCM matrix. The parameters used are D=1 and θ = 0◦. Figure
adapted from [25] and [4].

Contrast is one of the Haralick features:

contrast =
Ng

∑
i=1

Ng

∑
j=1

(i− j)2 p(i, j).

The term p(i, j) refers to the normalized co-occurrence matrix given by

P(i, j)
∑P(i, j)

.

In general terms, contrast indicates variations in local intensity, where high

contrast correlates to greater differences in intensity.

Homogeneity is another example of an Haralick feature:

homogeneity =
Ng

∑
i=1

Ng

∑
j=1

p(i, j)
1+ |i− j|

.

This value measures local homogeneity and a larger value indicates more
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Table 2.1: Semantic and agnostic radiomic features

Semantic features Agnostic features (Quantitative))
Size Skewness (asymmetry)

Shape Haralick textures
Location Wavelets

Vascularity Laws textures
Necrosis Fractal dimensions

uniformity.

• Higher-order statistical features elicit repetitive and non-repetitive patterns

imposed on images with filter grids. Filter transform of images refers to

multiplying an image by a specific filter matrix. For instance, wavelet trans-

form filters multiply the image by a matrix of complex waves to decompose

the image into details, and Laplacian transform filters extract coarse texture

patterns from the images.

2.3.3 Features Analysis

The main approach for radiomic feature analysis is through machine learning algo-

rithms. The program learns from a given data set and becomes capable of identify-

ing patterns with minimal human intervention when new sets of data are given. The

automation of large quantity segmentation and extraction of image features enabled

a fast and efficient data-driven analysis of medical images. Over 1000 radiomic

features have been identified from numerous ROIs; however, the reproducibility

and significance of each feature have been achieved in only a small subset of the

features. Such a large complex data set may lead to over-fitting of the data; thus,

identifying select features that are robust to noise and produce quality data is an

important step in radiomic analysis. Identification of ideal radiomic features en-

ables important diagnostic, prognostic, and predictive information to be captured

from the images. Many suggest that will eventually become routine practice in

clinics for a more precise diagnosis and patient-specific decision-making [15].
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2.4 Hybrid Mathematical Modeling
The tumor growth simulation model uses mathematical oncology which is a method

to study cancer using mathematics and simulation. The hybrid part of this model is

the use of both agent-based models and partial differential equation models (PDEs)

to simulate realistic tumor microenvironments. PDEs store information, such as

concentration on each grid location, and use mathematical relationships to track

the changes in values due to diffusion and consumption of molecules. Agents,

namely autonomous decision-making entities, have access to the information from

the PDEs which is used to determine the current state and the following action

in each iteration step. The two components are completely decoupled and are

executed independently while allowing the exchange of information between the

grids. This allows any combination of agent grids and PDE grids for a flexible

hybrid modeling (Figure 2.8). The particular strength of the hybrid model is that

it provides insights into mechanistic feedback between the tumor cells and tumor

tissue environment.

2.4.1 Agent Grid

The agent grid in this simulation is used as a container for the agents, in this case,

the different types of tumor cells. The specific grid used is a 2D on-lattice grid

where the agents are bound to lattice locations rather than a continuous plane. The

agent occupies a pixel in the grid space and keeps track of its location as well as its

current state. The agents can sample the neighbouring locations to determine the

local population and decide if it can proceed with cell division.

2.4.2 Partial Differential Equation Grid

Tumor tissue is dynamic and the tumor local microenvironments are constantly

changing. In our tumor growth model, we use 2D continuous partial differential

equations to simulate the concentration of various molecules in the biological sys-

tem. The PDE grids can model the complex internal dynamics while updating the

concentration fields in each grid location to mimic realistic tumor tissue microen-

vironments at a microscopic level. The dynamics include diffusion of nutrients and

consumption by cells on the agent-based model. Diffusion is run by adding deltas
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Figure 2.8: Hybrid mathematical modelling with agent and PDE grids.
The illustration shows one agent grid holding an agent (yellow dot) and
two PDEs for oxygen and glucose. All grids can interface easily and the
agent can retrieve the information from the corresponding pixels in the
PDEs (yellow border).

to the current field with a wrap-around (periodic) boundary condition. This means

that the simulation grid is surrounded by identical translated copies of itself. Peri-

odic boundary conditions are often used to simulate a small part of a larger tissue

to minimize edge effects.

The consumption of molecules follows the Michaelis-Menten (MM) kinetics

since the consumption of molecules depends on the enzymatic turnover rate to

harvest ATP. The chemical formula for this reaction is

E +S ⇀↽ ES−→ E +P

where E stands for an enzyme, S for substrate, and ES for the enzyme-substrate

complex. The consumption rate equation is given by

f =−Vmax ∗
[S]

KM +[S]
,
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where f is the rate of reaction, Vmax is the maximum rate of the system, and KM is

the concentration of substrate at half the maximum rate. Glucose consumption is

dependent on the ATP needs of the cell. Tumor cells have a greater energy demand

to maintain their uncontrolled growth, requiring a larger Vmax. Thus, the tumor

cells in the model have Vmax which is 10-20 times higher compared to normal cells.

An assumption was made in the model that the oxygen consumption rate for

each cell type is constant. This is because KM for oxygen in tissue is significantly

lower than the oxygen concentration in tissue (KM¡¡ S), simplifying the model to

f =−Vmax ∗
[S]

KM +[S]
=−Vmax.

The diffusion of molecules was modeled by Fick’s diffusion law, together with the

consumption of molecules. The equation is given by

∂C
∂ t

= D∇
2C+ fi

The parameters are concentration (C), time (t), diffusion coefficient (D), and con-

sumption rate of molecules ( fi).

Finally, knowing the consumption rates of oxygen and glucose, we can calcu-

late the ATP production rate which will be used to partially determine the necro-

sis behavior of the cells in this model. The total aerobic respiration yields ∼ 27

ATP per glucose molecule as seen in section 2.1.1. Cancer cells that shift their

metabolic pathway to glycolysis produce ∼ 2 ATP per glucose molecule. Thus the

overall ATP production rate is given by

fAT P =−(2 fG +
27 fO

5
).
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Chapter 3

Methods

3.1 Tumor Growth Model
We model realistic tumor growth in vascularized tissue to study the relationship

between measurable PET radiomic features and distinct tumor phenotypes. The

simulation consists of one agent grid and two partial differential equation grids.

The agent grid holds the different cell types and cross-sectional capillaries. The

PDE grids have two main roles: tracking the concentration of nutrients at each grid

location, and adding differentials (diffusion and consumption) of the molecules

until a steady state is reached. The two PDE grids in the model track the oxygen and

glucose concentrations at each pixel. The full list of realistic biological parameters

used in this model can be found in Table 3.1. All three grids in the model are

executed independently while the agents have access to the PDE grid data at all

times. This is especially important since the type of the agent and its behavior

depends on the concentration of nutrients, just like real cells in a biological system.

The simulated grid size was 1000x1000 cells (2x2cm).

3.1.1 Types of Agents

The four types of agents in the model are normal tumor, hypoxic tumor, necrotic

tumor cells, and capillaries. The agent type is determined by the local concentra-

tion of nutrients that can be tracked using the PDE grids. Due to the altered cellular

metabolism in cancer cells, each type of agent has its unique consumption rates for
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Table 3.1: Model biological parameters

Biological constant Values
Average cell (unit) size [µm] 20

Average time for aerobic cell division [hours] 24
Capillary density range [#/mm2] 20-100

Oxygen diffusion coefficient in tissue [cm2/s] 1.65×10−5

Glucose diffusion coefficient in tissue [cm2/s] 2.7×10−6

Oxygen flux from capillary [mol/min/unit] 2.81×10−12

Glucose concentration in capillary [mol/L] 5×10−3

Oxygen consumption rate - normal tumor [mol/min/cell] 4×10−15

Oxygen consumption rate - hypoxic tumor [mol/min/cell] 2×10−15

Oxygen consumption rate - non-cancer cell [mol/min/cell] 2.5×10−18

Glucose Vmax - normal tumor [mol/min/cell] 5×10−14

Glucose Vmax - hypoxic tumor [mol/min/cell] 1.02×10−13

Glucose Vmax - non-cancer cell [mol/min/cell] 5×10−15

Glucose KM [mol/min/cell] 2×10−14

Death ATP production rate (DPR) [mol/min/cell] 2.57×10−14

nutrients; the oxygen consumption rate is constant for each cell type, whereas the

glucose consumption rate depends on the local concentration of glucose. Capillar-

ies were modeled as cross-sectional points and initialized with uniform density or

completely randomized placements across the agent grid. In between each diffu-

sion step, the nutrient concentrations in the capillaries were reset to the basal levels

in the blood, as the source of glucose and oxygen that diffuse through the tissue.

3.1.2 Simulation Details

Agents are able to determine its current state and the behaviour in the following

round of iteration by accessing the information on the PDE grid that tracks the

oxygen and glucose concentrations. The decision-making process of an agent is

shown as a flowchart in Figure 3.1. First, the simulation model is initialized by

placing blood vessels and diffusing them until a steady state. Once a steady state is

reached, a single normal tumor cell is implanted at the center of the grid. This cell

goes through a series of conditional questions where the cell determines whether

it will remain a normal tumor cell, or turn into a hypoxic or necrotic cell. The
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cell turns hypoxic when the oxygen concentration at that cell location is below a

threshold level (values listed in Table 3.1). Cell necrosis happens when the ATP

production rate falls below the death rate or if the oxygen level is below the death

concentration. This state determination mechanism is based on the realistic be-

haviour of a cancer cell in vivo as explained in section 2.1.

Agents can also divide to produce a daughter cell of the same type. Only

normal tumor cells and hypoxic cells can go through division and the probability

depends on the concentration of oxygen and glucose to generate ATP. When the cell

meets the condition to divide, it samples the surrounding Moore neighbourhood

(Figure 3.2) to look for an available location. Available locations are non-cancer

cell or vessel locations.

The parameters that were adjusted to simulate various tumor phenotypes were

1) blood vessel density, 2) spatial arrangement of vessels (random or uniform den-

sity), 3) probability of vessel removal, and 4) probability of death by insufficient

nutrients. The probability of vessel removal by a tumor cell was used to simulate

the extent of vessel obstruction in real solid tumors. The death probability was

implemented because the cells do not die immediately after depletion of nutrients;

instead, prolonged shortage of oxygen or glucose is required for necrosis. For all

simulations, the death probability due to shortage of oxygen was

P = 1− local concentration
necrotic concentration

,

and that of ATP was either the same as oxygen or

P = 1− (
local concentration

necrotic concentration
)2.

3.2 Translating Simulated Images to PET Images
The tumor growth simulation state is exported every 10 hours of biological time in

the TIFF file format. The time-sequenced simulated images are then translated into

synthetic PET images for further analysis using radiomics. The translation step

involves two key steps: mapping the agent locations and associating them with

radiotracer uptake values, and matching the resolution of the simulated images
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Figure 3.1: Tumor growth simulation flowchart. The flowchart shows the
step sequence of how the simulation is initialized, how agents determine
their state, and how the PDE grids function (diffusion and consumption
of molecules)

to PET images. The time sequences of simulated cell maps were converted into

pseudo standardized tracer uptake value (pSUV) for the 18F-FDG tracer, which is

dependent on the type of individual cells. The relative tracer uptake values were

1, 8, 12, 0 for normal cells, tumor cells, hypoxic tumor cells, and necrotic cells,

respectively. Next, we used a Gaussian filter with a smoothing kernel to reduce

the simulated image resolution of 20µm to a typical PET resolution of ∼ 3mm.

Lastly, realistic intensity Gaussian noise was also added to make it more clinically

relevant. An example of time-sequenced translated images are shown in Figure

4.2.
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Figure 3.2: Moore neighbourhood. Represents the eight locations surround-
ing the center pixel, in this case an agent, that border an edge or a corner
of the cell. The arrows indicate the possible locations an agent can di-
vide into in a Moore neighbourhood. Figure adapted from [9]

3.2.1 Advantages of Using Synthetic PET Images

There are two clear reasons to why we chose to use synthetic PET images from

the tumor growth simulation for radiomics analysis. First, the model begins from a

single tumor cell allowing us to obtain images throughout the progression of tumor

growth to study the evolution of image features with biological time. Such infor-

mation is impossible to obtain from human subjects since PET imaging involves

ionizing radiation that limits the maximum radiation dose that can be administered

to a patient. The second advantage is that we can test with any combination of bio-

logical parameters in the simulation within the biologically feasible range to study

the affects on tumor progressions and image properties. The hybrid model is also

extremely flexible and allows us to add layers of PDE grids to model with different

molecules of interest.
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3.3 Radiomics Analysis
The translated synthetic PET images were analyzed using MATLAB functions for

radiomics analysis which is used widely in radiomics research. We used the typ-

ical 40% SUVmax to determine the ROI in the synthetic PET images. To asses

the plausibility of our model, we computed four conventional PET radiomic fea-

tures that have been validated for its reproducibility and significance [22]. The

four features are mean pSUV, shape-compactness, texture-contrast, and texture-

homogeneity. The simulations produced time sequenced images of tumor growth

at every 10 biological hours, so the features were also extracted at the same inter-

val. For the extraction process, all ROI’s were converted into gray-scale to gener-

ate gray-level co-occurrence matrices with all four offsets defined as described by

Haralick. The list of MATLAB functions and user-defined functions used for the

analysis is shown in Table 3.2.

Table 3.2: MATLAB functions for radiomics analysis.
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Chapter 4

Results

4.1 Agent Grid + Oxygen PDE Grid
We were able to generate three types of tumors with distinct phenotypes using

different combinations of microparameters in the hybrid mathematical model for

tumor growth (Figure 4.1). The adjusted parameters were blood vessel density

(Types A,C: 20/mm2, Type B: 100/mm2), spatial arrangement of vessels (A,C: Ran-

dom placement, B: Uniform density placement), and tumor vascular network alter-

ations. The third parameter specifically refers to the obstruction of blood vessels

due to tumor growth; this was modelled by introducing a probability of vessel re-

moval (A,B: 1, C: 0,05) by a cancer cell when the cell attempts to divide into a

vessel location. The vessels that are first to be obstructed represent smaller vessels

and the ones that remain until later stages of tumor growth depict larger vessels in

solid tumors.

The resulting simulated tumor images were translated into synthetic PET im-

ages with each pixel reflecting the corresponding pSUV values. Figure 4.2 shows a

series of translated Type C tumor images with its longitudinal growth. This demon-

strates that we can study the progression of the PET images properties with tumor

growth, which is one of the advantages of using the simulation as discussed in the

previous sections.

The synthetic PET images of the three different types of tumor were visually

distinguishable in the corresponding mean pseudo standard uptake value (pSUV)
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Figure 4.1: Simulated tumors with distinct tumor phenotypes. The model
with different combinations of tumor tissue microenvironments was
able to produce three tumor types with distinct tumor phenotypes.

PET images, reflecting the distinct phenotypic profiles. The comparison of the

growth rates for each type demonstrated that the model was able to produce diverse

and realistic growth rates of about 80-310 days to grow a 1cm diameter tumor (Fig-

ure 4.3). Using MATLAB radiomics analysis library, four radiomic features were

computed from the generated images: mean pSUV, shape-compactness, Haralick

texture-contrast, and Haralick texture-homogeneity. As shown in Figure 4.4, these

radiomic feature values were plotted as a function of tumor progression in biologi-

cal hours. Numerical values of the four features at their fully grown size are listed

in Table 4.1. With distinguishable feature values between tumor types, the combi-

nation of the four features enables unique association of the tumor phenotype with

its specific tissue parameters.

4.2 Agent Grid + Oxygen and Glucose PDE Grids
Followed by the simulation with the oxygen PDE grid, the model was further de-

veloped by adding a glucose PDE grid to track the ATP production rate based
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Figure 4.2: Translation of the Type C tumor longitudinal growth simula-
tion to PET images. Simulated images were translated into synthetic
PET images by converting the cell map into corresponding pSUV val-
ues.

Table 4.1: Radiomic feature values for 1cm tumors.

Feature Type A Type B Type C

pSUV 4.58 ± 0.03 7.63 ± 0.72 4.71 ± 0.04
Compactness 0.91 ± 0.01 0.95 ± 0.01 0.94 ± 0.005

Contrast 1.67 ± 0.08 1.58 ± 0.04 1.36 ± 0.1
Homogeneity 0.71 ± 0.01 0.80 ± 0.006 0.79 ± 0.01

on the nutrient concentrations. By changing the death probability from ATP de-

ficiency (Type D: 1- [AT P]local
DPR , Type E: 1-( [AT P]local

DPR )2), vessel density (D: 20/mm2,

E:100/mm2) , and vessel removal probability (D: 0.05, E: 1), we were able to gen-

erate two tumors with distinct phenotypic profiles. The preliminary results from

this simulation model are shown in Figure 4.5. Tumor type D showed significantly

increased tumor tissue dynamics throughout its growth compared to tumor type C,

which was simulated with the same blood vessel density and vessel removal prob-
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Figure 4.3: Biological time for tumor growth. The cell count was plotted
against the biological time to compare the growth rate of each tumor
type. The tumors were grown up to ∼ 1cm in diameter.

ability. The images also portray more realistic tumor tissue characteristics, which

closely resemble a molecular or histological image of a tumor. By simulating tu-

mor Type E, we were able to demonstrate that a necrotic core can be modelled

using this tumor growth simulation. With maximum vessel removal probability

and increased death probability from ATP deficiency, a pronounced necrotic re-

gion was generated with viable cells surrounding only the grid locations in close

proximity of active vessels.
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Figure 4.4: Radiomics analysis on synthetic PET images. Four PET ra-
diomic features were plotted against simulated biological time for tu-
mor growth. The mean and standard deviations of the data points were
calculated using three separate tumor growth simulation rounds. The
error bar represents one standard deviation.
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Figure 4.5: Two distinct tumor phenotypes simulated with oxygen and
glucose PDE grids. The tumor progression is shown at three different
time points (biological hours) until it reached 1cm in diameter. The
bottom panels represent the magnifications of the regions indicated with
the white box. 34



Chapter 5

Discussion

Tumor population is highly heterogeneous and under constant evolution towards

more malignant phenotypes which challenges effective cancer diagnosis and treat-

ment planning. Heterogeneous tumor cell populations have different sensitivity

to treatment. However, molecular classification of tumors are difficult to achieve

with the small region sampling due to intratumoral heterogeneity. In contrast, med-

ical imaging allows for visualization of heterogeneity in the entire tumor region.

This motivated us to develop the tumor growth model for studying the microscopic

changes and characteristics of tumor tissues reflected in PET imaging. We were

able to successfully generate five distinct tumor profiles using different combina-

tions of biological parameters.

The first three tumor types simulated with the oxygen PDE grid (Types A-

C) were analysed using quantitative PET radiomic features which showed distinct

progression patterns with tumor growth. This suggests that realistic tumor growth

can be achieved via simulating tumor tissue and its parameters, and the resulting

microscopic tumor phenotypes are measurable through PET imaging. This allows

us to establish the 1:1 correspondence between tumor phenotypic parameters and

PET radiomic features, which can be used as image-based biomarkers for cancer

diagnosis, prognosis, and tracking treatment outcomes.

The improved version of the simulation with the addition of glucose PDE was

able to produce two visually distinguishable tumor phenotypes. The addition of

glucose PDE grid significantly enhanced the ability to show the dynamics of the
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tumor tissues throughout their development. The resulting images were also dis-

playing more realistic features of solid tumors. In tumor Type D, the gradual re-

moval of smaller vessels resulted in viable tissue surrounding the larger vessels

that have not been removed; beyond the diffusion-limited range from the vessels

was a mixture of hypoxia and necrosis with some accumulation of necrotic cells.

The simulation of the Type E tumor features a definite necrotic core. With vessel

removal probability of 1, simulating the vessel removal including the larger ones,

we could observe that the center of the tumor became completely necrotic. These

results are consistent with what was seen in real solid tumor progressions studied

by other groups [11, 13, 38].

Medical imaging is known for its macroscopic visualization of tumor hetero-

geneity due to limited resolution of the imaging techniques. In this study, we

demonstrated that microscopic changes in tumor tissue can be observed and tracked

through macroscopic PET images via a novel method of using a tumor growth sim-

ulation model. This opens up the potential for radiomics studies on microscopic

tumor properties that could replace or complement histopathological approaches to

associate the predictive radiomic models with biological significance. Microscopic

information from the radiomic analysis would reduce the needs of invasive sam-

pling and molecular assays that are costly and burdening to patients. Additionally,

the current methods of biopsies on a small region of tumor cannot fully capture the

state due to the spatial and temporal heterogeneity. Contrarily, medical imaging is

a much less invasive method that can capture the entire region of interest; it pro-

vides a wealth of information that can be used to monitor tumor progression and

response to treatment. This also provides a significant potential to largely advance

precision medicine that have been hindered by the limitation to fully capture spatial

and temporal tumor heterogeneity through conventional sampling methods [2].

There are a few limitations to the simulation and its applications for back track-

ing the biological parameters from lower resolution PET images. Our method of

down-sampling the simulated tumor images to PET image resolution to see how the

microscopic changes are reflected in PET scans was a convenient process relative

to the reverse process. However, backtracking from the macroscopic PET images

to microscopic tumor properties would be much more difficult. This suggests that,

the mechanism for extrapolating the biological parameters and tumor phenotypes
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given a real PET image still remains a challenge. Also, the model has an upper limit

to the dimensionless diffusion coefficient of molecules and any value over the limit

will disturb the partial differential equations making it unstable. This requires time

increment of the diffusion and consumption steps to be extremely small (∼0.03s

in this model) relative to the cellular (agent) time step of 1 hour between every

iteration. This required thousands of diffusion steps between cell steps to achieve

steady state, which demands for a progressively greater computational power.
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Chapter 6

Future Directions

This study demonstrated the possibility of using tumor growth simulations to study

the relationship between tumor tissue microparameters and the resulting heteroge-

neous tumor phenotypic profiles captured in PET images. The identified 1:1 link

between PET image features and tumor tissue characteristics can be used as image-

based biomarkers for personalized cancer diagnosis and treatment planning.

The unique strength of the hybrid model allows for further expansion and

development of the model with additional PDE grids. For instance, the altered

metabolism increases acid production, which affects the pH of the microenviron-

ments [6]. Tumor cells are better adapted to acidic conditions than normal cells

which promotes their aggressive growth and invasion into normal tissue. Another

example is polypeptide growth factors (GF) associated with cancer progression;

these molecules are involved in resistance to therapy and colonization of distant

tissues [37]. All of these could be incorporated into the hybrid model by adding

PDE grids for protons (H+) and GF for a more realistic simulation. The increased

biological relevance could offer more insight into the interlink between PET im-

age properties and tumor tissue characteristics. Once the model becomes complete

enough to accurately simulate a real biological tissue, it can be used as a reference

for simulating the effectiveness of cancer drugs and radiation therapy.

Another improvement can be made in the translation process of simulated im-

ages into synthetic PET images. The current method was to translate the relative

tracer uptake values of the cell types into pSUV values and to apply the Gaussian
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filter and noise across the entire image. However, this does not account for the

many sources of errors in a realistic PET scan, such as scatter and random coin-

cident events. A more realistic approach for the translation would be to perform

a Monte Carlo simulation of the photon emission (while the two emitted photons

make a 180◦) with annihilation rates that depend on the individual cell’s glucose

consumption rates. Here, the consumption rates can be obtained and stored from

the simulation as an image matrix at each cell step. The simulated photon emis-

sions can be detected by a hypothetical detector ring and the sinogram produced

can be reconstructed into a synthetic PET image.

Lastly, the current model simulates tumor growth in 2D (a plane of a single

layer of cells) , while real solid tumors would grow in three dimensions. Tumor

growth simulation in 3D can be done using the hybrid mathematical model with a

3D lattice grid. Adding the third dimension will certainly make the model more

realistic and applicable to the biological systems.
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[22] M. M. Krarup, L. Nygård, I. R. Vogelius, F. L. Andersen, G. Cook, V. Goh,
and B. M. Fischer. Heterogeneity in tumours: Validating the use of radiomic
features on 18f-fdg pet/ct scans of lung cancer patients as a prognostic tool.
Radiotherapy and Oncology, 144:72–78, 2020.
doi:10.1016/j.radonc.2019.10.012. → pages 28

[23] P. Krzyszczyk, A. Acevedo, E. Davidoff, L. Timmins, I. Marrero-Berrios,
M. Patel, C. White, C. Lowe, J. Sherba, C. Hartmanshenn, K. O’Neill,
M. Balter, Z. Fritz, I. Androulakis, R. Schloss, and M. Yarmush. The
growing role of precision and personalized medicine for cancer treatment.
Technology (Singap World Sci), 6(3-4):79–100, 2018.
doi:10.1142/S2339547818300020. → pages 3

[24] M. V. Liberti and J. W. Locasale. Correction to: ‘the warburg effect: How
does it benefit cancer cells?’. Trends in Biochemical Sciences, 41(3):287,
2016. doi:10.1016/j.tibs.2016.01.004. → pages 7

[25] F. Mahmood and W. Abbas. Texture features analysis using gray level
co-occurrence matrix for abnormality detection in chest ct images. Iraqi
Journal of Science, 57:279–288, 02 2016. → pages viii, 18

[26] B. McGuire and T. Secomb. Estimation of capillary density in human
skeletal muscle based on maximal oxygen consumption rates. Am J Physiol
Heart Circ Physiol, 285(6):2382–2391, 2003.
doi:10.1152/ajpheart.00559.2003. → pages 8

[27] A. Minchinton. Ubc phys 405: Radiation biophysics [powerpoint slides],
2020. → pages vi, 9, 10

42

http://dx.doi.org/10.1016/j.ymeth.2020.05.022
http://dx.doi.org/10.1101/865048
http://dx.doi.org/10.1148/rg.242025724
http://dx.doi.org/10.1016/j.radonc.2019.10.012
http://dx.doi.org/10.1142/S2339547818300020
http://dx.doi.org/10.1016/j.tibs.2016.01.004
http://dx.doi.org/10.1152/ajpheart.00559.2003


[28] F. Orlhac, M. Soussan, J.-A. Maisonobe, C. A. Garcia, B. Vanderlinden, and
I. Buvat. Tumor texture analysis in 18f-fdg pet: Relationships between
texture parameters, histogram indices, standardized uptake values, metabolic
volumes, and total lesion glycolysis. Journal of Nuclear Medicine, 55(3):
414–422, 2014. doi:10.2967/jnumed.113.129858. → pages 4, 6

[29] A. C. Papanicolaou. Positron Emission Tomography: Blood Flow and
Metabolic Imaging. Oxford University Press, 2017. → pages vii, 11, 12, 14

[30] V. Parekh and M. Jacobs. Radiomics: a new application from established
techniques. Expert Rev Precis Med Drug Dev, 1(2):207–226, 2016.
doi:10.1080/23808993.2016.1164013. → pages vii, 16

[31] M. Robertson-Tessi, R. J. Gillies, R. A. Gatenby, and A. R. Anderson. The
importance of metabolic heterogeneity and its consequences on tumor
invasion, metastatic growth, and treatment. Tumor Microenvironment, 2013.
doi:10.1158/1538-7445.tim2013-a2. → pages 8

[32] S. Rockwell, I. Dobrucki, E. Kim, S. Marrison, and V. Vu. Hypoxia and
radiation therapy: Past history, ongoing research, and future promise.
Current Molecular Medicine, 9(4):442–458, 2009.
doi:10.2174/156652409788167087. → pages 9

[33] A. Tellechea, A. Kafanas, E. Leal, F. Tecilazich, S. Kuchibhotla, M. Auster,
I. Kontoes, J. Paolino, E. Carvalho, L. Pradhan, and A. Veves. Increased skin
inflammation and blood vessel density in human and experimental diabetes.
The international journal of lower extremity wounds, 12, 02 2013.
doi:10.1177/1534734612474303. → pages 8

[34] Y. Tsujimoto. Apoptosis and necrosis: Intracellular atp level as a
determinant for cell death modes. Cell Death amp; Differentiation, 4(6):
429–434, 1997. doi:10.1038/sj.cdd.4400262. → pages 10

[35] T. C. Vander Heiden MG, Cantley LC. Understanding the warburg effect:
The metabolic requirements of cell proliferation. Science, 324(5930):
1029–1033, 2009. doi:10.1126/science.1160809. → pages vi, 7

[36] M. WIEDEMAN. Dimensions of blood vessels from distributing artery to
collecting vein. Circulation Research, 12(4):375–378, 1963.
doi:10.1161/01.RES.12.4.375. → pages 6

[37] E. Witsch, M. Sela, and Y. Yarden. Roles for growth factors in cancer
progression. Physiology, 25(2):85–101, 2010.
doi:10.1152/physiol.00045.2009. → pages 38

43

http://dx.doi.org/10.2967/jnumed.113.129858
http://dx.doi.org/10.1080/23808993.2016.1164013
http://dx.doi.org/10.1158/1538-7445.tim2013-a2
http://dx.doi.org/10.2174/156652409788167087
http://dx.doi.org/10.1177/1534734612474303
http://dx.doi.org/10.1038/sj.cdd.4400262
http://dx.doi.org/10.1126/science.1160809
http://dx.doi.org/10.1161/01.RES.12.4.375
http://dx.doi.org/10.1152/physiol.00045.2009


[38] H. Yamaura and H. Sato. Quantitative studies on the developing vascular
system of rat hepatoma. J Natl Cancer Inst, 53(5):1229–1240, 1974. →
pages 8, 36

[39] J. Yokota. Tumor progression and metastasis . Carcinogenesis, 21(3):
497–503, 2000. doi:10.1093/carcin/21.3.497. → pages 5

44

http://dx.doi.org/10.1093/carcin/21.3.497

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction and Motivation
	2 Theory and Background
	2.1 Cancer Biology
	2.1.1 Normal and Tumor Cell Metabolism
	2.1.2 Tumor Vascular Network and Alterations
	2.1.3 Hypoxia
	2.1.4 Apoptosis and Necrosis

	2.2 Positron Emission Tomography
	2.2.1 Radiotracer
	2.2.2 Signal Detection and Reconstruction

	2.3 Radiomic Features
	2.3.1 Image Acquisition and Segmentation
	2.3.2 Radiomic Features Extraction
	2.3.3 Features Analysis

	2.4 Hybrid Mathematical Modeling
	2.4.1 Agent Grid
	2.4.2 Partial Differential Equation Grid


	3 Methods
	3.1 Tumor Growth Model
	3.1.1 Types of Agents
	3.1.2 Simulation Details

	3.2 Translating Simulated Images to PET Images
	3.2.1 Advantages of Using Synthetic PET Images

	3.3 Radiomics Analysis

	4 Results
	4.1 Agent Grid + Oxygen PDE Grid
	4.2 Agent Grid + Oxygen and Glucose PDE Grids

	5 Discussion
	6 Future Directions
	Bibliography

