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Abstract

The Large Hadron Collider (LHC) has yet to find new physics that could ad-

dress the Standard Model’s (SM) large open questions such as the composition

of Dark Matter and the matter-antimatter asymmetry of the universe. There have

been recent searches for Hidden Sector (HS) particles through the investigation of

pair-production of neutral long-lived particles (LLPs) in proton-proton collisions.

The ATLAS collaboration recently published results using a partial dataset from a

search for paired LLP decays that produce displaced hadronic jets in the ATLAS

calorimeter. Several classification models have been studied to identify these LLP

decays, including boosted decision trees and LSTMs. In this analysis, 1D convo-

lutional layers were added to an existing model architecture, which significantly

improved the performance. Following hyperparameter optimization, the proposed

model achieved a ROC AUC score of 0.97; a 10% relative improvement over the

previous model.
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Chapter 1

Introduction

This chapter provides a brief introduction to the world of particle physics and the

motivation for this study.

1.1 The Standard Model
The Standard Model (SM) of particle physics describes our current understanding

of the fundamental particles and their interactions. However, many open questions

such as the matter-antimatter asymmetry of the universe [4], and the composition

of Dark Matter [5] cannot be answered by the Standard Model, rendering it an

incomplete model. In response, physicists have proposed new models which extend

the SM in order to address some of its limitations. One class of such models are

Hidden Sector (HS) models [6] [7]. These models predict a new set of particles,

only weakly coupled to the SM, resulting in experimental signatures containing

particles not charged under the SM (so not visible in the detectors) that decay to

SM particles with a measurable lifetime. HS models could provide answers to the

open SM questions presented above, in particular the nature of Dark Matter.

The components of the SM shown in Figure 1.1 are the fundamental building

blocks of all ordinary matter. For example, subatomic particles such as protons and

neutrons are each composed of three valence quarks and held together in a band

state by the strong force, i.e. gluons. This is the definition of a hadron.
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Figure 1.1: The Standard Model of particle physics. It describes our current
understanding of the fundamental particles and their interactions. The
model is considered incomplete due to its inability to answer several
major questions about the universe, most notably the composition of
Dark Matter. Image taken from [1].

1.2 The ATLAS Experiment
This study will use simulation from A Toroidal LHC ApparatuS (ATLAS), a general-

purpose particle detector containing many layers of sub-detectors. It is located

at the world’s largest particle accelerator, the Large Hadron Collider (LHC) situ-

ated along the Swiss-French border. Along with Compact Muon Solenoid (CMS),

another detector around the collider, ATLAS measurements observed the long-

predicted Higgs Boson in 2012 [8]. Inside the LHC, bunches of protons are accel-

erated to near light speeds in opposite directions around the ring and collide with

each other at specific points. Specifically, during Run 2 of the LHC (2015-2018)

the center of mass energy was 13 TeV for proton-proton collisions. This tremen-

dous amount of energy along with a frequency of 108 physics-related events per

second, generated countless particles that either decayed in the detectors, or left

the apparatus undetected.
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1.2.1 ATLAS detector sub-systems

Due to the variety of particles that arise from proton collisions, many layers of dif-

ferent detectors combined in ATLAS provide clues to identifying a particle. These

clues make up what is known as a particle signature. Figure 1.2 illustrates the sub-

systems of ATLAS. Their descriptions are provided in the list below. It should be

emphasized that the proton-proton collisions occur at the center of the detector.

1. Inner Detector (ID): The innermost layer of the detector measures the tra-

jectories of electrically-charged particles. From the curvature of the recon-

structed trajectories their momentum can be inferred.

2. Electromagnetic Calorimeter (ECAL): Calorimeters are devices designed

to absorb and measure the energy of particles that reach them. The topology

of calorimeters consists of clusters of cells. As such, the specific clusters

a particular particle hits is of high relevance to particle identification. The

ECAL is the first of two calorimeters in ATLAS and is specialized in mea-

suring the energy of photons and electrons.

3. Hadronic Calorimeter (HCAL): The HCal measures the energy of hadrons

(e.g. protons, neutrons).

4. Muon Spectrometer: The main purpose of the final layer is to track muons,

an elementary particle similar to the electron as they, along with neutrinos,

are not stopped in the calorimeters. The muon spectrometer is also seg-

mented. The detector principle is similar to the ID in that it allows the re-

construction of the trajectory of charged particles in a magnetic field. The

parts of the muon spectrometer exhibiting energy deposits (hits) consistent

with a charged particle are called muon segments. Note, any charged parti-

cle that has not yet decayed in the calorimeters will be detected in this final

layer.

1.2.2 Jets

A major component of hadron collider experiments is the reconstruction and anal-

ysis of jets which are roughly cone-shaped clusters of particles. Typically, jets

3



Figure 1.2: A diagram of a slice of ATLAS while looking down into the cylin-
der. The innermost layer (ID) is composed of detectors that track trajec-
tories of charged particles. The next two layers are the electromagnetic
calorimeter (ECal) and hadronic calorimeter (HCal). Calorimeters are
designed to absorb the energy of particles that pass through them, even-
tually stopping the particle. Electrons and photons are absorbed in the
ECal, while hadrons get absorbed in the HCal. The final layer is the
muon spectrometer which is designed to measure muons and any other
charged particle that has not yet been stopped. Figure from [2].

originate from quarks or gluons (elementary particles) that decay and radiate then

form into hadrons (composite particles). The layers of the ATLAS detector make it

possible to piece together the low-level and high-level characteristics of a particu-

lar jet. Tracks, calorimeter cluster deposits, and muon segments constitute the low

level constituents of a jet. The high-level jet variables used in this study are given

by the four-momentum of the jets, namely:

• Pseudorapidity (η): Describes the angle in relation to the axis of the detec-

tor cylinder, and thus beam axis.

• Transverse momentum (pt): The component of momentum transverse/per-

pendicular to the axis of the detector.

• Angle (φ ): The angle in the transverse plane.

4



1.3 The Central Problem
To date, no physics outside of the Standard Model has been discovered at the LHC.

For this reason, researchers have broadened their search to more complex particle

signatures. In particular, a number of studies search for particles that decay to SM

particles only after a measurable distance in the detector. Many extensions to the

SM theorize the existence of such long-lived particles (LLP). A paper published by

the ATLAS collaboration ([9]) considers a heavy neutral boson decaying to a pair

of neutral LLPs. In their search, the signature of interest is LLPs decaying in the

ATLAS calorimeters. A model capturing the complexities of this signal was devel-

oped so that it could be differentiated from the highly abundant background. The

initial classification model consisted of a Boosted Decision Tree; a relatively sim-

ple machine learning algorithm. An ongoing analysis has revamped this model to

leverage the recent developments of highly complex machine learning algorithms.

This approach builds off the successes of similar complex models applied in other

physics analyses [10], [11].

In this analysis, the application of a novel machine learning algorithm to the

current classification model is explored. Specifically, this paper proposes a mod-

ified architecture consisting of adding 1D convolutional layers. The goal is to

further improve the LLP jet classification model. An improvement to the model

would increase the discovery potential of a Hidden Sector particles which could

answer some of the Standard Model open questions.

5



Chapter 2

Theory

2.1 Long Lived Particles
Figure 2.1 displays the Feynman Diagram of the theorized HS model generating

the signature of interest. Two protons (p) collide to form a heavy neutral boson

(Φ). The boson then decays to two long-lived scalar particles (s) which in turn

each decay to a fermion-antifermion pair ( f , f̄ ). Both the boson and the long-

lived particles are invisible to the detector, indicated by the dotted lines in the

diagram. The four fermion final state is the observable signature inside ATLAS.

Due to the long lifetime of s considered in this model, each LLP decaying to a

fermion-antifermion pair is postulated to decay to a displaced jet just before or in

the first layers of the ATLAS calorimeters thus depositing most of their energy in

the HCal. This restriction can be expressed by a high ratio of energy deposited

in the HCal relative to the ECal (Equation 2.1). Other expected characteristics of

the signal jet include a lack of tracks and narrow jet widths. A model exhibiting

some of these discussed signal jet features is shown in Figure 2.2. It should be

emphasized that this study is interested in searching for pairs of these types of jets.

CalRatio =
EHCal

EECal
(2.1)
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Lifetime of s (τs)

Interaction point (IP)

Figure 2.1: The Feynman diagram of the theoretical particle decays that cre-
ate the signature of interest. Two protons (p) collide to form a heavy
scalar boson (Φ). The boson decays to two neutral long-lived particles
(s) which then both decay to a fermion-antiferminion pair ( f , f̄ ). Over-
all this model serves as a benchmark for searching paired LLPs. Figure
taken, with permission, from ATLAS analysis team.

Figure 2.2: A diagram depicting a trackless-displaced jet. The dotted line
again indicates no detection by the detector. Important high-level vari-
ables measured at ATLAS are also shown here. Pseudorapidity (η) is
a spatial coordinate related to the angle of the particle in relation to the
beam axis. φ is the angle of a particle in the transverse plane.
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2.2 Backgrounds
Two types of jets which mimic signal are considered in this analysis.

2.2.1 Quantum Chromodynamics (QCD)

Although the least probable to resemble signal, QCD is the most abundant form

of background. QCD multi-jets are simply decays to the SM from proton-proton

collisions. A cluster of neutrons for example, decaying to other hadrons in the

HCal could confuse the classification model with signal. Detector measurement

errors could also contribute to a QCD jet reassembling signal.

2.2.2 Beam Induced Background (BIB)

BIB stems from muons generated from proton interactions with the collider beam

gas or the collimators. This occurs prior to the protons reaching the ATLAS de-

tector. These muons travelling parallel to the beam pipe could deposit energy in

calorimeters creating a trackless jet.

2.3 Supervised Machine Learning
A multi-class classification model is needed to classify jets (this is a jet by jet

not event level classification) as either signal, QCD, or BIB. The complexity of

the classification problem at hand requires the unprecedented pattern-identification

ability of novel machine learning algorithms. In the context of classification, super-

vised machine learning consists of systematically tuning weights of a function that

describes the relationship between some input and discrete output by comparing

the predicted outputs to ground truth. The variables that describe a particular input

are referred to as features and the discrete classes the model is trying to predict

are called labels. In the context of this analysis, the features are all the low-level

and high-level variables that describe a particular jet e.g. track, constituent, muon

segment, and pT . The jet types (i.e. Signal, QCD, or BIB) are the labels.

L(y, ŷ) =−
M

∑
j=0

N

∑
i=0

(yi j ∗ log(ŷi j)) (2.2)

8



A supervised model tunes/learns its weights via a loss function which deter-

mines how close the predictions are to the truth values. The loss function for a

typical multi-classification problem, and the one used in this study, is given by

Equation 2.2. It is known as the categorical cross entropy loss function. ŷ is the

predicted value, y is the truth label, M is the number of classes, and N is the num-

ber of samples. Discrete outputs with n possible labels are converted to an array of

length n. The value 1 is set to the index corresponding to the discrete class and 0s

are set everywhere else, a technique called one-hot encoding. Given this descrip-

tion, it is simple to verify the presented loss function is a sum of separate loss for

each class label per observation. Iterative optimization algorithms make it possible

for the model loss to be minimized. The optimizer used in this analysis is Nadam

[12]. The whole procedure of minimizing the loss function and tuning weights of

the model is referred to as the training phase. It is crucial for the data used for

model training to be independent from the data used for testing to avoid a biased

model. A common metaphor used to illustrate this constraint is a student getting

access to the answers of an exam prior to writing it versus the student getting access

to similar previous exams. When a model has excessively tuned its weights to the

point it has learned the complexities of the noise in the training data, the model is

said to have overfitted. A standard technique to monitor model performance during

training is to regularly evaluate the model on a separate dataset called the valida-

tion dataset. This provides insight into how well the model is doing and indicates

the possibility of overfitting.

2.4 Deep Learning
Deep learning is an area of machine learning inspired by the complex neural net-

works of human brains. Networks are composed of interconnected layers of artifi-

cial neurons or nodes. In a simple feed-forward neural network, each node has an

associated weight and bias, and its output is fed into an non-linear function called

an activation function. The correct weights and biases of these nodes to match

any given input to its corresponding output is determined during model training.

Multiple layers of nodes and large numbers of nodes in each layer make it possible

for the network to automatically learn highly complex and discriminative features.

9



This capability relates to the dominance of deep learning for complex classification

tasks, in comparison to other machine learning algorithms.

The following two subsections provide technical details of the specific deep

learning algorithms discussed throughout this paper.

2.4.1 Recurrent Neural Network (RNN)

Recurrent Neural Networks are a class of artificial neural networks with a powerful

ability to model sequential data. The assumption made in standard neural networks

is that the data is Independent and Identically Distributed (IID). In other words, no

information/context is lost if samples are randomly selected from a dataset. In

many problems however, this is not the case. For example, a model that tries to

predict the next word in a sentence needs to have information about the parts of

the sentence that came before it. RNNs solve this problem by not making the

IID assumption and instead retain information on the inputs the model has seen

so far by having loops in the network nodes. The output of the model is therefore

dependent on both the current input and the inputs before it. As a result, these

models perform exceptionally well in finding patterns in data containing variable

length sequences.

2.4.2 1D Convolutional Neural Network (CNN)

Convolutional Neural Networks are a class of artificial neural networks centered

around the idea of convolutions. Series of filters or feature detectors capture lo-

calized information as they move across an input such as pixels of an image. This

operation is called a convolution. The filters themselves are nothing more than

a matrix with adjustable weights that produce an output when multiplied by por-

tions of an input matrix. The goal is for a network to tune these filters such that

high-level features are extracted.

In the case of 1D CNNs, the width of a filter is the width of the input matrix.

This implies the filter can only move across rows and not across columns (i.e. 1

dimension). The filter is also referred to as the kernel and the height of the filter is

called the kernel size. The example of a 1D Convolutional layer shown in Figure

2.3 has a filter with kernel size 3.

10



Figure 2.3: Diagram depicting a single 1D Convolutional layer with 1 filter
of kernel size 3. At each step of the convolution, matrix multiplication
is applied between the filter matrix and the portion of the input matrix
covered by the filter. This operation is repeated as the filter moves down
row by row along the input matrix. Original diagram taken from [3].

11



Chapter 3

Methods

The Python programming library Keras [13], with the TensorFlow [14] back-end,

was used throughout this study to implement and modify networks.

3.1 Current Network Configuration
The current architecture of the LLP tagger developed by the UBC ATLAS group is

a deep Recurrent Neural Network. It leverages Long Short-Term Memory (LSTM)

Networks, specialized RNN layers capable of learning long-term dependencies, an

ability standard RNN layers are known to lack [15]. These specialized layers solve

the issue of being unable to learn the connections between relevant information and

the current inputs when the gaps (i.e. how much data has been fed into the model

since a particular set of inputs) between the two are too big. This makes LSTMs

highly effective at learning dependencies across arbitrary sized sequential data.

Each jet fed into the network is truncated at 20 tracks, 30 constituents, and 30

muon segments. Features of these jet components consist of the various possible

measurements made by the ATLAS detector such as transverse momentum, pseu-

dorapidity, angle in the transverse plane, layer fraction, and timing information.

Figure 3.1 provides a graphical representation of the current architecture.

In addition to a preconfigured network, preprocessed and transformed data was

also available at the start of the project. The number of events and the distinction

between simulated and real data is shown in Table 3.1. Details specifying the

12



Figure 3.1: A simplified diagram depicting the deep learning based LLP tag-
ger developed by the UBC ATLAS collaboration. The model leverages
Long Short-Term Memory (LSTM) networks, specialized RNN layers
capable of learning long-term dependencies. Consequently, the original
network will be referred to as the LSTM model. The full architecture is
displayed in Appendix A.1.

Event Type Simulated/Real Number of Events

Signal Simulated 660,134
QCD Simulated 766,056
BIB Real 661,176

Table 3.1: Presented here are the number of events available per jet class, and
whether the event is simulated or real. In total, the full dataset consists
of 2,087,366 events.

methods used to generate simulated events is described in [9]. In essence, the

pipeline presented above effectively served as the starting point of this study.

13



3.2 Exploring the Ordering of Transverse Momentum
LSTMs are particularly well-suited for temporal modeling, where inputs feeding

into the network layers are expected to be ordered in some way. By default, tracks

and constituents are sorted by descending pT during the pre-processing phase, to

take advantage of this fact. Although muon segments also feed into an LSTM, it is

not possible to sort them by pT since it is a missing feature. It is worth noting that

this ordering is somewhat arbitrary and does not translate to any physical meaning.

However, since some variables can be more accurately modeled than others, there

is likely an optimal ordering to the inputs. Hence, the first study focused on deter-

mining whether transverse momentum is an appropriate ordering for inputs tracks

and constituents. Models were trained with three different pT -ordered datasets:

descending, ascending, and random.

3.3 Modifying Model Architecture
The CMS collaboration published a paper [16] on training a deep neural network to

classify b jets using proton-proton collision data measured with the CMS detector.

The model architecture presented in their paper is a feedforward neural network

consisting of CNN, LSTM, and Dense layers. Specifically, the CNN layers are

1D convolution filters with kernel size 1. Although several studies [17], [18] have

shown this unified architecture is highly effective in applications that benefit from

both temporal and spatial modeling, the former does not apply to the CNN layers in

the b jet tagger. Instead, they perform global feature extraction and dimensionality

reduction, without a spatial aspect since these filters capture a single row at a time.

The addition of these 1D convolutional layers output highly discriminating and

compressed features which feed into the LSTMs.

Inspired by this, in this second study, the addition of 1D convolutional layers

with kernel size 1 to the current LLP tagger model is explored. Henceforth, the

proposed model will be referred to as Conv1D + LSTM. The inputs track, con-

stituent, and muon segment now feed into Conv1D layers before passing through

the LSTMs. The number of Conv1D layers and filters were initialized to match

the configuration outlined in [16]. An initial comparison was made to verify the

addition of Conv1D layers does indeed improve the performance of the network.

14



Hyperparameter Values Count

Learning rate 0.000025,0.00005,0.0001,0.0002,0.0004 5
Regularization 0.001,0.0025,0.005,0.01 4

Final Conv1D layer
16,12,8 for Constituent and Track

8,6,4 for Muon Segment
3

Table 3.2: Hyperparameter search space for the grid search. The count col-
umn displays the number of different values tested per hyperparameter.
In total 5x4x3 = 60 unique model configurations were trained. Final
Conv1D layer represents the number of respective filters for each of the
3 CNNs in the network and are referenced by their input data. Note, in
attempt to reduce the search space (and to reduce computational load)
this was treated as a single hyperparameter.

Following this step, the hyperparameters of the proposed architecture were op-

timized through a grid search, an effective yet computationally expensive model

optimization technique. The search space consisted of 5 values for learning rate, 4

values for regularization, and 3 values for the number of filters in the final Conv1D

layer. The specific values tested are shown in Table 3.2. Note, the learning rate

and regularization values used for training the model in the previous study were

0.00005 and 0.001 respectively. The following are short descriptions for each hy-

perparameter part of the search space:

• Learning Rate: Size of the adjustments made to the model weights with

respect to the loss gradient. Also known as step size.

• Regularization: An additional term to the loss function which penalizes

model complexity to avoid overfitting.

• Number of filters in final Conv1D layer: Determines the width of the input

matrices feeding into the LSTMs. This was part of the grid search to validate

the usefulness of dimensionality reduction. For example, the Track input is

a 20x13 matrix which reduces to 20x8 if the final Conv1D layer contains 8

filters.
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3.4 Model Metrics
The next two subsections provide descriptions of two metrics this analysis used to

evaluate model performance.

3.4.1 Accuracy

Recall, the final output of the network is a probability for each jet class. A given jet

is considered accurately labeled if the ground-truth label matches the jet class with

the highest probability. In order to measure a model’s accuracy over a given dataset,

model predictions for every jet are gathered. The accuracy is simply calculated as

the number of correctly labelled jets divided by the total number of jets classified.

3.4.2 ROC AUC

A useful tool commonly used in binary classifier systems is a Receiver Operat-

ing Characteristic (ROC) curve. It provides graphical insight into the classification

performance across all possible threshold values. The Area Under Curve (AUC) is

defined as the total area under a ROC curve and represents the degree of separa-

bility. A value of 1 corresponds to a perfect classifier while 0.5 is equivalent to a

randomly guessing network.

The following is a description of a specialized ROC curve tailored to the multi-

class LLP tagger. This curve is generated by plotting QCD rejection against LLP

efficiency. LLP tagging efficiency is defined as the fraction of times the network

correctly tagged a jet as signal (Equation 3.1) while QCD rejection is equivalent

to 1 over the False Positive Rate (FPR) (Equation 3.2). Table 3.3 defines the terms

in these equations. The final jet class is integrated into the plot via the quoted

BIB efficiency, a discrete value corresponding to the proportion of true BIB jets

classified as BIB. This value determines the initial cut/separation to the three jet

class distributions prior to generating the ROC curve. For this analysis, the BIB

efficiency was set to 0.968 to be consistent with the BIB efficiency achieved in the

previous analysis [9].

LLP Tagging Efficiency =
T P

T P+FN
(3.1)
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True Signal True QCD background

Classified as Signal True Positive (TP) False Positive (FP)
Classified as QCD False Negative (FN) True Negative (TN)

Table 3.3: Table describing the terms in Equations 3.1 and 3.2.

QCD Rejection =
FP+T N

FP
(3.2)

3.5 K-Fold Cross Validation
K-Fold Cross Validation (CV) is a powerful statistical technique used through-

out this study to validate and compare models. It consists of randomly splitting

the training data into k partitions and training a model for each possible training-

validation pair. This produces k different models, such that each model is trained

on k− 1 partitions of the data, and each partition acts as the validation set for ex-

actly one model. This technique results in a less biased, or more accurate estimate

of the model skill than other methods.
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Chapter 4

Results and Discussion

4.1 Re-ordering Transverse Momentum
The model trained with random pT ordered data performed poorly in comparison

to the models trained with ordered pT data. Results of a 5-Fold cross validation are

shown in Figure 4.1. Descending pT seemed to be slightly better than ascending

pT and as a result the descending pT dataset was used in the subsequent study.

From the results, transverse momentum appears to be a suitable ordering for

the track and constituent inputs. It is worth observing that the mean performance

was slightly higher in models trained with descending ordered data compared to

ascending. Repeated experiments showed conflicting results and it is still unclear

whether this small difference is significant. Regardless, the improved performance

with sorted data compared to unsorted data is enough to justify either direction of

ordering.
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Figure 4.1: 5-Fold cross validation comparing the impact of pT ordering on
the model performance. The distribution of the model metrics are rep-
resented as boxplots. The mean is shown by the orange line, the top
and bottom of the box represent the 75th and 25th percentile respec-
tively, and the whiskers represent the maximum and minimum. Models
trained with sorted pT data performed better in both accuracy and ROC
AUC.
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Figure 4.2: 5-Fold cross validation comparing model architectures. The com-
bined architecture Conv1D + LSTM outperformed the models LSTM
and Conv1D.

4.2 Modifying Model Architecture
A 5-Fold cross validation was performed to evaluate the new proposed architec-

ture of adding 1D Convolutional layers. In addition to training the original and

new model architectures, a third model consisting of Conv1D, GlobalAveragePool-

ing1D, and Dense layers (referred to as the Conv1D model) was also trained. The

Conv1D layer configuration including the number of filters for each layer, was set

to closely match the configuration outlined in the DeepJet b tagging algorithm [16]

due to the similar input and output shapes of the 1D CNNs. The Conv1D + LSTM

architecture outperformed both models in accuracy and ROC AUC. It was also

found that the Conv1D model (no LSTM layers) and the LSTM model achieved

similar performance. Results of the 5-Fold cross validation are shown in Figure

4.2.
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4.3 Optimizing Hyperparameters
Following the completion of the grid search, correlations were calculated between

the hyperparameters from the search space and the model evaluation metrics. A

strong positive correlation was found between learning rate and model perfor-

mance. Their relationship is shown in Figure 4.3 which plots the mean ROC AUC.

Though far less significant, a negative correlation was found between regular-

ization and model performance. Figure 4.4 plots the average ROC against regular-

ization for each of the different learning rate values from the search space. A curve

was plotted for each learning rate to better visualize the effect of changing the

regularization. A subtle trend in better performance is seen when decreasing regu-

larization. Finally, little dependency was found on varying the number of filters in

the final Conv1D layers with the model metrics.

The final adjustment made to the Conv1D + LSTM architecture was decreasing

the number of nodes in the LSTM layers resulting in a decrease in trainable param-

eters. The motivation for this adjustment comes from the general notion that the

more parameters there are to train, the more likely it is for the model to overfit to

the training data. This reduction from 150 to 60 nodes in the LSTM decreased the

variability of the model performance, and increased the mean classification ability.

Results from a 4-Fold CV comparing the effect of this adjustment are displayed in

Figure 4.5.

To summarize, the best Conv1D + LSTM model was trained with a learning

rate of 0.0004, regularization of 0.001, and 60 nodes for the LSTM layers. All the

modifications made to the original LSTM network are reflected in the model archi-

tecture diagram shown in Figure 4.6. Table 4.1 provides a summary of the relative

improvements achieved by the proposed model. There is a 10% ROC AUC im-

provement in comparison to the original model, clearly indicating the architecture

Conv1D + LSTM is a major improvement to the deep learning LLP tagger.

4.3.1 Insights from Grid Search

Learning rate is arguably the most important hyperparameter to tune on a given

network and its optimal value is highly dependent on the model architecture, opti-

mizer, and loss function. Too small of a value can result in the loss converging to
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Figure 4.3: Grid search results showing the positive correlation between
learning rate and model performance. 12 different models were trained
for each learning rate value. Prior to the grid search, the learning rate
was set to 0.00005 which achieved the second lowest mean performance
in this experiment.

Model ROC AUC Accuracy

Conv1D + LSTM optimized 0.96 0.97
Conv1D + LSTM 0.92 0.96

LSTM 0.87 0.94

Table 4.1: Table to highlight the improvements achieved by this study. Re-
sults indicate the architecture Conv1D + LSTM prior to the grid search
provides a 5-6% increase in ROC AUC in comparison to the LSTM
model. The proposed model with optimized hyperparameters attains a
relative improvement of 10%. Note, the number of epochs were doubled
to 200 to ensure all models have converged in order to record maximum
model performance.
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Figure 4.4: Average ROC AUC scores plotted against the tested regulariza-
tion values from the grid search. A curve is displayed for each of the
learning rates to highlight the effect of varying the regularization. 3 dif-
ferent models were trained for each of the regularization + learning rate
configurations.

local minimum, unable to climb out due to the small step size. As such, dedicated

time was spent tuning this value for the Conv1D + LSTM model. Results from

the grid search strongly indicated the optimal learning rate for the proposed archi-

tecture was much larger than the starting value based on the training configuration

from the previous study.

Although regularization was found to have a slight dependency on the model

metrics, additional experiments would be required to validate this trend (via a larger

search space) and to determine whether 0.001 is truly the optimal value. A final im-

provement to the hyperparameters would be finding the optimal number of LSTM
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Figure 4.5: Impact on the Conv1D + LSTM architecture when decreasing the
number of nodes in the LSTM layers from 150 nodes to 60 nodes. A
4-Fold CV was performed to evaluate this modification on the model
performance.

nodes, since only one other value was tested other than the initial setting. Along

with the other improvements discussed above, further hyperparameter optimiza-

tions could be performed with a randomized search resulting in drastically lower

runtime.

Another major result from the parameter search is the fact that adding addi-

tional filters to the final Conv1D layer did not seem to improve the model. A

layer containing 8 filters seemed to output the same amount of meaningful infor-

mation as a layer with 16 filters. Therefore, the null correlation found between

the tested number of filters and model performance validates the dimensionality

reduction ability of the Conv1D layers. To conclude this part of the discussion, the
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Figure 4.6: Diagram of the optimized proposed model architecture.

improvements to the LSTM model with the added sequential Conv1D layers can

be attributed to the resulting feature extraction and compression.

4.3.2 Possible New Metrics

Aside from ways to further improve the model, extensions to this analysis should

consider exploring new metrics that could better quantify model performance, or

provide more insight when making comparisons. One example would be extract-

ing/optimizing for the signal efficiency for a small fixed set of QCD rejection val-

ues, rather than calculating the efficiency over all values of rejection (as done for

the ROC curve and accuracy number). Setting fixed thresholds would output more

explicit measures of the network’s ability to differentiate the three jet classes. The

added constraint would also make it easier to explicitly optimize for signal effi-

ciency.

Another useful metric would be to calculate the ratio of signal event count to

the square root of the background event count. This metric, often referred to as

”significance”, is commonly used in particle physics research. Optimizing this ra-

tio implies maximizing the signal event count while minimizing the uncertainty
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expressed by the denominator. The counting of events and the uncertainty are

associated with the fact that counting signal events with some probability of back-

ground obeys a Poisson distribution. The higher the significance, the higher the

confidence is to reject the null hypothesis that signal is purely a result of statistical

fluctuation of the background. In other words, an increase in significance would di-

rectly translate to a higher probability of finding new physics. Though a promising

approach, this technique is nontrivial since it requires information on the expected

number of signal and background events (i.e. the relative cross-sections).
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Chapter 5

Conclusions

Many extensions to the Standard Model suggest the existence of long lived particles

that only interact with the SM through a weakly-coupled mediator. The extended

lifetime of these particles and the weak interaction with the SM would result in

displaced hadronic jets in the ATLAS detector. Ongoing and published research

by the ATLAS collaboration, have presented machine learning models to classify

displaced jets in the ATLAS calorimeters. In this analysis, a modified architecture

was proposed with the aim to improve the model performance.

Prior to exploring new models, an experiment was performed to verify the deci-

sion to sort certain input data by transverse momentum due to the nature of LSTM

layers expecting ordered inputs. The experiment consisted of training models on

a descending, ascending and random pT ordered datasets. Models trained on the

ordered datasets performed significantly better in both accuracy and ROC AUC.

A deep recurrent neural network developed as part of the ongoing LLP search,

was established as the benchmark for comparing model performance and develop-

ing an improved architecture. This analysis explored the addition of 1D Convo-

lutional layers to the deep learning based LLP tagger. A 5-Fold cross validation

showed the proposed Conv1D + LSTM model substantially outperformed the orig-

inal network.

Finally, a grid search was performed to optimize the hyperparameters of the

improved model. A larger learning rate, a slightly smaller regularization value, and

a decrease in LSTM nodes were found to further enhance the model performance.
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Overall, the optimized Conv1D + LSTM model achieved a 10% increase in ROC

AUC in comparison to the original model.

Extensions to this analysis should consider exploring other metrics for evalu-

ating and comparing models. Significance and signal efficiency at specific QCD

rejection values are two proposed metrics which could offer better insight to the

discovery potential.
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Appendix A

Supporting Materials

A.1 Python Code
The GitHub repository rdesc/deep-learning-llp-tagger contains the python scripts

that were used for pre-processing data, generating plots, and for training, evaluat-

ing, and testing models.

A.2 Complete Model Diagrams
The following three figures consist of complete diagrams of the three different ar-

chitectures discussed in this paper. These diagrams were generated via the plot model
method from keras.utils.

Figure A.1: Complete diagram of the LSTM model
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Figure A.2: Complete diagram of the Conv1D + LSTM model.

Figure A.3: Complete diagram of the Conv1D model. GlobalAveragePool-
ing1D layers were used to flatten the features.
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