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Abstract

This work aims to improve the calibration of the Canadian Hydrogen Intensity

Mapping Experiment (CHIME), a new radiotelescope built in Penticton (BC) and

inaugurated in 2017. CHIME’s main goal is to observe baryon acoustic oscillations

in order to probe the evolution of the universe at redshifts between 0.8 and 2.5, in

the period where the standard model of cosmology predicts that dark energy started

to dominate over matter and radiation. Accurate expansion measurements during

this period would provide tighter constraints on the Hubble parameter and the dark

energy equation of state. This would lead to invalidation or further verification of

our current cosmological theories, therefore improving our understanding of the

nature of dark energy.

It has been observed that the the steel structures of the telescope, as well as

the cables and antennae have temperature-dependent behaviour, which affects the

quality of the data. Previous attempts of characterizing this dependency weren’t

successful; therefore, this works aims to explore an innovative method based on

new direct sky observations and allowing to determine the influence of external

temperature on CHIME’s complex gain. Thermal susceptibilities are obtained from

analyzing observations of bright radiosources, mainly CygA and CasA, and calcu-

lating linear fits of the gain fractional variation as a function of external temper-

ature. A correction for the nonlinear behaviour of antennae, based on laboratory

experiments, is included in later stages of the analysis, as well as a detailed inves-

tigation and treatment of outliers.

This project is a step towards the making of a full thermal model that could

be included in CHIME’s calibration algorithm in order to significantly improve the

quality of cosmological data.
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Chapter 1

Introduction

1.1 Motivation
Since its first observation in 1998, the accelerated expansion of the universe has

remained an unsolved mystery and a flourishing domain of investigation for mod-

ern cosmologists. While an intuitive view of the Big Bang model suggests that

the initial expansion should be slowing down under the effect of gravity, observa-

tions yielded by a type Ia supernovae survey conducted in 1998 [15] and numerous

subsequent experiments show the exact opposite: an unknown force seems to be

pushing galaxies away from each other at an increasing rate. The mysterious phe-

nomenon, due to its puzzling nature and its apparent lack of directly observable

properties, has been given the name of ”dark energy”; understanding its physical

origin has become one of the greatest challenges of today’s cosmology.

The most widely accepted cosmological theory at present corresponds to the

ΛCDM model, where Λ stands for a cosmological constant representing dark en-

ergy, and CDM refers to ”cold dark matter”. The adjective ”cold”, in this context,

means that dark matter is seen as non-baryonic particules moving at sub-relativistic

velocities. In this model, the initial stage of the universe was characterized by ex-

tremely high density and temperature; the emergence of expanding space and time,

commonly known as ”Big Bang”, was triggered 13.79 billion years ago [14] by

quantum fluctuations of yet unknown nature. Within the first few fractions of a

second, a very brief stage of extreme exponential expansion known as inflation is
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believed to have taken place. Such a sudden and violent event (supposedly increas-

ing the size of the universe by a factor of 1026 in the span of 1032 second [19])

can seem difficult to conceive, but this model actually solves some fine-tuning is-

sues arising from Big Bang cosmology and provides an explanation for Cosmic

Microwave Background (CMB) anisotropies [16]. Inflation was followed by a long

period of decelerating expansion during which the universe was successively dom-

inated by radiation and matter. The present acceleration phase suggests that the

dominating component is now dark energy, the proportion of which has been esti-

mated to 68.89% by the latest Planck results [14]. Representing it by a cosmologi-

cal constant Λ indicates that the dark energy density is assumed to remain constant

in time. This means that dark energy doesn’t ”dilute” with expansion like mat-

ter and radiation; while this would justify why it only becomes dominant in later

stages of the universe’s evolution, it still doesn’t explain what dark energy actually

is. Many hypotheses have been made, none of them has been confirmed yet. One of

the candidates is the vacuum energy predicted by quantum field theory [9], which

would be consistent with a cosmological constant; however, the predicted energy

density exceeds the measured cosmological constant by no less than 120 orders of

magnitude. Several modern cosmologists are also questioning the fundamental as-

sumptions of ΛCDM and proposing alternative theories such as a time-dependant

dark energy density [20], modified gravity [17] or scale invariance of vacuum [11].

Most of the observational evidence for the ΛCDM model is contained in the

CMB, which constitutes the relic of a much hotter and denser state of the universe.

The near-perfect correlation between the CMB spectrum and the predicted black-

body at 2.7255 K definitely tipped opinions in favor of Big Bang theory; since then,

ΛCDM has been generally accepted as today’s leading cosmological model. In its

simplest form, ΛCDM only requires the knowledge of 6 cosmological parameters

in order to reconstitute the past evolution of the universe and predict its future.

These parameters have to be constrained by experiments, most of them consisting

in measuring the relation between distance and redshift of various remote celestial

objects. Such measurements are the main goal of the Canadian Hydrogen Inten-

sity Mapping Experiment (CHIME) telescope. Numerous surveys with a similar

purpose have already been conducted, mostly focusing on the very early universe

(e.g. Wilkinson Microwave Anisotropy Probe (WMAP) [10] and Planck [14]) or the
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closer neighbourhood of our galaxy (e.g. Sloan Digital Sky Survey (SDSS) [18]).

CHIME’s wide frequency range and use of intensity mapping will allow for obser-

vations at redshifts 0.8 < z < 2.5, an intermediate range of major importance as it

is believed to enclose the moment at which dark energy became dominant. Mea-

surements of the Hubble parameter (see Chapter 2) and of the dark energy equation

of state deduced from CHIME’s 3D map of this zone could be the key to a better

understanding of the nature of dark energy, by determining if it really is a cosmo-

logical constant. These results might allow to invalidate or further verify ΛCDM,

and maybe even to discover a relation between the current accelerating expansion

and the initial inflation stage.

Additionally, CHIME is already used for Fast Radio Bursts (FRB) detection [6]

(for which its wide field of view is a significant advantage) and pulsar monitoring

[12]. Two FRBs have already been observed [4], and many more are expected to be

detected in the near future. While this is a very encouraging result, my work will

be focused on the cosmological purpose of the instrument, and I will therefore not

go into more detail on the topic of FRBs.

With foreground signals 103 to 105 times brighter than the actual cosmologi-

cal sources [5], CHIME requires a very precise calibration. Previously conducted

laboratory experiments as well as studies of the CHIME Pathfinder have indicated

that the telescope’s components present a temperature-dependent response which

affects the quality of the data. This paper will focus on the effect of external tem-

perature on the amplitude of the complex gain, corresponding to the direction-

independant part of the total gain as generated by amplifiers and cables. Thermal

expansion of cables and steel structures produces variations of the complex gain

which need to be analyzed and taken into account in the calibration algorithm.

Previous attempts of characterizing CHIME’s thermal susceptibility consisted in

generating a controlled artificial signal and correlating the telescope’s response

to the temperature at the time of measurement. This Radio-Frequency Interfer-

ence (RFI) producing method had the disadvantage of perturbing other instruments

at the Dominion Radio Astrophysical Observatory (DRAO), and had to stop being

used before it could yield satisfactory results. This work therefore aims to explore

an alternative method in which the artificial signal is replaced by direct sky data.

The new archive of stable observations of CygA, CasA and more recently also
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TauA will constitute the core of the present analysis; these bright and well-known

radiosources will be used to deduce CHIME’s complex gain for each frequency

bin and channel over a few months’ period. Variations of this complex gain will

then be analyzed in the hopes of determining CHIME’s thermal susceptibility and

improving its calibration algorithm.

1.2 Overview
This paper will begin with a theoretical section summarizing the ΛCDM model’s

fundamental concepts and equations. Techniques used to constrain cosmological

parameters will be introduced, with a focus on Baryon Acoustic Oscillations (BAO)

measurements. CHIME’s design and working principle will then be described.

The chapter on experimental methods will cover the various steps of gain ex-

traction and data pre-processing, before describing the different stages of the de-

velopment of the thermal model. Details will be provided on the fitting techniques

and statistical concepts used to obtain the results.

All the important results will then be presented and commented, in a logical

order following the various stages of investigation. The significance of these results

will be evaluated and opportunities for further investigation will be discussed.
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Chapter 2

Theoretical concepts

2.1 Notions of cosmology
This section will provide some conceptual and mathematical details about the

ΛCDM model and CHIME’s scientific purpose.

2.1.1 ΛCDM model

The fundamental framework for modern cosmology is given by Einstein’s general

relativity; the theory describes a four-dimensional spacetime whose curvature is

influenced by matter-energy distribution, and where the trajectories of all particles

(including photons) correspond to geodesics. The separation between two events in

spacetime is determined by a metric; at cosmological scales, where the universe can

be assumed to be isotropic and homogeneous, the Robertson-Friedmann-Walker

metric is commonly used. Its mathematical expression is as follows [16]:

ds2 =−c2dt2 +a(t)2[dr2 +Sκ(r)2dΩ
2] (2.1)

In this equation, expressed in spherical coordinates, Sκ(r) is a curvature-dependent

factor defined in Equation 2.2 and dΩ2 = dθ 2 + sin(θ)2dφ 2. R0 represents the ra-

dius of curvature, and the curvature scalar κ equals 1 for positive curvature, 0 for

flat space and -1 for negative curvature.
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Sκ(r) =


R0 sin(r/R0) (κ = 1)

r (κ = 0)

R0 sin(r/R0) (κ =−1)

(2.2)

The a(t) factor appearing in Equation 2.1 is called ”scale factor”, and is of

fundamental importance as it characterizes the expansion of the universe. It is de-

fined to be equal to 1 at present time. The coordinates (r,θ ,φ) in Equation 2.1 are

referred to as ”comoving coordinates”; two points having constant comoving co-

ordinates implies the absence of proper motion relative to each other, even though

the separation between the two objects increases due to the expansion of spacetime.

At large scales, expansion can be assumed to be isotropic and the proper distance

between two objects can be written dp(t) = a(t)r with r the comoving distance. In

this case, Equation 2.3 holds.

ḋp(t) = ȧ(t)r =
ȧ(t)
a(t)

dp(t) (2.3)

Figure 2.1: Edwin Hubble’s original diagram showing the linear relation be-
tween distance and recession speed of neighboring galaxies. The dis-
tances were underestimated at the time, leading to an excessive value for
H0. Source: https://astro.unl.edu/naap/distance/graphics/hubble orig.
png
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The proportionality constant H(t) = ȧ(t)
a(t) is called ”Hubble parameter”, refer-

ring to Edwin Hubble’s first observation of the expansion of the universe in 1929

(Figure 2.1). Equation 2.3, evaluated at present time t = t0, is known as Hubble’s

law.

While Hubble’s law expresses the fact that the universe is expanding (i.e. ȧ(t)>

0), it doesn’t tell us anything about the sign of ä(t). Evidence of accelerating ex-

pansion was only discovered decades later, in 1998 [15], when a survey conducted

by the High-Z Supernova Search Team yielded larger luminosity distances to var-

ious Type Ia Supernovae than would be observed in the absence of a positive ac-

celeration. Since then, this result has been confirmed by multiple experiments and

it is now generally accepted that ä(t)> 0, despite the lack of satisfactory physical

explanation for this phenomenon.

The evolution of a(t) as a function of cosmic time can be computed using

Friedmann’s equation. Derived from Einstein’s field equations, this equality relates

the Hubble parameter to the energy distribution and the curvature of the universe.

Its mathematical form is as follows, with G Newton’s gravitational constant, ε the

total energy density (summed over all components of the universe), κ the curvature

scalar and Λ the cosmological constant:(
ȧ
a

)2

=
8πG
3c2 ε− κc2

R2
0a2 +

Λ

3
(2.4)

The other equation involving a derivative of a(t) is the acceleration equation,

where P represents the pressure:

ä
a
=−4πG

3c2 (ε +3P)+
Λ

3
(2.5)

Two important observations can be drawn from Equation 2.4 and Equation 2.5.

First, the only way to produce accelerating expansion is to include a component

with negative pressure in Equation 2.5. More precisely, we can define the equation

of state as the relation between energy density and pressure for a given substance:

P = wε (2.6)

Then a component producing positive acceleration must have w < −1
3 . The
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second observation is that, neglecting Λ in Equation 2.4, there exists a critical

energy density for which spacetime is flat (κ = 0). This value is determined by

Equation 2.7.

εcrit(t) =
3c2

8πG
H(t)2 (2.7)

The time evolution of the energy density for a component with equation of

state w is ruled by the fluid equation (Equation 2.8), derived from the first law of

thermodynamics.

ε̇ +3
ȧ
a
(ε +P) = 0 (2.8)

Substituting Equation 2.6 into Equation 2.8 and solving the resulting differen-

tial equation for ε , the following general expression can be obtained:

ε(a) = ε0a−3(1+w) (2.9)

From Equation 2.7, we can define a density parameter Ω= ε

εcrit
for each compo-

nent of the universe; written with a subscript 0, Ω0 refers to the density parameter

at present time. The latest Planck results [14] yield a value very close to 0 for the

curvature of our universe; therefore, ΛCDM assumes spacetime to be flat, which

means the total energy density is equal to the critical density (1−Ωm−Ωr−ΩΛ =

0). The Friedmann equation can now be rewritten as a function of the density pa-

rameters at present time and equations of state of baryonic matter (w= 0), radiation

(w = 1/3) and dark energy (according to ΛCDM, w =−1):(
H
H0

)2

= Ωr,0a−4 +Ωm,0a−3 +ΩΛ (2.10)

Equation 2.10 can be expressed as a function of an observable quantity, redshift

(z), thanks to the following relation:

z =
λobs−λem

λem
=

1
a
−1 (2.11)

Therefore, the scale factor at the time of emission is related to the redshift of

the observed object by the simple formula a−1 = 1+ z. Friedmann’s equation now
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takes the form: (
H(z)
H0

)2

= Ωr,0(1+ z)4 +Ωm,0(1+ z)3 +ΩΛ (2.12)

From Equation 2.12, it appears that measurements of H(z) can be used to yield

constraints on cosmological parameters. Using the values obtained by previous

experiments such as WMAP [10] or Planck [14] for H0 and the density parameters,

the theoretical evolution of H(z) can be computed and compared to measurements;

any observed deviations could for example invalidate the cosmological constant

assumption and yield new constraints on the dark energy equation of state. This is

the main objective of the CHIME mission: by measuring the distance-redshift rela-

tion for standard rulers at 0.8 < z < 2.5, the radiotelescope will be able to retrace

the expansion history of the universe during this crucial period and distinguish

possible disagreements with the predictions of ΛCDM. This new study of the dark

energy equation of state might enable us to confirm or rule out some of our current

hypotheses, and could therefore be a step towards a better understanding of the

physical nature of one of the universe’s biggest mysteries.

2.1.2 Constraining cosmological parameters

Measuring the distance-redshift relation mentioned in Section 2.1.1 is not as easy

as it seems; indeed, it is important to realize that the proper distance, defined as the

length of the spatial geodesic between two events in spacetime, is not an observable

quantity. The mathematical expression of the proper distance at present time is

given by Equation 2.13, where te is the emission time:

dp(t0) = c
∫ t0

te

dt
a(t)

(2.13)

From this definition, it is clear that the time evolution of the proper distance

to an object directly depends on the time evolution of the scale factor a(t), which

is determined by the parameters of the model used to describe the universe. This

explains why distance measurements are so widely employed to constrain cosmo-

logical parameters and confirm or invalidate possible cosmological models.

The two observable quantities related to proper distance are luminosity distance
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and angular diameter distance. To determine luminosity distance, one needs to ob-

serve the energy flux F received from a source of known luminosity L. Luminosity

distance is then given by Equation 2.14.

dL =

√
L

4πF
(2.14)

Luminosity distance is related to proper distance by a simple equation involv-

ing another observable quantity, reshift (z):

dL = (1+ z)dp (2.15)

Experiments aiming to measure luminosity distances in order to constrain cos-

mological parameters are conducted by observing bright sources of known lu-

minosity, called ”standard candles”. The first discovered standard candles were

Cepheid variables: a relation was established between the period of variation and

the luminosity of these very bright stars, which allows astronomers to deduce the

intrinsec luminosity by analyzing the variation pattern. The obtained value is then

compared to the received flux and Equation 2.14 is used to deduce the luminosity

distance. Due to their supergiant nature and intense brightness, Cepheids can yield

measurements of intergalactic distances; however, their range is limited to about

30 Mpc [16]. Other methods are required in order to explore the universe at high

redshifts.

Another famous category of standard candles includes type Ia supernovae.

These stellar explosions occur when a white dwarf orbiting around a companion

star attracts enough matter to exceed the Chandrasekhar mass and collapse under

the effect of its self-gravity. It has been discovered that the light curve of such a

supernova is related to its peak brightness. Therefore, by observing the time taken

by the supernova to reach its peak and to fade away, it is possible to deduce the

maximal luminosity and to use Equation 2.14 again in order to determine the lumi-

nosity distance. As supernovae are extremely violent events, their brightness can

exceed that of an entire galaxy, which makes them visible from very far away; SN

Ia observations have been conducted up to z ≈ 1. At such redshifts, the observed

distances present a significant deviation when compared to those computed for a

decelerating or steady expansion. Therefore, type Ia supernovae measurements re-
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sulted in the first experimental evidence for dark energy and are also used to place

constraints on the Hubble parameter and on the energy densities of matter and of

the cosmological constant.

While SN Ia surveys have been very successful over the years, our growing

understanding of the early universe and of the mechanisms of gravitational insta-

bility and structure formation have led us to explore a new class of objects, known

as ”standard rulers”. Standard rulers correspond to great structures of known, con-

stant comoving size. Measuring the apparent diameter of such objects allows to

determine the angular diameter distance dA, related to proper distance by Equa-

tion 2.16:

dA =
dp

1+ z
(2.16)

In Section 2.1.3, we will see how CHIME uses a specific type of standard rulers,

Baryon Acoustic Oscillations (BAO), in order to retrace the expansion of the uni-

verse at relatively high redshifts and constrain the dark energy equation of state.

Finally, it is important to note that constraints on cosmological parameters can

also be deduced from observations of the very early universe, especially the CMB.

The state of the universe at the time of last scattering contains a mine of information

that can be used to analyze the underlying physics and test our current models.

The most accurate constraints are obtained by combining CMB and SN Ia or BAO

measurements.

2.1.3 BAO as standard rulers

During the first few fractions of a second of the universe’s history, when space-

time had just been formed and matter hadn’t been created yet, quantum fluctua-

tions occured and were exponentially amplified by inflation. These perturbations

remained after inflation, as potential wells to which matter (both dark and bary-

onic) was gravitationnally attracted, producing slight density anisotropies in the

very early cosmos; these initially infinitesimal anomalies would later become the

source of the great structures (galaxy clusters and superclusters) observed in the

present-day universe. Before recombination, photons and hot, ionized baryonic

matter constantly interacted through Thomson scattering. As this photon-baryon
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plasma was attracted to the aforementioned potential wells, pressure would build

up until a state of maximum compression was reached. The plasma would then

”bounce back” from this contracted state, and the spherical density perturbations

would propagate outwards as acoustic waves. Once the temperature of the universe

had decreased enough for hydrogen atoms to form and matter to become electri-

cally neutral, photons decoupled from baryons; the absence of radiation pressure

caused these waves to stop propagating and leave their mark as concentric hot

(overdense) and cold (underdense) rings on the CMB (Figure 2.2). Since then,

these rings (which are actually the projection of three-dimensional spherical shells

on the two-dimensional last scattering surface) have kept a constant comoving size,

and their maximal radius, called ”sound horizon”, has been calibrated from CMB

measurements, yielding a value of 146.8±1.6 Mpc [2].

Figure 2.2: Zoom on hot and cold spots and rings observed in the CMB. The
WMAP data shows temperature anisotropies, while the Planck results
focus on polarization. Inverse temperature and polarization patterns are
observed in both cases. These anisotropies constitute evidence of the
existence of BAO and have allowed to calibrate the comoving size of the
sound horizon. Image credit: CHIME Collaboration.

As more and more dark and baryonic matter was attracted to the primordial
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overdense shells, gravitational instability progressively led to the formation of

stars, galaxies, clusters and superclusters. Billions of years after the emission of

the CMB photons, the imprint of BAO is still detectable in the great structures of the

universe, as a preferred scale for galaxy clustering resulting in a peak in the correla-

tion function of galaxy distributions. This feature was first observed by Eisenstein

et al. in 2005 [8] and is shown in Figure 2.3.

Figure 2.3: Correlation function of the galaxy distribution obtained from the
Sloan Digital Sky Survey (SDSS). The peak at d ≈ 100h−1 Mpc illus-
trates the higher correlation between galaxies separated by a comoving
distance d. With h = H0/100 and H0 the Hubble constant (67.66 km
s−1 Mpc−1), the observed preferred scale is in good agreement with
the sound horizon determined from CMB measurements. Image credit:
Eisenstein et al. [8].

BAO structures having a constant comoving radius means that they can be used

as a reference distance. As they can only be recovered from sky maps using corre-

lation functions, they belong to the category of statistical standard rulers.

Once a BAO structure has been detected at a certain redshift z, observations
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across and along the line of sight allow the computation of the angular diameter

distance dA(z) and the Hubble parameter H(z) respectively. With s the diameter

of the sound horizon, ∆θ the measured angular diameter across the sky and ∆z the

redshift difference between both extremities of the structure, the relevant formulae

[2] are given by Equation 2.17 and Equation 2.18.

dA(z) =
s

∆θ(1+ z)
(2.17)

H(z) =
c∆z

s
(2.18)

Therefore, using BAO as standard rulers has the significant advantage of pro-

viding measurements of two important quantities at once, and offers the possibility

of cross-checking the obtained results using Equation 2.19.

dA(z) ∝

∫ z

0

dz′

H(z′)
(2.19)

Consequently, for the same quality of data, BAO measurements can provide

tighter constraints on the dark energy equation of state than type Ia supernovae

observations, for which part of the physical mechanism is very complex and still

not fully understood [13], and which only provide measurements of dL(z). Deter-

mining dA(z) and H(z) simultaneously is more powerful than only knowing one of

these quantities. The simulation in Figure 2.4 illustrates how combining BAO data

with CMB observations by Planck can significantly improve constraints on the dark

energy equation of state, and yield similar results to much more expensive surveys

proposed for the next few years (EUCLID and BigBOSS).
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Figure 2.4: Comparison of simulated constraints from Planck + DEFT Stage
II (blue), PLanck + DEFT Stage II + EUCLID/BigBOSS (green) and
PLanck + DEFT Stage II + CHIME (black). Combining CMB and BAO

results in the tightest constraints on the dark energy parameters w0 and
wa, with the model assuming w = w0 +wa

z
1+z . ΛCDM corresponds to

w0 =−1 and wa = 0. Image credit: CHIME Collaboration.

2.2 The CHIME telescope

2.2.1 Interferometry

CHIME is a ground-based transit interferometer, which has no moving parts but

uses the Earth rotation in order to map half of the sky every day. One of the main

principles behind the obtention of these maps is interferometry, which consists in

combining the signals received by separate antennae in a way that preserves the

phase data, and analyzing the interference pattern in order to reconstitute the full

sky information. Increasing the number of antennae results in a more accurate

reconstruction of the signal.
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In the case of CHIME, four adjacent half-cylinders oriented North-South each

reflect the incoming light towards their respective focal line. Along each focal line

are placed 256 dual-polarization feed antennae. The resolution requirements for

intensity mapping (see Section 2.2.2) are met in the East-West direction by the

focusing effect of the cylindrical dishes, and in the North-South direction by the

instantenous correlation of the signals received by each pair of feeds.

2.2.2 Intensity mapping

The technique of intensity mapping consists of detecting the 21 cm spin-flip emis-

sion line of neutral hydrogen. The transition from triplet to singlet state in the

ground state of the hydrogen atom is extremely rare, but the resulting emission re-

mains detectable at cosmological scales due to the abundance of neutral hydrogen

in regions such as damped Lyman alpha systems, mostly situated inside galaxies

(often quasars). The intensity of the emission is related to the density of matter; de-

tecting this signal can therefore allow to reconstitute the power spectrum of matter

distribution in the zone of interest.

The significant advantage of intensity mapping is that it does not require resolv-

ing individual galaxies, as denser regions simply appear as brightness temperature

fluctuations on the map. Consequently, the use of this technique allows CHIME to

have a much lower resolution than instruments dedicated to galactic surveys such

as SDSS, from which the first evidence of BAO was obtained. An comparative ex-

ample is shown in Figure 2.5. This greatly increases the mapping speed, and is the

reason why CHIME’s maps will be able to encompass a wide redshift range and a

much larger volume of sky than previous surveys.
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Figure 2.5: Left panel: map of a slice of sky up to z = 0.25 obtained by the
Sloan Digital Sky Survey. Each dot is an individual galaxy. Observ-
ing every single galaxy for a significant amount of time results in a low
mapping speed. Right panel: the same map with a resolution similar to
that of CHIME. No individual galaxies are visible, but density fluctua-
tions appear as intensity variations and the BAO scale is resolved. Image
credit: [3] and CHIME Collaboration.

2.2.3 CHIME’s working principle

As mentioned in Section 2.2.1, CHIME consists of four adjacent parabolic cylinders

made of steel, whose role is to reflect and focus incoming light towards the North-

South oriented focal lines. Figure 2.6 shows a photograph of the external structure

of the telescope. After being reflected by the cylinders, light is captured by the

1024 dual-polarization antennae distributed between the four focal lines. These

cloverleaf shaped antennae [7] are sensitive to both linear polarizations, East-West

and North-South, between 400 and 800 MHz. This range was chosen in order to

match the frequency of the redshifted 21 cm emission line between z = 0.8 and

z = 2.5. One of CHIME’s feeds is pictured in Figure 2.7. Directly after being

captured by an antenna, the signal goes through a Low Noise Amplifier (LNA),

and is transported by a 50 m coaxial cable to the Filter Amplifier (FLA). These

different steps before digitization correspond to the analog signal chain, which is

schematized in Figure 2.8.
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Figure 2.6: Photograph of the CHIME instrument taken at the DRAO. The
metallic structures of the four cylinders and focal lines are visible, as
well as the containers enclosing the X-engine. The smaller dish anten-
nae in the background belong to a different instrument. Image credit:
CHIME Collaboration [1].

Figure 2.7: Photograph of one of CHIME’s cloverleaf shaped dual-
polarization antennae. Image credit: CHIME Collaboration.
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Figure 2.8: Diagram of CHIME’s analog signal chain. (1) Reflector. (2) An-
tenna. (3) LNA. (4) 50 m coaxial cable. (5) Outer bulkhead. (6) Shielded
room. (7) FLA. (8) A/D converter input. Image credit: CHIME Collabo-
ration.

The analog chain is the source of CHIME’s thermal susceptibility. Thermal

expansion of the steel structures of the reflectors and the 50 m cable are the most

dominant factors, but the temperature-dependant response of the LNAs has also

been confirmed and analyzed in the lab.

After being digitized, the signal arrives to the F-engine which performs a fast

Fourier transform in real time, with an input data rate of 13 terabits/s, in order to

convert data from position space to frequency space, divided in 1024 frequency

bins. Finally, the signal is sent to the X-engine, which computes the visibility

matrix (see Chapter 3). From the X-engine, data is transferred to three different

backends, each characterized by different sampling rates and analysis methods:

the FRB search engine, the pulsar timing monitor and the cosmology backend.
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Table 2.1: Summary of CHIME’s main characteristics [1].

No. of cylinders 4

Dimensions of a cylinder 20 m × 100 m

No. of feeds 256/cylinder

No. of channels 2048 (4 cyl., 256 feeds each, 2 pol.)

Redshift range 0.8-2.5

Frequency range 400-800 MHz

No. of frequency bins 1024

Frequency resolution 0.39 MHz

Angular resolution 15’-25’

Spatial resolution 15 Mpc

Instantaneous FOV 200 sq. deg.

Table 2.1 summarizes the main characteristics of the instrument. The angular

resolution has been adjusted to correspond to 1/10 of the BAO scale at the redshifts

of interest. The large instantaneous field of view combined with the Earth rotation

allows the telescope to map half of the celestial sphere each day.

20



Chapter 3

Methods

3.1 Gain calibration
The signals detected by CHIME arrive in the form of electromagnetic waves, com-

posed of oscillating electric and magnetic fields. A general way of mathematically

expressing such an electric field is by using a complex number:

E = E0eiφ (3.1)

If one feed, identified by the subscript i, receives a signal described by Equa-

tion 3.1, another feed j separated from the first one by a vector ~bi j will receive

the signal E0e
i
(

φ+2π
n̂·~bi j

λ

)
. n̂ corresponds to the unit vector in the direction of the

incoming radiation, and λ is the wavelength of the signal.

Cross-correlating these two inputs, each multiplied by the corresponding com-

plex gain gi introduced by the system, yields the following expression:

EiE∗j = giE0eiφ

(
g jE0e

i
(

φ+2π
n̂·~bi j

λ

))∗
= gig∗j |E0|2e−2πi

n̂·~bi j
λ (3.2)

Replacing~bi j by~r j−~ri, Equation 3.2 becomes:

EiE∗j = |E0|2giei n̂·~ri
λ

2π

(
g jei

n̂·~r j
λ

2π

)∗
(3.3)
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Equation 3.3 shows that a matrix containing elements Vi j = EiE∗j for all possi-

ble pairs of feeds can be written as the outer product |E0|2~v~v†, with~vi = giei n̂·~ri
λ

2π .

This implies that this matrix can be expressed as V = BDB†, with B a unitary ma-

trix and D a diagonal matrix containing the eigenvalues of V . In the ideal case

described above, only one eigenvalue is nonzero (|E0|2) and the corresponding

eigenvector is equal to ~v. Therefore, if the complex gain of the system is known,

the power of the received signal can be calculated by performing an eigendecom-

position of the matrix Vi j. Inversely, if the intensity of the observed source is

known, the complex gains can be deduced from the eigenvector corresponding to

the nonzero eigenvalue. This property is very useful for the calibration procedure

as it allows to retrieve and analyze the system gains based on the observation of

bright radiosources.

In the case of CHIME, the situation is slightly more complicated than the simple

and ideal example derived here. The output of the correlator, called ”visibility ma-

trix”, is obtained by cross-correlating signals for each pair of feeds and integrating

over every possible direction n̂; it also incorporates a noise factor ni j. Mathemati-

cally, the visibility matrix elements are given by Equation 3.4.

Vi j =
∫
|E0(n̂)|2gi(λ )g j(λ )

∗e2πi n̂·~ri
λ e−2πi

n̂·~r j
λ d2n̂+ni j (3.4)

The previously mentioned eigendecomposition procedure can be generalized to

Equation 3.4, therefore CHIME’s complex gains are obtained from the eigenvalues

and eigenvectors of the visibility matrix.

3.2 Data pre-processing
Once the complex gains have been deduced from the correlator outputs, a few steps

of pre-processing have to be performed before the data is ready to be analyzed.

The first of these steps is the removal of digital gains. Indeed, the system gains

calculated from the eigendecomposition of Equation 3.4 include the complex gain

(the component of interest here, produced by the steel structures and cables), and an

additional component generated by the digitization of the data. These digital gains

obviously do not depend on external conditions such as temperature, therefore their

influence on the analyzed data must be removed. The digital gain values are stored
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separately from the system gains in the CHIME database, and a function built in the

CHIME-specific Python environment allows for their removal.

The second pre-processing step is the filtering of the data. Transits of the ob-

served radiosources can be contamined by external perturbations such as a simul-

taneous solar transit or Radio-Frequency Interference (RFI); contamined datasets

have to be excluded from the analysis. This step is performed by a ”flagging”

algorithm, which takes into account a complex combination of external parame-

ters such as weather conditions, solar transits and interference sources, and sub-

sequently evaluates the validity of a given dataset. The full development of the

flagging algorithm is not the object of this paper, therefore it will not be presented

in more detail; it is however important to note that flagged data is systematically

filtered out before any analysis is performed. This is, once again, made possible by

the CHIME-specific Python environment used throughout this project.

3.3 Data analysis

3.3.1 Linear fits

The main objective of this work is to determine CHIME’s thermal susceptibility; in

order to do this, a relation has to be found between the telescope’s complex gain

and the external temperature at the time of observation. While the complex gain

is, as its name indicates, a complex number, this paper will focus on its amplitude.

Analyzing the gain phase constitutes a perspective for future investigation.

Expressing the complex gain for channel i and frequency f as g(i, f )= g0(i, f )eiφ(i, f ),

the amplitude then corresponds to g0(i, f ). The absolute value of the gain itself is

of little interest in this context; however, relative fluctuations between different

transits are of crucial importance. Therefore, we can define the fractional gain

variation for a transit at time t:

g f rac(i, f , t) =
g0(i, f , t)− ḡ0(i, f )

ḡ0(i, f )
(3.5)

In this equation, ḡ0(i, f ) represents the gain amplitude averaged over time for

channel i and frequency f .
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The fundamental hypothesis of this work is that g f rac should follow a linear

trend as a function of external temperature. This assumption is supported by the

fact that the expansion of the 50 m cable, which is considered to be the main source

of CHIME’s thermal susceptibility, obeys a linear law. Previous experiments per-

formed on the CHIME Pathfinder instrument also indicated a satisfactory linear

model.

The frequency-dependent thermal susceptibility bp( f ) for one polarization p

will therefore be given by Equation 3.6:

ḡ f rac( f , t) = a+bp( f )T (t) (3.6)

ḡ f rac( f , t) corresponds to the median or mean (both will be investigated) of

the fractional gain variation over all channels coupled to the same polarization. It

would also be possible to fit individually for each channel, and find the median

or mean of the susceptibilities afterwards; however, results detailed in Chapter 4

show that averaging before fitting is the best choice as it suppresses some isolated

outliers which would significantly impact individual channel susceptibilities.

3.3.2 LNA correction

Lab experiments performed by the CHIME Collaboration prior to this project have

shown that the LNAs do not have a linear response to temperature variations. There-

fore, the simple model presented in Section 3.3.1 does not apply to the component

of the complex gain produced by the antennae. In order to determine the signifi-

cance of the LNA contribution to the total gain, it is possible to predict the expected

LNA response to a given temperature. This operation is performed by a Python

code developed as a result of the aforementioned laboratory experiments.

Temperature sensors have been placed directly at 59 of CHIME’s LNAs; the data

collected by these thermometers allows to calculate the median LNA temperature

at the time of a CygA or CasA transit, and deduce the expected LNA gain response.

The total complex gain is then divided by the obtained value, and fitted to the

external temperature measured by the on-site meteorological station as explained

in Section 3.3.1.

In order to evaluate the quality of the fits, the Root Mean Square (RMS) of
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residuals given by Equation 3.7 will be calculated. N is the number of transits con-

sidered, f (T ) represents the linear fit (Equation 3.6) and ḡ f rac(T ) is the fractional

gain variation, averaged over channels, measured at temperature T .

rms =
(

∑
N
0 ( f (T )− ḡ f rac(T ))2

N

) 1
2

(3.7)

Equation 3.7 shows that a lower RMS indicates a more accurate fit; therefore,

the LNA contribution can be considered significant if the RMS of residuals is lower

after the correction than before. The RMS of the data itself will also be calculated

over time, frequencies or channels depending on the context (see Chapter 4).

3.3.3 Singular value decomposition

In order to verify that temperature really is the main explanatory factor for the

complex gain variations, a linear algebra technique known as Singular Value De-

composition (SVD) can be employed. This method consists of building a matrix

in which each column contains complex gain values for all channels, for a given

date and frequency. Therefore, there will be 1024 matrices (one per frequency bin)

with dimensions m×n with m the number of channels (2048) and n the size of the

dataset.

Such a matrix can be written as a product of two unitary matrices (A and B)

and a rectangular diagonal matrix (D).

M = ADB† (3.8)

The values on the diagonal of D are known as singular values. In an ideal

case where one single factor dominates the behaviour of the complex gain, the

matrix M can be written as an outer product of two vectors multiplied by the only

nonzero singular value. In reality, we are not expecting all the other singular values

to be zero; however, a first singular value significantly bigger than the other ones

is a good indication that the one-parameter model considered so far is a decent

approximation. This method will therefore be used to test the assumption that

temperature variations are the main reason behind the observed gain fluctuations.
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Chapter 4

Results

4.1 Preliminary observations
Before performing any fitting or advanced analysis, some general, qualitative ob-

servations about the raw gain data can be mentioned. Figure 4.1 and Figure 4.2

show the gain amplitude values obtained as a function of frequency for 4 different

channels, for the same CygA transit (08/10/18). Three main characteristics directly

appear.

First, a global increasing pattern is visible on all 4 panels, meaning that the

complex gain amplitude tends to be greater for higher frequencies.

Second, an oscillatory pattern with a characteristic frequency of 30 MHz ap-

pears, and is more defined in Figure 4.2 than in Figure 4.1. This oscillation can be

explained by an interference effect produced by multiple reflections between the

cylindrical structure and the antennae. At certain frequencies, this interference is

constructive and results in an amplified received intensity, thus increasing the mea-

sured gain; this occurs when the distance between the cylinder and the focal line is

an integer multiple of the wavelength of the signal. In between these peaks, lower

gain values are consequences of destructive interference. Calculations carried out

prior to this project predicted a period of about 30 MHz for this interference phe-

nomenon, which is in agreement with the observed pattern. Thermal expansion of

the cylinder will modify the distance to the focal line; therefore, we can expect the

whole interference figure to be shifted as a consequence of temperature variations.
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The third interesting feature is the presence of some isolated outliers which

are significantly higher or lower than the rest of the data. Despite being clearly

off the trend, these points were not filtered out by the flagging algorithm. As the

next few sections will show, such events can have a non-negligible impact on the

measured susceptibilities and will therefore have to be understood and possibly

even predicted.

Figure 4.1: Gain amplitude for the CygA transit on 08/10/18. The left panel
shows the data obtained for channel 1, and the right panel for chan-
nel 500. Solar transits and RFI-contaminated frequencies have been re-
moved, which explains the blank spots. A global rising pattern com-
bined with a 30 MHz oscillation can be observed.

Figure 4.2: Gain amplitude for the CygA transit on 08/10/18. The left panel
shows the data obtained for channel 1000, and the right panel for chan-
nel 1500. Similar trends as in Figure 4.1 are visible.
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The waterfall plot shown in Figure 4.3 displays the gain amplitude obtained

from the same CygA transit, as a function of frequency and channel. The white

stripes represent missing data (frequencies that have been filtered out by the flag-

ging algorithm). While channels seem to behave rather uniformly, it is difficult to

distinguish any details; this is due to the presence of a few isolated extremal gain

values, about one order of magnitude greater than the average. Being so rare, these

values are not properly visible on the plot; however, their existence is indicated

by the extended range of the colorbar. Understanding what produces such extreme

values and why they are not filtered out will be an important step in the later stages

of analysis.

Figure 4.3: Waterfall plot of the gain amplitude obtained for the CygA tran-
sit on 08/10/18, over all frequencies and all channels. The white lines
correspond to filtered out data. The wide global amplitude range is due
to the presence of a few extreme outliers, but most of the amplitudes are
contained in a range of 0 to 400.

Figure 4.4 shows two slices of Figure 4.3, for two different sets of 200 channels

each. The behaviour of different channels appears to be sufficiently unifom over

this range to justify the averaging process explained in Chapter 3. Indeed, it only

makes sense to average the fractional gain variation over all channels if they all

follow a similar trend, which appears to be the case in both of these plots. Similar
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results have been observed for most other channels (except the very few containing

extremal gain amplitudes).

Figure 4.4: Gain amplitude for the CygA transit on 08/10/18. The left panel
shows the data obtained for channels 1 to 200, and the right panel for
channels 601 to 800. These two ranges don’t contain any extreme out-
liers, therefore more detailed patterns than in Figure 4.3 can be distin-
guished. Comparing the two panels shows that the gain amplitude tends
to behave rather uniformly over channels.

Figure 4.5: Gain amplitude for CygA transits displayed over channels 1 to
200. The left panel shows the data obtained on 09/24/18, and the right
panel on 10/24/18. Here again, the uniform behaviour of channels is
noticeable. Slight differences can be observed between the two dates,
but the general pattern is similar and the 30 MHz oscillation is visible.

Analogous comments can be made about Figure 4.5. This time, the group of
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200 channels was kept the same, but two different CygA transits are represented.

Both plots still display a uniform tendency for all considered channels. The visi-

ble differences between the two graphs are an illustration of the fact that the gain

amplitude varies depending on the considered transit, a phenomenon that is pri-

marily explained by the instrument’s sensitivity to external temperature and will be

studied in detail in the next few sections.

4.2 First susceptibility results
In order to qualitatively test the hypothesis that the gain amplitude varies linearly

with temperature, Figure 4.6 displays the correlation between median gain frac-

tional variation and external temperature, for 107 transits of CygA and 4 different

frequencies. It appears that the data follows the expected linear trend, which con-

firms the fundamental hypothesis of this project (at least in first approximation). A

large majority of the points are moderately scattered around an obvious linear pat-

tern. A few isolated values are significantly off the expected trend; they are greatly

outnumbered by the other points and are, in this case, not sufficient to visibly per-

turb the fits.

Performing similar fits for individual channels can result in a much less distinct

linear behaviour, as shown in Figure 4.7. In the left panel, the data is way too

scattered to follow any clear pattern, and the linear fit is completely off. A slight

tendency to align can be seen in the left half of the graph, but the group of points in

the bottom right corner prevents us from drawing any conclusion from this figure.

The right panel, however, shows that while a channel sometimes does not display

the expected pattern for a given frequency, it can follow a linear trend (similar to

that observed in Figure 4.6 for the median of all channels) at another frequency.

In general, this comparison indicates that it is preferable to average the fractional

gain variation over all channels before performing the fits, as the fits for individual

channels can be more easily perturbed by the scattering of data or the presence of

extremal values.
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Figure 4.6: Linear fits of the median gain fractional variation as a function
of temperature for different frequencies (pol. E-W). Top left: 721.875
MHz. Top right: 682.815 MHz. Bottom left: 643.75 MHz. Bottom
right: 604.6875 MHz. The represented dataset includes 107 CygA tran-
sits between 05/31/18 and 10/30/18. The data appears to follow a clear
linear trend despite moderate scattering and some isolated outliers.

31



Figure 4.7: Linear fits of the gain fractional variation as a function of tem-
perature for channel 1001 and two different frequencies. Left panel:
721.875 MHz. Right panel: 643.75 MHz. The fit in the left panel is
clearly off as the points do not follow a linear trend. However, the same
channel exhibits a mostly linear behaviour at a different frequency.

The slopes of all the linear fits of the fractional gain variation as a function of

temperature can be represented in a single plot, as frequency-dependent thermal

susceptibility values. Such a graph is displayed in Figure 4.8, containing the sus-

ceptibility values obtained from the aforementioned 107 CygA transits and from

another dataset including 74 CasA transits. It is immediately clear that the 30 MHz

oscillation that affects the gain amplitudes, also has an influence on the thermal

susceptibility. The oscillatory pattern is mostly visible between 600 and 750 MHz

for both polarizations. As expected, the susceptibilities obtained from CygA and

CasA data are very close; the complex gain being defined as direction-independent,

noticing a strong dependency on the observed source would be abnormal.
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Figure 4.8: Thermal susceptibility obtained as a function of frequency, from
the 107 CygA transits and from 74 CasA transits between 07/25/18 and
11/01/18. Top panel: pol. E-W. Bottom panel: pol. N-S. A clear os-
cillatory pattern is visible, especially between 600 and 750 MHz, with
a characteristic frequency of 30 MHz. The susceptibility values exhibit
little to no source dependency.

A plot very similar to Figure 4.8 was obtained with two additional datasets:

the first one containing 34 CygA transits between 09/21/18 and 11/05/18, and the

second one containing transits of TauA, another bright radiosource that could po-

tentially be used for calibration. While the new CygA results follow the same trend

as the two first datasets and are only slightly shifted upwards, the TauA data has a

very strange behaviour. This dataset was introduced in order to confirm the absence

of dependency on the observed source; however, the results actually indicate the

exact opposite. The TauA susceptibilities are much lower than the rest and do not

exhibit a distinct pattern. Furthermore, a significant fraction of the data is missing,

meaning that it has been filtered out during pre-processing. While it would be in-

teresting to understand the reason behind this odd behaviour, the scarceness of data

and the encouraging results obtained for the two other sources pushed us to mo-

mentarily discard TauA. The TauA datasets will be further analyzed in Section 4.5.
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Figure 4.9: Thermal susceptibility obtained as a function of frequency. Red
points: 34 CygA transits between 09/21/18 and 11/05/18. Green points:
46 TauA transits between 09/20/18 and 11/24/18. While the two CygA
and the CasA datasets are in good agreement, apart for a slight shift up-
wards, the TauA susceptibilities are completely off the expected trend.

4.3 LNA correction
As explained in Chapter 3, we have attempted to account for the nonlinear be-

haviour of LNAs in the hopes of reducing scattering and improving the quality of

the fits. The LNA temperatures measured by the 59 on-site sensors are displayed in

Figure 4.10.
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Figure 4.10: Temperature measurements as a function of time for the sensors
placed at 59 of the LNAs. The grey curves represent the individual
measurements, the blue curve corresponds to the median of the 59 val-
ues.

Here again, the first step of the analysis was to check the coherence of the

linear model and to observe the influence of the correction on the slopes of the

fits. Figure 4.11 shows the fits obtained before and after correction for a CasA

dataset including 36 transits. The plots show a linear trend accompanied by quite

significant scattering, both before and after correction; this scattering has a more

important effect on these fits than on the ones obtained in the previous section due

to the lower number of data points available. The correction influences the slopes,

which means that it will produce a shift in the susceptibilities. However, it does

not seem to significantly improve the scattering problem.
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Figure 4.11: Linear fits of the median gain fractional variation as a func-
tion of temperature for different frequencies (pol. E-W), before and
after removing the LNA gain component. Top left: 721.875 MHz.
Top right: 682.815 MHz. Bottom left: 643.75 MHz. Bottom right:
604.6875 MHz. The represented dataset includes 36 CasA transits
between 11/17/18 (date of first LNA temperature measurement) and
01/03/19. Linear trends are visible both before and after correction,
and the correction visibly impacts the slope. Important scattering is
present in both cases.

As suspected from the qualitative observation of Figure 4.11, the values of the

RMS of residuals before and after the LNA correction are almost identical. This

indicates that the correction does not significantly impact the quality of the fits

and the accuracy of the model. As expected, most of the temperature-dependent

response comes from the cables and steel structures; the antennae themselves do

not play a major role.
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Figure 4.12: RMS of residuals before and after LNA correction, for pol. E-W
(top panel) and pol. N-S (bottom panel). An oscillatory pattern appears
with a characteristic frequency of about 30 MHz. The correction does
not significantly lower the RMS values.

Figure 4.13 represents the susceptibility values deduced from the 36 CasA tran-

sits, before and after the correction. While the corrected values are shifted down-

wards (removing the LNA component slightly lowers the global susceptibility), they

follow the same oscillatory trend as the original data points.
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Figure 4.13: Thermal susceptibility obtained as a function of frequency from
the 36 CasA transits, before and after LNA correction. Top panel: pol.
E-W. Bottom panel: pol. N-S. The typical 30 MHz oscillation is still
visible. The original and corrected data follow a very similar pattern,
however the correction introduces a downwards shift in the suscepti-
bility values.

Finally, Figure 4.14 illustrates the strong dependency of the susceptibility on

the considered dataset. The blue points are obtained from 70 CasA transits; the

orange points are deduced from a 36 transits sample of this same dataset, which

corresponds to the time period over which LNA temperature measurements have

been available. Both datasets are represented without LNA correction. Such a

dependency on the considered time period is a surprising feature; just like the

complex gain is supposed to be source-independent, it is also assumed to be time-

independent at constant temperature (if two different transits of the same source

were observed with the same external temperature, they should yield the same

complex gain). Nevertheless, Figure 4.14 seems to prove the opposite. This ob-

servation has led us to wonder if temperature really is the only dominating factor

explaining gain variations; Section 4.4 and Section 4.5 seek to answer this ques-

tion.
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Figure 4.14: Thermal susceptibility obtained as a function of frequency
from the full 70 CasA transits dataset (Dataset 1, from 09/21/18 to
01/03/19), compared to the ones deduced from the 36 transits sample
(Dataset 2), without LNA correction. Top panel: pol. E-W. Bottom
panel: pol. N-S. A strong dependency on the considered time period
is visible, as the susceptibility values are significantly different despite
the fact that the two time ranges overlap.

4.4 Singular value decomposition
As seen in the previous section, the RMS of residuals has an oscillatory behaviour,

with peaks corresponding to the most imprecise fits and flat regions corresponding

to zones in which the linear model accurately represents the data. The same obser-

vations can be made about the RMS of the data and the RMS of residuals for the 70

CasA transits without LNA correction.
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Figure 4.15: RMS of data and RMS of residuals for the 70 CasA transits (pol.
E-W) without LNA correction. The values highlighted with red stars
correspond to frequencies for which the RMS of residuals is high, in-
dicating scattered data or an imprecise fit. The green stars indicate
frequencies with lower RMS, where the linear fits are satisfactory. The
RMS of residuals is globally lower than that of the data, which indi-
cates that using the linear model already improves the quality of the
data.

In order to better understand what causes some fits to be more accurate than

others, we plotted the median fractional gain variation as a function of external

temperature, with the corresponding linear fits, for 6 ”good” frequencies (green

stars) and 6 ”bad” frequencies (red stars). Figure 4.16 and Figure 4.17 show that

the peak RMS frequencies (on the left) systematically contain between 4 and 6

outliers that are way off the linear trend, while the rest of the points tend to be

fairly well aligned. The good frequencies do not contain such clear outliers.
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Figure 4.16: Linear fits of the median fractional gain variation (pol. E-W)
obtained from the 70 CasA datasets, for peak RMS (left side) and low
RMS frequencies (right side). From left to right and top to bottom:
791.016 MHz, 782.031 MHz, 787.891 MHz, 776.172 MHz, 730.078
MHz, 721.094 MHz. Frequencies with high RMS tend to contain iso-
lated outliers that do not appear in the plots for the ”good” frequencies.
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Figure 4.17: Same as Figure 4.16, for different frequencies. From left to
right and top to bottom: 726.953 MHz, 714.844 MHz, 669.141 MHz,
660.156 MHz, 666.016 MHz, 653.906 MHz.

While the results of the LNA correction and the apparent dependency on the

considered dataset seemed to indicate that temperature was not the only factor of

importance, the results displayed in the two previous figures show that the linear

thermal model is actually rather correct, except for a few frequencies for which a

small number of isolated points are sufficient to perturb the fits. This might mean

that there are a few particular days on which the transit data was contaminated by an

external source, which could explain the recurring 4-6 clear outliers. The frequency

dependent nature of these outliers, with a 30 MHz characteristic frequency, seems

to indicate a relation between these points and the reflectors.

To make sure that temperature really is the main parameter, a singular value
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decomposition was performed on the CasA data. Figure 4.18 shows the ratio be-

tween the first and second singular values, for the 6 peak RMS frequencies (orange)

and the 6 low RMS frequencies (blue). In both cases, this ratio varies between

30 and 65; this result demonstrates the fact that the first singular value is largely

dominant compared to the others, meaning that a one-parameter model is a good

approximation of the situation.

Figure 4.18: Ratio of first to second singular values for the 6 good frequen-
cies and the 6 bad frequencies from Figure 4.16 and Figure 4.17. The
first singular value clearly dominates in all cases.

If the dominating parameter is indeed temperature, the values contained in the

right singular vector~v should be proportional to the considered temperature values.

This hypothesis was tested in Figure 4.19, where the right singular vector multi-

plied by the first singular value s1 was plotted against temperature (right side). A

linear trend is distinguishable, however the fit is thrown off by some clear outliers

in the bottom of the plot. In the left panel, the values contained in s1~v are multiplied

by the inverse slope a of the fit on the right and compared to the measured external

temperatures. The two curves exhibit some similar tendencies but do not coincide.
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Figure 4.19: Right panel: linear fit of right singular vector values VS external
temperature. The slope of the obtained fit is used in the left panel,
in order to compare the temperature evolution to the singular vector
values multiplied by a constant. Due to 7 points visible on the right
side, the calculated fit does not follow the actual linear trend of the
data and the agreement between the two curves in the left panel is
questionable.

However, if the 7 clear outliers are removed, the linear trend in the right side of

Figure 4.20 is evident and the agreement between as1~v and the measured temper-

atures is greatly improved. This result illustrates the fact that the thermal model is

only perturbed by a restricted number of points.

Figure 4.20: Same as Figure 4.19, without the 7 outliers (in blue). The linear
fit now describes the remaining data (orange) in a satisfactory way, and
the right singular vector is clearly related to temperature.

The next step of the analysis will be to determine to which transits the out-

liers in Figure 4.19 correspond. If they are the same as the transits producing the

systematic outliers in Figure 4.16 and Figure 4.17, this would be a very encourag-
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ing result: it would mean that, except for a restricted group of abnormal transits,

CHIME’s thermal response is well-described by a linear model. If this hypothesis is

confirmed, the perturbed transits will have to be further investigated (rain and wind

statistics, as well as potential interference problems, might have to be considered).

Ideally, this would allow us not only to suppress these contaminated transits in or-

der to obtain a more accurate model, but also to predict when such anomalies are

susceptible of happening again.

4.5 Analysis of outliers
A more profound analysis allowed us to identify two distinct types of outliers.

Studying the mean of the fractional gain variation instead of the median over chan-

nels exhibited another family of anomalous points, now referred to as ”type 1 out-

liers”, which did not appear in the previous investigations. In these particular tran-

sits, channels do not behave in a uniform way. It is therefore suspected that these

outliers result from the influence of an external source on some isolated channels;

the primary hypothesis, which will be strengthened by later results, is that rain

causes water to enter some of the antennae and trigger an abnormal response. The

phenomenon significantly perturbing a restricted number of feeds explains why

type 1 outliers were undetectable when considering the median of channels, but

are visible when working with the mean (see Figure 4.22 and Figure 4.23). As

type 1 outliers are the only transits for which channels exhibit a non-homogeneous

behaviour, they can be detected by taking the RMS over channels of the fractional

gain variation. As shown in Figure 4.21 for CasA, the RMS values for type 1

outliers are clearly superior to those of normal days. The difference is especially

significant between 400 and 500 MHz. This allowed to determine a criterion to

detect type 1 outliers: the RMS over channels is superior to 0.1 in this frequency

range. This method successfully identified outliers of this type in TauA datasets,

as shown in Figure 4.22 and Figure 4.23.
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Figure 4.21: RMS of the fractional gain variation across channels, as a func-
tion of frequency, for the 34 CasA transits. Each curve corresponds to
one transit. Type 1 outliers (blue) clearly have a higher RMS than good
days (orange), especially between 400 and 500 MHz. This comes from
the fact that only some of the antennae exhibit an anomalous response
on these days, resulting in a higher variation across channels. Note that
type 2 outliers are not detected by this method.

The second family of outliers is the one already observed in Section 4.4, which

also appears when considering the median fractional gain variation and exhibits a

strong frequency dependance. These anomalies, referred to as type 2 outliers, are

not channel-dependent, so they cannot be detected by the previously mentioned

method. However, these outliers being sensitive to frequency allows to define a

new criterion: this time, RMS values are computed across frequencies instead of

channels, around 0.1 of the median, and the threshold is fixed at 0.014. This cri-

terion, defined by observing CasA data, effectively picked out TauA outliers as

shown in pink on Figure 4.22 and Figure 4.23. These two figures clearly illus-

trate the two types of outliers, with type 1 points always appearing off and type

2 points only causing problems in ”peak” RMS frequencies. The linear fit of the

mean fractional gain variation as a function of external temperature, when ignoring

both types of outliers, accurately describes the remaining data.

46



Figure 4.22: Linear fits of the mean fractional gain variation VS temperature,
excluding type 1 (blue) and type 2 outliers (pink), for 97 TauA transits
between 09/20/18 to 01/23/19 and different frequencies. The remain-
ing data clearly follows the linear trend, and the frequency-dependent
nature of type 2 outliers is visible. The left column shows peak RMS

frequencies, the right one shows trough frequencies. From left to right
and top to bottom: 669.1 MHz, 651.2 MHz, 671.1 MHz, 657.0 MHz,
703.5 MHz, 685.5 MHz.
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Figure 4.23: Same as Figure 4.22 for different frequencies. From left to right
and top to bottom: 705.5 MHz, 691.4 MHz, 772.7 MHz, 719.9 MHz,
774.6 MHz, 726.2 MHz.

Having computed these new, improved fits after detecting and filtering out

anomalous transits allows to calculate the new RMS of residuals and the RMS of

the mean fractional gain variation across days. These two quantities are plotted in
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Figure 4.24 for all three sources. The red and green stars correspond to the ”peak

RMS” and ”low RMS” frequencies represented in the two previous figures; after

filtering out outliers, peaks in the RMS of residuals have disappeared and no signif-

icant frequency dependance is observed. The target value of 0.003 is reached for

part of the frequency range. This means that the linear model, combined with the

appropriate treatment of outliers, improves the quality of the data sufficiently to

meet the accuracy criteria of the instrument. This remark is also supported by the

fact that the RMS of residuals is lower than that of the data without thermal model,

especially in the 550-800 MHz range.

Now that the thermal model has been confirmed to be satisfactory when outliers

are ignored, it is important to find the reasons behind these anomalous transits in

order to be able to predict them. Figure 4.25 displays rain quantities cumulated

for a six hour period at the DRAO, over the whole observation time. These statis-

tics are superposed to the times of TauA transits, with type 1 and 2 outliers being

represented in blue and pink respectively. It appears that type 1 outliers exhibit a

correlation with the peaks in the graph: all type 1 points closely coincide with a

rain event. This supports the primary hypothesis that these anomalies stem from

water entering some of the antennae. A few of the minor peaks do not coincide

with any type 1 outlier; this does not go against the hypothesis, as it is possible

for rain to occur without causing significant amounts of water to perturb the re-

sponse of some of the feeds. Type 2 outliers are more difficult to explain and no

definite cause for their existence has been found yet. It is interesting to note that

all the TauA type 2 points correspond to a single group of consecutive days, right

after New Year. A similar constatation has been made with CasA type 2 outliers,

which coincide with the TauA values. This series of dates is preceded by several

significant peaks in the rain statistics, therefore it is possible that these outliers are

also related to water in some way. However, this does not explain the inherently

different characteristics of these transits compared to type 1 outliers, with the ho-

mogeneous channel behaviour and the frequency dependance seemingly indicating

a relation with reflector effects.
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Figure 4.24: RMS of the data and RMS of residuals as a function of frequency,
ignoring outliers, for the mean fractional gain variation of the 3 sources
(E-W polarization). From top to bottom: CasA, CygA, TauA. The RMS

of residuals is systematically lower than that of the data and does not
exhibit a strong frequency dependance anymore. The target of 0.003
is attained between 600 and 700 MHz.
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Figure 4.25: Comparison of TauA outlier days with rain accumulation over a
6 hour period. A correlation seems to exist between type 1 outliers and
peak rain events. The series of type 2 outliers also follows an important
rain accumulation, but the relation is not certain yet.

The improved linear fits resulting from the appropriate detection and treatment

of outliers can be used to compute the final thermal susceptibility values for all

three sources, over the whole frequency range. The results are displayed in Fig-

ure 4.26. Note that this figure shows a general increasing trend and positive values,

while previous susceptibility results exhibited the opposite tendency: this is due to

the fact that Figure 4.26 was computed using inverse gain values. To first order,

the slopes of the fits are therefore opposite of those found for the gains themselves.

This plots contains similar features as previous susceptibility plots: 30 MHz rip-

ples and a slight dependency on the considered source. It appears that the quality

of TauA datasets was greatly improved by the removal of outliers, as the TauA data

now closely matches the CasA values. This is a significant progress compared to

Figure 4.9.
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Figure 4.26: Susceptibilities obtained from linear fits of the mean fractional
gain variation, filtering out outliers, for the 70 CasA transits, the 34
CygA transits and the 97 TauA transits. Despite being shifted with
respect to each other, the three sources produce similar results and
the behaviour of TauA is now coherent with the two other datasets.
Scattering is significant and the clearest trend is visible between 600
and 700 MHz.

Finally, the dependency of susceptibilities on the considered portion of the

dataset was tested by performing the linear fits using only half of the transits, in four

different configurations. The first half and second half were used separately, then

the even and odd days were also extracted and employed for the fits. The results

shown in Figure 4.27, despite some differences, all exhibit the same general trend

and the order of the susceptibility values is in agreement between the four panels.

This is a progress compared to the results obtained before excluding outliers, which

exhibited a very strong dependency on the considered time period. This improve-

ment can be explained by the fact that removing outliers related to irregular events

such as rain allowed to obtain a more reliable one-parameter model. An ideal one-

parameter model would be completely independent on the chosen dates. In our

case, the uncertainty introduced by considering different time periods is compara-

ble to the difference between the three radiosources, and to the amplitude of the

30 MHz ripples. Within these limitations, the thermal model can be considered to

be consistent with the direction-independent and dataset-independent nature of the

complex gain.
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Figure 4.27: Susceptibilities obtained from only taking into account one half
of each dataset, in different configurations. A dependency on the con-
sidered dataset is still present, but a lot less significant than before ex-
cluding outliers. The general increasing trend and the 30 MHz ripples
are visible in each panel.
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Chapter 5

Discussion

The results presented in this paper are illustrative of the validity of a linear thermal

model, and also serve to understand the limitations of the employed methods. RMS

of residuals values obtained after excluding outliers show how the thermal model

can improve the data, and the target accuracy for the model being reached for a

significant part of the frequency range is a very encouraging result. The final sus-

ceptibility plots demonstrate that the general increasing tendency and the order of

the values are agreeing for all sources, independently of which part of the dataset

is taken into account. It should therefore be possible to fit a smooth function to this

general trend, and already significantly improve the calibration of the instrument.

However, uncertainties are still present in all these measurements. Considering di-

verse sources or time periods results in differences that limitate the model. The 30

MHz oscillations linked to the expansion of the reflector introduce ripples which

would also decrease the accuracy of a smooth fit through the susceptibility values.

Therefore, taking into account these ripples by trying to model the expansion of

the cylinders and the resulting shift in the interference pattern is an idea for further

investigation. This could be facilitated by comparing current results with CHIME

Pathfinder data in order to determine if a similar oscillation with lower amplitude

was also occuring in the CHIME prototype. Other perspectives for future study in-

clude conducting an analysis similar to this work using the phase of the complex

gain instead of its amplitude, and performing tests of the thermal model by apply-

ing it to simulated or actual sky maps and evaluating the resulting improvements.
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Chapter 6

Conclusion

The objective of this study was to build a thermal model that would characterize

the dependency of CHIME’s complex gain on external temperature and be used to

improve its gain calibration algorithm.

The results, obtained by analyzing transits of bright radiosources (CygA, CasA

and later TauA), have shown that the complex gain amplitude variations can be

satisfactorily described by a first order model combined with the appropriate data

pre-processing.

After obtaining encouraging preliminary results despite significant scattering,

different potential solutions were explored in order to reduce the impact of outliers

as well as the dependency of the obtained susceptibilities on the considered source

and dataset. The nonlinear response of LNAs was proposed as a first hypothesis

and corrected for, but this modification only shifted the susceptibility values and

did not improve the quality of the fits. External factors other than temperature were

then considered; the SVD decomposition of the gain variation values demonstrated

that a one-parameter model was a valid description of most of the data, but that an

isolated group of outliers probably related to other factors such as rain needed to

be explained, predicted and filtered out. Further investigation of outliers allowed to

distinguish, detect and exclude two categories of anomalous transits, which greatly

improved the quality of the linear fits and final susceptibility values and allowed to

attain the target accuracy.

In the light of these results, we can consider the goals of this analysis to have
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been met. Future work will be needed in order to include this model in the calibra-

tion algorithm and apply it to actual sky data, which will in time allow to perform

innovative and possibly groundbreaking cosmological measurements, hopefully re-

sulting in a better understanding of dark energy.
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