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Abstract 

The integration of hands-free modalities for controlling an ultrasound machine from the 

surgical robot console has the potential to assist the surgeon in manipulating the ultrasound 

image independently during robot-assisted minimally-invasive surgery (MIS). Hands-free 

control is especially useful when both of the surgeon’s hands are occupied with the control of 

surgical tools and no assistant is present to help the surgeon operating the ultrasound 

machine. This thesis presents the design and development of a graphical user interface (GUI) 

for da Vinci classic system which enables its user to interact with the SonixTouch ultrasound 

machine directly from the surgeon console using eye gaze and voice commands. An initial 

user study was performed as a part of iterative design process in order to assess the GUI 

usability, and the task chosen for this purpose was an image optimization task. Although 

current iteration of the GUI resulted in relatively long completion time and high speech 

recognition error ratio, it demonstrated that integrating such technology in robot-assisted MIS 

is feasible. 
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Chapter 1 

Introduction 

1.1 Background 

The superiority of eye gaze in revealing a person’s intention and spatial focus has compelled 

many researchers to implement eye and gaze tracking in various applications [1]. As a first 

example, in marketing, the analysis of consumers’ eye movement led to the understanding of 

effective advertisement placement [2]. As a second example, the use of gaze tracking in 

automotive field enabled researchers to build a system which was able to detect a driver’s 

attention and raise a warning whenever the driver became inattentive [3]. The first example 

shows a passive implementation of gaze tracking, where the user’s gaze is continuously 

recorded during the experiment and the gaze pattern analysis is performed at a later time. The 

second example is categorized as active gaze tracking, since the user’s gaze was not only 

recorded during the experiment, but also used to generate a real-time response. The active use 

of gaze is made possible due to the fast movement of the gaze itself, which can precede 

voluntary actions by up to one second [4]. In the field of Human-Computer Interaction (HCI), 

this superior movement speed of the gaze ultimately makes gaze tracking a feasible input 

modality, complementing conventional hand-based modalities, such as mouse and keyboard. 

 The remote nature of gaze tracking opens a pathway for its introduction in surgical 

settings. Currently, a technological need exists for hands-free interaction with imaging 

technology to maintain sterile condition during surgery [5]. Imaging technology used intra-

operatively can minimize the damage to the tissues surrounding the area of interest, thereby 

improving the patient’s quality of life [6]. Gaze tracking has the potential to be the hands-free 

input modality that is able to answer the ever-increasing need mentioned above. 
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 Aside from the need to maintain the sterile conditions in the operating room, other 

scenarios exist where hands-free interaction in surgical settings is required. Most of the time 

during the surgery, both of the surgeon’s hands are occupied with surgical tools, but there are 

times when the surgeon needs the direct control to the imaging machine to use it intra-

operatively. In a typical situation, an assistant will help the surgeon to operate the imaging 

machine until the desired image is obtained. However, this practice introduces potential 

communication problems between the surgeon and the assistant, which eventually can disrupt 

the procedure flow and prolong the procedure duration [7]. If the surgeon is provided with a 

hands-free modality such as gaze tracking to control the machine, this potential problem can 

be prevented. 

 

1.2 Research Direction 

The goal of this work is to develop a prototype of a graphical user interface (GUI) to be used 

in robot-assisted minimally-invasive surgery (MIS), which allows for hands-free operation of 

an ultrasound machine via operator’s eye gaze and voice. This technology will facilitate the 

surgeon to manipulate some of the ultrasound machine parameters directly from the robot 

surgeon console. 

 Robot-assisted MIS offers the capability of open surgery in enabling the surgeon to 

control the surgical instruments precisely and intuitively, while at the same time leads to low 

morbidity, which is one of the advantages of MIS [8]. The robotic system, which is used for 

the design, development, and initial evaluation in this work, is the standard da Vinci Surgical 

System (Intuitive Surgical, Inc., Sunnyvale, CA). 

 The imaging technology that is chosen to be the focus of this work is ultrasound 

imaging. Ultrasound imaging offers fast, economical, real-time imaging which is suitable for 

interventional radiology [9]. This work focuses on the intra-operative application of 
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ultrasonography instead of the purely diagnostic one. Therefore, the ultrasound machine 

features that will be integrated to the GUI are the ones which are identified as the commonly 

used features during the surgery. The ultrasound machine that is used for the development 

and initial evaluation in this work is SonixTouch (Ultrasonix Medical Corporation, 

Richmond, BC), due to the existence of the Ulterius Software Development Kit (SDK) as the 

framework for remote communication with the machine and the machine availability in the 

UBC Robotics and Control Laboratory (RCL). 

 The human-computer modalities used for interacting with the GUI are eye gaze and 

speech. Various research papers have explained the Midas Touch problem when only eye 

gaze is used as the input modality [10, 11, 12]. The Midas Touch problem is a situation 

where the gaze tracker cannot differentiate between the operator’s gaze for normally looking 

around and for triggering an action, meaning that everywhere the operator looks, a command 

is triggered. One solution to this problem is to track the dwell time of the gaze. If the operator 

looks at a certain area longer than a certain period of time, it means that the operator intends 

to trigger an action and the system will issue that action. However, implementing only dwell-

time method raises a trade-off problem. If the dwell time required to issue a command is too 

short, then the Midas Touch problem will practically still exist. On the other hand, if it takes 

a long time for the operator to look at a certain area and issue a command, it will defeat the 

purpose of using the eye gaze as a fast input modality. The addition of speech as the 

activation modality in this work is expected to overcome the problems outlined above. 

 

1.3 Related Work 

The ability of eye gaze to reveal a person’s attention to a certain object right before the 

person performing a voluntary action to that object, led many researchers to explore its 

potential use as a menu selection tool. The work done by faculty and students at the 
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University of Virginia resulted in the realization of a device called Erica, which was able to 

accept the user’s eye gaze as the input for its user interface [13]. This device aimed to help 

people with physical and vocal disability to regain some degree of independent control 

through its specially-designed menu selection feature, which responded to the user’s gaze 

after the user stared at the desired option for a fixed amount of time. Therefore, Erica’s 

selection method could be categorized as dwell-time method. The paper mentioned some 

limitations of the system, such as the need for the user to maintain the position of the head 

and the need to improve the accuracy and precision of the gaze tracker. Both limitations are 

common to gaze-based human-computer interaction, as pointed out by Robert Jacob [12]. 

 In his observation, Robert Jacob explained another considerable limitation of 

unimodal, gaze-based menu interface: the Midas Touch problem, which has been discussed 

in details in the previous sub-section. He further explained that item execution using dwell-

time method typically resulted in unnatural stare by the user and proposed the use of a button 

for the menu confirmation. This observation raised the possibility for the development of 

multimodal user interface. 

 Some researchers decided to implement multimodal interaction in their work and 

compare its performance with the unimodal one [14]. The input modalities they employed for 

their multimodal interaction are gaze and speech, whereas only gaze was utilized for their 

unimodal interaction. Furthermore, they designed their user interface to have standard-sized 

objects, as opposed to the large objects and spacings that are typically used to accommodate 

calibration errors and the accuracy of the gaze input. Their work reported that the mean error 

rate of the gaze-only interaction was 51.1% and the use of multimodal interaction greatly 

reduced the error rate down to 17.4%. Furthermore, the use multimodal interaction decreased 

the mean movement time by 24%. This work showed that multimodal implementation was 

superior compared to the unimodal, gaze-only implementation. 
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 Another group of researchers also investigated the effectiveness of multimodal 

implementation for menu selection [15]. They explained the distribution of labour between 

the eye gaze and speech input, where the former was used as a pointing element and the latter 

acted as the selection element. Contrary to the findings in [14], they found that the 

multimodal implementation resulted in slower task completion time compared to the gaze-

only implementation. Two possible causes to this slow task completion time were the 

existence of eye-voice span, which resulted in the temporal gap of around 500 milliseconds, 

and the latency from speech recognition software. 

 The work in [15] reported not only the significance of modality choice, but also the 

effectiveness of menu layout design. They compared three different menu layouts: linear, 

full-circle, and semi-circle. Semi-circle menu design was found to have the highest accuracy 

rate, fastest task completion time, and lowest cognitive load for the user. Therefore, carefully 

considered layout serves as a major part in the design and development of hands-free menu 

interface. 

 The application of hands-free menu selection in laparoscopic surgery became the 

focus of the work by Geoffrey Tien [16]. He decided to use eye gaze as the only input 

modality in his design. The menu selection in the final design was performed using the dwell-

time method. The reason behind this unimodal approach was that the use of voice commands 

during the surgery might be ineffective due to the high level of ambient noise from different 

machines in the operating room. Moreover, the voice commands from the surgeon might be 

mistakenly heard by the rest of the surgical team as a regular communication. Regardless of 

these design decisions, he specified that further user studies in realistic operating room 

settings were needed.  
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Chapter 2 

Design 

This part of the paper will explain the design considerations and decisions made for the 

prototype of the hands-free multimodal GUI for controlling the ultrasound machine. The GUI 

design process follows iterative design methodology, in which a cycle consisting of 

prototyping, testing, and user evaluation is repeated in order to deliver an interface that has 

higher usability than the previous iteration [17]. Therefore, before the user interface is ready 

to be used in the actual surgical settings, it will require a couple of iterations to refine its 

features and further improve the overall user experience. 

 

2.1 Gaze Tracking 

The use of eye gaze as one of the input modalities in the GUI requires the operator to go 

through a calibration process. The process is used to map the operator’s pupil-glint vectors to 

their respective pixel coordinates on the screen. The calibration method chosen for this 

purpose is nine-point calibration, in which the operator has to look at the nine points shown 

in Fig. 1 in succession. The entire calibration process takes less than a minute, since the 

operator needs to fixate on each point for 2.5 seconds and the transition time to allow the 

operator’s gaze to move on to the next point is 3 seconds. 

 

Figure 1. Nine-point calibration design 
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 When using eye gaze as an input modality for the menu selection, two general 

approaches exist. The first approach is to use eye gaze as both pointing and selection 

elements. However, one limitation of eye gaze as an input modality is that, unlike touch-

based input modalities such as mouse and touchscreen, eye gaze does not possess an intrinsic 

clicking method [10]. Therefore, dwell time and blinking are typically employed as clicking 

methods in this approach so that the eye gaze can be used for both normal vision and 

computer input. 

 The second approach is to use eye gaze only as a pointing element. The interface 

continuously tracks the operator’s eye gaze and checks if the gaze points to a certain menu 

elements, but the gaze does not have any ability to make the selection by itself. This approach 

is more natural compared to the first approach, since in the first approach the perceptual 

channel is overloaded with a motor control task [18]. 

 The current iteration of the GUI utilizes the combination of two approaches 

mentioned above. Generally, the eye gaze will be only used as a pointing element. However, 

on some menu elements that require the operator to perform repeated tasks, switching 

between eye gaze and another input modality to make a selection is cumbersome. Therefore, 

the eye gaze will also be able to make a selection using the dwell-time method on these menu 

elements. 

 Other than those two approaches, the GUI is also able to detect if the operator’s gaze 

is on the edge of the screen in order to change the display. This method is known as gaze 

contingency, in which the screen functionalities are changing depending on where the 

operator is looking. This feature is added in the GUI as an alternative to the speech 

recognition method for switching between displays, in the case that the high level of ambient 

noise greatly affects the performance of the speech recognition. The implementation for the 

gaze contingency is explained in details in Chapter 3. 
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2.2 Speech Recognition 

Since eye gaze is only used as a pointing element, another modality needs to act as the 

selection element. Speech recognition is chosen to complement the eye gaze as a menu 

selection input modality due to its hands-free nature and its ability to emulate the human 

action in requesting an object. The natural way for a person to request an object which is out 

of his/her reach to another person is by pointing to that object and expressing the request to 

pass that object verbally. In this GUI, the menu selection is designed to replicate those 

actions, with the eye gaze accommodating the pointing action and the speech recognition 

relaying the operator’s request to the computer system. This parallel representation with 

human skills is important for the development of GUI since it directly affects the 

predictability and controllability of the system [19]. 

 Despite the superiority of speech recognition mentioned previously, the high level of 

ambient noise from different machines in the operating room may reduce the effectiveness of 

speech recognition usage in surgical settings. Therefore, the use of speech recognition in the 

current iteration of GUI is kept to a minimum, both to attenuate the problem above and 

minimize the cognitive load of the operator. 

 

2.3 Graphical User Interface 

Designing an intuitive GUI requires the author to give careful thought and find the right 

balance of many different factors, starting from the menu layout to low-level details, such as 

button dimensions and button effects. One important constraint with any GUI is the screen 

dimensions, which in this work are 640 x 480 pixels. Regarding this constraint, Ben 

Shneiderman from the University of Maryland acknowledged in his paper that “screen space 

is a scarce resource” [20]. 
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 In this GUI, the menu for the ultrasound machine control occupies the same screen 

space as the video stream, essentially acts as the overlay for the video stream. Therefore, the 

menu layout chosen has to enable the operator to get the idea of what is happening on the 

video stream. One way to achieve this outcome is by grouping the menu items into 

comprehensive clusters on the screen [20]. Aside from the fact that grouping the menu items 

can lead to greater amount of free screen space, it also leads to more efficient search 

behaviour by the operator [1]. The reason behind this effect is that the users inherently expect 

buttons which share common functionalities to be grouped, and meeting this expectation in 

the GUI may result in shorter scanpaths and smaller search areas. Ultimately, the short 

scanpaths and small search areas are desirable in a system where eye gaze is utilized as one 

of the input modalities. 

 The grouping of the menu items is in line with Fitts’ Law, which is used in HCI to 

measure the performance of target selection task: 

!" ! ! ! ! ! !" ! ! ! ! ! !"#!
!!
!  

where MT is the movement time, ID is the index of difficulty, D is the distance to the target, 

W is the width of the target, and a and b are the model constants [21]. The shorter the 

movement time, the more desirable the system for performing the target selection task. 

Hence, grouping the menu items essentially reduces the distance between targets, which in 

turn lowers the index of difficulty and ultimately the movement time. 

 However, minimizing the index of difficulty in this GUI proves to be a challenge, 

since there is a limit on how close the menu items can be placed next to each other before the 

limited accuracy of the gaze tracker makes it difficult for the operator to select a particular 

item on the screen. The mean error of the gaze tracker used in this work is 0.88 degrees of 

viewing angle, and its standard deviation is 0.69 degrees [22]. With the da Vinci screen size 

of 14 inches, the screen resolution of 640 x 480 pixels, and the assumption that the distance 
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from the operator’s eyes to the screen is 18 inches [23], the pixel accuracy can be calculated. 

Based on the result from the calculation of mean pixel error in Appendix A, the minimum 

gap surrounding each menu item is 20 pixels. 

 One way to compensate for the limitation explained in the previous paragraph is by 

increasing the dimensions of the menu items, thereby effectively increasing the width of the 

target in the Fitts’ Law mentioned previously. Moreover, large on-screen objects, which are 

typically more than one degree of viewing angle, can also compensate for the relatively low 

accuracy of gaze-based pointer and the calibration errors [24]. Therefore, the dimensions for 

a menu item are chosen to be 140 x 140 pixels. The button concept in the current iteration of 

GUI can be seen in Fig. 2 below. 

Figure 2. Button dimensions and surrounding gap (a = 70 pixels, b = 20 pixels) 

 Aside from finding the right balance between the button dimensions and the gaze 

tracker accuracy, the addition of visual feedback in the GUI can improve the overall user 

experience [15, 16]. Therefore, in this GUI two forms of visual feedback are added to the 

buttons: button highlighting and button press animation, as seen in Fig. 3. When the eye gaze 

of the operator hovers on top of a button, the button will change its colour, indicating that the 

operator is able to interact with that button. Moreover, when the operator makes a selection to 

a button, the button will appear to be sinking from its initial raised state, indicating that the 

operator has performed an action to that button. These visual feedbacks keep the operator 

a 

a 
b b 

b 

b 
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informed about what is happening in the GUI and indirectly give the operator a sense of 

control [25]. 

   

Figure 3. Three states of a button (from left to right): default, highlighted, and pressed 
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Chapter 3 

Implementation 

This part of the paper will focus on the actual implementation of the design explained in 

Chapter 2. The outcome of this implementation is the prototype of the GUI to be used in da 

Vinci Surgical System for manipulating the parameters of SonixTouch using the operator’s 

eye gaze and voice. 

 

3.1 Human-Computer Modalities 

3.1.1 Eye Gaze 

The gaze tracking hardware used in this work, as seen in Fig. 4, is the gaze tracker developed 

in UBC RCL by Irene Tong, a Master’s student supervised by Dr. Salcudean. It consists of 

four major parts: 1) two OV5640 USB cameras, 2) two infrared (IR) bandpass filters installed 

on top of the cameras to allow only the reflection from IR light to be captured by the 

cameras, 3) two IR LEDs with the typical peak emission wavelength of 890 nm, and 4) a 3D-

printed eyepiece to mount the gaze tracker on the surgeon viewing console. 

 

Figure 4. UBC RCL gaze tracker 

 The gaze tracking software, which was initially developed in Python by Irene Tong 

and then slightly modified by the author to fit the goal of this work, continuously tracks the 
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operator’s point of gaze based on the video frames captured by the gaze tracking cameras. 

After the operator completes the calibration explained in Section 2.1, a pair of pixel 

coordinates is mapped to the GUI, where each coordinate represents the gaze from each eye. 

The arithmetic mean of the two pixel coordinates is used as the absolute point of gaze of the 

operator in the GUI. This absolute point of gaze coordinate is used to check if the operator 

fixes his/her gaze on a particular menu element. 

 The GUI also checks whether the operator’s point of gaze is on the edge of the screen 

or not. If the operator’s point of gaze is on the edge of the screen for a certain period of time, 

the display will change accordingly. For example, if the GUI is currently showing the 

surgical scene and the operator is focusing his/her gaze on the right edge of the screen for 800 

milliseconds, the GUI is switching to display the ultrasound image instead. On the other 

hand, if the GUI is currently showing the ultrasound image and the operator is looking at the 

left edge of the screen for 800 milliseconds, the GUI is switching back to display the surgical 

scene. The sample implementation of this feature can be seen in Fig. 5. Therefore, as an input 

modality, the operator’s eye gaze not only acts as a cursor to select a menu element, but also 

follows the gaze contingency paradigm in order to change the screen functionalities 

depending on where the operator is looking. 

    

Figure 5. Switching between surgical scene (left) and ultrasound image (right) 
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3.1.2 Speech Input 

During the initial development of the speech recognition for the GUI, Google Speech 

Recognition was chosen as the speech recognition application programming interface (API) 

and engine. The API was implemented in Python through the use of the SpeechRecognition 

package developed by Anthony Zhang. Despite the fact that the engine was able to interpret 

the speech input accurately, the computer needed to be constantly connected to the Internet 

during the operation and it had to wait for a few seconds to get the reply from the server. 

Therefore, this type of implementation is not suitable for the purpose of this work, since fast 

response time from the system is essential in surgical settings. 

 The current iteration of the GUI utilizes Microsoft Speech for its speech recognition 

engine. The API is also implemented in Python, using the speech package developed by 

Michael Gundlach. However, the original source file uses the Shared recognition engine, 

where multiple applications are allowed to use the engine’s resources concurrently. This type 

of engine occasionally causes unwanted responses from the computer, such as running 

another application or performing Microsoft Windows native commands. Therefore, the 

author has modified the original source file to utilize the InProc recognition engine instead, 

where the speech recognition’s resources are dedicated only to the GUI application. The 

details of the changes can be found in Appendix B. 

 For the GUI, the speech recognition runs on a background thread. When a certain 

word or phrase is heard, the speech recognition thread will notify the main thread and pass 

the recognized word or phrase to it. Then, the main thread will run a particular function 

depending on which word or phrase gets passed on. The words chosen have to be 

distinguishable from each other in order to avoid any incorrect function being called by the 

operator. The details of the speech recognition implementation in the GUI can be seen in 

Appendix C. 
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 The current iteration of the GUI recognizes six basic commands: 1) display, to show 

or hide the menu buttons on the screen, 2) switch, to toggle the display between surgical 

screen and ultrasound image, 3) select, to select the menu button pointed by the operator’s 

gaze, 4) stop, to take the cursor focus away from any button, 5) voice only, to activate voice 

only mode that sets speech recognition as the only input modality and temporarily disables 

the gaze tracking pointing capability, and 6) use gaze, to give the pointing capability back to 

the gaze tracking system. Aside from these basic commands, when the voice only mode is 

activated, each button has an inherent voice command that will move the cursor to that 

particular button if it is recognized by the GUI. The voice only mode is added to the GUI as a 

countermeasure if the gaze tracking system fails during the operation. During this mode, the 

voice command for each button is displayed on the button itself, both for providing the 

operator with a visual feedback and helping the operator carrying out the commands. The 

comparison between normal operation mode and voice only mode can be seen in Fig. 6. 

   

Figure 6. Display comparison between normal operation (left) and voice only mode (right) 

 

3.2 Graphical User Interface 

The GUI for this work was developed in Python using the Tkinter package. It consists of 

multiple layers, as seen in Fig. 7. The first layer, Toplevel Window, is the GUI application 

window and contains the rest of the layers. In this work, it is set to have a fixed width of 640 
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pixels and a fixed height of 480 pixels, in order to match the screen size of the surgeon 

console display. The second layer, Base Canvas, acts literally as a canvas that holds the 

objects generated in third, fourth, and fifth layers. The third layer, Video Layer, contains the 

live video stream either from the stereo camera or the ultrasound machine. The image frames 

are captured continuously on a separate thread and passed into a First In, First Out (FIFO) 

queue. Then, the main thread of the GUI obtains these frames from the queue and displays 

them on Video Layer. The fourth layer contains buttons to interact with the ultrasound 

machine. Finally, the fifth layer, Help Layer, continuously displays multiple help labels, 

where each label contains a keyword for basic voice commands along with the short 

description of its functionality. This last layer aims to reduce the cognitive load of the 

operator by letting the operator to use the GUI without having to memorize all of the voice 

commands beforehand. 

 

Figure 7. GUI layer organization 

 As mentioned briefly in Section 3.1.2, the GUI has the ability to show or hide the 

menu buttons. Technically, this feature is achieved by switching the display order of Video 

Layer and Button Layer, as illustrated in Fig. 7. When the menu buttons are shown to the 

operator, the Video Layer is placed on the third layer and the Button Layer is placed on the 

fourth layer. However, when the menu buttons need to be hidden from the operator, the 
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Video Layer is placed on the fourth layer and the Button Layer is placed on the third layer. In 

the current iteration of GUI, the operator can perform this switching mechanism either 

through the speech recognition or the gaze contingency method. The speech recognition 

method is carried out by passing the command display to the speech recognition engine, 

whereas the gaze contingency method is carried out by looking at the upper edge of the 

screen for 800 milliseconds to display the menu buttons and the lower edge of the screen for 

the same period of time to hide the menu buttons. The sample implementation of this feature 

can be seen in Fig. 8. 

   

Figure 8. Menu buttons can be shown (left) or hidden (right) from the operator 

 The framework for the GUI provides four different button types related to the 

ultrasound machine control: active, passive, latched, and mode. Any active command sent to 

the ultrasound machine, which is not dependent on other parameters or not directly affecting 

other parameters, is going to take the form of an active button. The sample implementations 

of this button type are saving the screen image and toggling the freeze state of the ultrasound 

machine. The passive button type is used for generating a button that passes a parameter 

identifier to the GUI, which can be incremented or decremented later by the operator. The 

parameter passed to this type of button has to be an imaging parameter that holds an integer 

value, such as B-mode depth, B-mode gain, and Color Doppler gain. Moreover, only one 

parameter can be passed to the GUI in one moment. 
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 The third button type, the latched button, is used to pass a command that depends on 

the parameter passed by the passive button; hence its name latched button since it depends on 

a latched value in order for it to be functional. Buttons that are used to increment and 

decrement a parameter value take the form of latched buttons. Each of these buttons also has 

a dwell-time attribute, so that the operator’s eye gaze is able to select the button by focusing 

his/her gaze for a fixed period of time. Therefore, the operator does not have to repeatedly 

say select if he/she wants to increment or decrement a parameter value multiple times. This 

dwell-time attribute is dynamic, meaning that the time required for the button activation 

decreases every time the button has been successfully triggered. For example, the first time 

the operator focuses his/her gaze on a latched button, the time needed to activate the button is 

1 second. Then, if the operator decides to keep staring at that button, the next duration before 

the button activation will be 0.5 seconds. This halving pattern will continue until the 

operator’s gaze is no longer focusing on that button. However, a lower limit of 0.2 seconds is 

currently set to avoid the parameter value being incremented or decremented too fast. 

 The last button type, the mode button, acts as a template to generate buttons which are 

used to change the ultrasound imaging mode. It also has the ability to show and hide certain 

passive buttons, depending on which imaging mode is chosen. For example, selecting B-

mode mode button shows the passive buttons for B-mode depth and B-mode gain and hides 

any other passive buttons. 

 The decision to show only the passive buttons which are directly related to the 

selected imaging mode not only maintains as much empty space as possible on the screen, 

but also provides the operator with the right level of control. The latter concept is known as 

progressive disclosure, which aims to help novice operators familiarize with the interface 

without being overwhelmed by the amount of features displayed on the screen, while at the 



! "*!

same time provides advanced operators with greater degree of control [25]. The menu 

hierarchy in the current iteration of GUI can be found in Fig. 9. 

 

Figure 9. GUI menu hierarchy 

 Each button on the GUI has a feature called snap-to-center. Whenever the operator’s 

point of gaze enters the effective area of a button, the gaze coordinate that is passed to the 

GUI is automatically converted from the absolute point of gaze coordinate to the centroid of 

that button. This feature can theoretically compensate for the relatively low accuracy of gaze-

based pointer, thereby helping the operator in selecting a button on the screen. 

 

3.3 Ultrasound Machine Communication 

The Ulterius SDK provides an external computer system the capability to control an 

Ultrasonix ultrasound machine remotely via a TCP/IP connection. Once the computer and the 

ultrasound machine are connected, the computer can perform various actions to the machine, 

such as obtaining different parameter values, setting a parameter to a new value, changing the 
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ultrasound image acquisition mode, and freezing the image frame. Further details of Ulterius 

capabilities can be found in its SDK documentation. 

 The Ulterius SDK was developed for use in C or C++ programming languages. 

However, this work uses Python as the main development language. Therefore, a wrapper is 

needed to implement the SDK in the GUI. The author decided to generate a Python wrapper 

for the SDK using Simplified Wrapper and Interface Generator (SWIG), called pyUlterius. In 

order to generate the wrapper, a SWIG interface file was needed. Then, this interface file was 

compiled together with the required dynamic-link libraries (DLLs) and header files, resulting 

in a Python module, pyUlterius.py, and a Python DLL, _pyUlterius.pyd. 

 After the Python wrapper module and DLL have been generated, a path configuration 

file is needed to allow the module to find the corresponding DLL. Therefore, pyUlterius.pth 

was generated to link the module and the DLL. The system setup to enable a Python program 

to use pyUlterius, along with the sample content of this path configuration file, can be found 

in Appendix D. 

 The wrapper, pyUlterius, was able to perform Ulterius functionalities needed for this 

work. However, the function call of some member functions from the original SDK had to be 

modified in order to comply with the Python underlying mechanism. Moreover, a helper class 

called IntByRef and a helper function called getImageData were created. 

Class IntByRef was created to facilitate one of the function calls to getParamValue in 

ulterius class that required a reference to an integer variable. It has one member variable 

called val, which stores an integer value, and three member functions: 1) get( ), 2) set(num), 

where num is a Python integer value, and 3) access_ref( ). The function get( ) is used to 

obtain the value of val, whereas set(num) is used to set the value of val to num. Finally, 

access_ref( ) is used to get the reference of val. 
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The helper function getImageData in ulterius class converts an ultrasound image data 

type from PyCapsule to bytearray. This data in the form of bytearray can later be passed to 

frombuffer method of Python Imaging Library (PIL) Image class to form a bitmap image. The 

code in Fig. 10 is the sample implementation of these functions. 

ultrasound = pyUlterius.ulterius() 
temp = None 
 
try: 
    # data: the image data in the form of PyCapsule 
    # size: the length of the image data, specifying the number of pixels 
    temp = ultrasound.getImageData(data, size) 
except TypeError as e: 
    print 'Error', e 
 
if temp is not None: 
    # width: the width of the ultrasound image, in pixels 
    # height: the height of the ultrasound image, in pixels 
    img = Image.frombuffer(“L”, (width, height), temp) 
    img.save(“my_image.bmp”) 

Figure 10. Sample image data conversion 

The list of member functions of the ulterius class that are specific to pyUlterius, along 

with their implementation details, can be found in Appendix E. Some functions that were not 

used in this work have not been fully tested, as seen in Appendix F. Therefore, pyUlterius is 

currently open for further testing and development in order for it to become a robust and 

complete wrapper for the Ulterius SDK. 

 

3.4 Surgeon Console Display 

The surgeon console display consists of right and left cathode ray tube (CRT) screens, and in 

the default setting, each of the screens shows different video streams from the right and left 

cameras of the stereo camera. The position offset between the right and left cameras gives 

offset images on the display, thereby providing depth perception to the surgeon. In order to 

display the surgical scene along with the menu overlay on the surgeon console display, the 

video streams from the stereo camera need to be fed into the Python GUI application and 
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then this application needs to be displayed on the stereo display. The full implementation of 

these settings can be seen on Fig. 11. 

   

 

   

Figure 11. Video implementation diagram 

 One thing to be noted that in this prototype, only one of the video streams (either from 

right or left camera) is fed to the application, and the resulting display on one of the CRT 

screens is also used in the other screen. Therefore, the sense of depth normally found on the 

surgeon display is not present in this current prototype. In the future iteration of the GUI, the 

addition of another S-Video to USB video cable, along with slight modification to the GUI 

application will make it possible to show different video streams on the stereo display, 

thereby recovering the depth factor of the display. The display output, which contains both 

the video stream from one of the camera and the menu overlay, can be seen in Fig. 12. 

 

Figure 12. Non-stereo display output  
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Chapter 4 

Evaluation 

4.1 Setup 

The gaze tracking and the GUI software were run on the same computer. The computer 

specifications can be seen in Table 1. The gaze tracker used in this study was the UBC RCL 

gaze tracker explained in Section 3.1.1. The microphone used to receive voice input from the 

operator was a USB microphone manufactured by Dynex, DX-USBMIC13. Lastly, the S-

Video to USB video cable that was used to feed the GUI with the video stream from the 

surgical scene was StarTech.com SVID2USB2NS. The hardware setup on the surgeon 

console can be seen in Fig. 13. 

Operating System Windows 7 Professional 64-bit, Service Pack 1 
Processor AMD FX-8350, 8-Core, 4.00 GHz 
RAM 16.0 GB 

Table 1. Computer specifications for the user study 

 The GUI communicated with Sonix RP version 6.1.2 on SonixTouch via a TCP/IP 

connection established within UBC RCL. This communication included ultrasound image 

transfer from Sonix RP to the GUI, and ultrasound parameter acquisition (imaging mode, 

depth value, gain values) and manipulation (increment and decrement values) by the GUI. 

 

Figure 13. Hardware setup on surgeon console 



! #%!

 For the user study, the “pick-up” ultrasound probe developed by Caitlin Schneider 

was used to generate the ultrasound image on SonixTouch [26]. The object of the study was a 

vessel flow phantom (Blue Phantom, Redmond, WA) placed on the patient-side cart. The 

phantom had a single vessel on one end, vessel bifurcation around its middle part, and two 

vessels on the other end. A mini-pump variable flow from Fisher Scientific controlled the 

liquid flow inside the vessel. In this study, the pump was set to operate in forward direction, 

fast setting, and the speed of 5. The photographs of the probe and the patient-side setup can 

be seen in Fig. 14. 

   

Figure 14. Ultrasound probe (left) and patient-side setup (right) for the user study 

 

4.2 User Study 

The image optimization task was chosen for the user study. Each operator had to reproduce 

three Color Doppler images: 1) the single vessel, 2) the vessel bifurcation along with the 

bottom of the phantom, and 3) two vessels. The images had to be similar in quality as the 

images used as the standard of this study, as seen in Fig. 15. In order to achieve that goal, the 

operator had to change the values of the depth, B-mode gain, and Color Doppler gain using 

the GUI developed in this work. The operator was allowed to use any combination of eye 

gaze control and voice commands provided by the GUI. Before the study, each operator was 

introduced to the GUI and its features, and also the ultrasound machine controls that were 
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related to this study. The operator was also given some time to familiarize with the overall 

control of the system by trying out the GUI and the da Vinci teleoperation mode directly. 

   

Figure 15. Standard images for the user study 

 The task was split into three sessions, one for each image. Before each session, the 

operator had to go through a calibration process for the eye gaze and the ultrasound 

parameter values were set back to an initial condition of Depth = 2.5cm, B-mode gain = 50%, 

and Color Doppler gain = 50%. Then, using the da Vinci teleoperation mode, the operator 

placed the probe according to the indicators on the phantom, which corresponded to the 

session number, as seen in Fig. 16. The probe placement was considered as a pre-session 

setup and not included in the actual session to nullify the effect of varying proficiency in 

using the da Vinci robot between subjects in the results. Once these pre-session setups had 

been completed, an observer signalled the operator to start the ultrasound image 

manipulation. The observer continually monitored the ultrasound image quality displayed on 

SonixTouch and verbally guided the operator if the operator was not sure what he/she would 

do next. For example, if the ultrasound image was too dark and needed more contrast, the 

observer would ask the operator to increase the B-mode gain. Once the desired image had 
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been achieved, the observer would record the time required for the operator to complete the 

session. Throughout the session, another observer also counted the number of speech errors. 

The details of the speech errors will be explained in Section 4.3. 

 

Figure 16. Probe placement for the first session 

 After completing the task using the GUI, each subject was asked to perform the same 

task directly using the ultrasound machine, while still sitting in front of the surgeon console 

and placing the probe using the console. This scenario was not a realistic approach to the 

ultrasound machine control performed in actual surgery, as in typical surgical settings, an 

operator other than the surgeon controlling the da Vinci robot would be in charge of the 

ultrasound machine. Same as the task procedure using the GUI, before each session the 

ultrasound parameter values were also set back to the initial condition of Depth = 2.5cm, B-

mode gain = 50%, and Color Doppler gain = 50%. The placement of the ultrasound machine 

with respect to da Vinci surgeon console can be seen in Fig. 17. 

 Initially, five subjects were selected for the study, all of which have an engineering 

background and considered as novice users of the ultrasound machine. However, one subject 

had difficulty in proceeding with the task due to the poor ability of the speech recognition 

engine in recognizing one of the words spoken by the subject. The engine kept recognizing 

the command select spoken by the subject as gain. Therefore, Section 4.3 will report the 
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results from the other four subjects, whereas the observation from the subject that was 

excluded from this study will be discussed in-depth in Section 5.2. 

 

Figure 17. Ultrasound machine direct control setup 

 

4.3 Results 

For each subject, the completion time for each session was recorded. The results can be seen 

in Table 2. The completion time was the time required for each subject in each session to 

optimize the ultrasound image by changing the values of the depth, B-mode gain, and Color 

Doppler gain from their initial values. This metric did not include the time required to 

complete the calibration process and probe placement, as these actions were considered as 

parts of pre-session setups. 

 Session 1 Session 2 Session 3 
Subject 1 3 min 45 sec 2 min 51 sec 2 min 49 sec 
Subject 2 2 min 41 sec 1 min 30 sec 2 min 16 sec 
Subject 3 3 min 42 sec 2 min 17 sec 1 min 53 sec 
Subject 4 1 min 46 sec 2 min 41 sec 2 min 25 sec 

Mean 2 min 59 sec 2 min 20 sec 2 min 21 sec 
Standard Deviation 57 sec 36 sec 23 sec 

Table 2. Completion time for each session using the GUI 

 Table 3 contains the results for the task completed by direct control. Direct control 

was the scenario where the subject performed the image optimization task directly using the 
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ultrasound machine, while still sitting in front of the surgeon console and placing the probe 

using the console. These values cannot be fairly compared with the values on Table 2 to 

completely assess the performance and the overall benefits of the GUI. The setup for the user 

study ruled out the time required to place the ultrasound probe correctly on the phantom in 

order to nullify the variations of proficiency in using the da Vinci robot between subjects in 

the results. However, the continuous control interaction with the da Vinci console and the 

ability of the operator in keeping his/her hands on the master tool manipulators, while using 

the GUI to control the ultrasound machine, are the apparent benefits of the GUI that could not 

be captured quantitatively through this image optimization task. The image optimization task 

only aimed to assess the general usability of the GUI, and further study needs to be 

performed in order to assess the usability of the GUI in the actual surgical settings. Therefore, 

the results presented in Table 3 are provided here solely as a baseline for the image 

optimization task. 

 Session 1 Session 2 Session 3 
Subject 1 30 sec 25 sec 23 sec 
Subject 2 26 sec 27 sec 38 sec 
Subject 3 33 sec 26 sec 30 sec 
Subject 4 30 sec 28 sec 20 sec 

Mean 30 sec 27 sec 28 sec 
Standard Deviation 3 sec 1 sec 8 sec 

Table 3. Completion time for each session by direct control 

 Another parameter that was analyzed from the user study was the speech recognition 

error ratio. This ratio is defined as the number of mistakes divided by the total number of 

commands recognized by the GUI. The mistakes included the situation where the subject said 

different commands or words from what was recognized by the GUI and the situation where 

the subject did not mention any command but the GUI picked up background voice as an 

input. The results from this analysis can be found in Table 4. 
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 Session 1 Session 2 Session 3 Mean per 
Subject 

Subject 1 28.6% 15.6% 26.9% 23.7% 
Subject 2 8.9% 18.5% 19.4% 15.6% 
Subject 3 18.9% 14.7% 55.6% 29.7% 
Subject 4 9.4% 24.1% 12.5% 15.3% 

Grand Mean 21.1% 
Table 4. Speech recognition error ratio 

Lastly, Table 5 shows the percentage of time spent using voice only mode. Since each subject 

was allowed to develop his/her own strategy in completing the task, great variations existed 

between subjects. For example, Subject 4 preferred to use voice only mode rather than the 

combination of gaze and voice, proven by the high percentages of time spent using voice 

only mode. On the other hand, Subject 2 in Session 2 and Subject 3 in Session 3 did not use 

voice only mode at all. 

 Session 1 Session 2 Session 3 Mean per 
Subject 

Subject 1 36.4% 22.8% 9.5% 22.9% 
Subject 2 40.4% 0.0% 26.5% 22.3% 
Subject 3 23.4% 73.0% 0.0% 32.1% 
Subject 4 89.6% 66.5% 92.4% 82.8% 

Grand Mean 40.0% 
Table 5. Percentage of time spent using voice only mode 

 All subjects found that the dynamic dwell-time attribute on the buttons that were used 

to increment and decrement parameter values were helpful in changing the values of B-mode 

gain and Color Doppler gain, but made it more difficult to change the value of the depth. Two 

of the subjects pointed out that when the menu display was on, the large dimensions of the 

buttons prevented them from clearly see the changes they made on the ultrasound image. 

Finally, all subjects gave positive feedbacks on the addition of voice only mode, as it helped 

them to continue with the task when their gaze’s accuracy decreased over time. The 

discussion regarding these observations and the results of the user study can be found in 

Chapter 5. 
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Chapter 5 

Discussion 

User evaluation is an essential part in iterative design methodology followed in this GUI 

development. The author can receive invaluable feedbacks to improve upon the current 

interface, so that the next iteration will have higher usability than the interface under 

evaluation. The initial evaluation performed on the current iteration of the GUI proved to be 

very effective, as it pointed out the features that needed to be improved. 

 

5.1 Gaze Tracking 

The first issue came from the pre-session setups. Before going through each session, all 

subjects had to go through the gaze calibration process. They were allowed to repeat the 

calibration until they declared that current calibration result was the best for their gaze 

tracking purpose. Moreover, different iris color, eye shape, and skin tone of each subject 

required the observer to adjust some of the gaze tracking parameters in order for the gaze 

tracker to detect the subject’s point of gaze accurately. As a consequence, this manual fine-

tuning prolonged the actual total duration of the user study. In the future, the addition of 

image processing algorithm in the gaze tracking software to automatically perform the fine-

tuning will speed up the calibration process. 

 Even if the gaze is calibrated accurately, the calibration will deteriorate over time 

[24]. This trend was also observed during the user study, where all subjects decided to use the 

voice only mode some time in the middle of the sessions. The deterioration was partly caused 

by the intrinsic anatomical (fovea coverage of approximately one degree of viewing angle) 

and physiological limitations (slow drift, micro-saccades, and micro-tremor) of the eyes [10, 

27, 28]. Another source of the deterioration came from the head movement of the subject. 
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Although in the beginning of the study the observer had already told all subjects to minimize 

their head movement, they would not realize that they might have slightly changed their head 

position, since they interacted continuously with the GUI during the sessions. In the future, 

the addition of head frame on the da Vinci surgeon console or the development of head-

mounted gaze tracker may potentially minimize the relative motion between the gaze 

tracking cameras and the operator’s head. 

 

5.2 Speech Recognition 

The speech recognition engine worked well in recognizing the voice commands from all 

subjects included in Section 4.3. However, one subject from the initial five subjects was 

excluded from that result analysis. The subject could not complete the task due to the poor 

ability of the speech recognition engine in recognizing the command select from the subject. 

Due to the existence of accent in the subject’s voice, the command select was recognized as 

gain. As a result, the subject could barely select any of the buttons displayed on the GUI. 

 Based from this case, two improvements can be made to the speech recognition in the 

GUI. First, the list of words for the speech recognition can be dynamically updated 

depending on which mode and program layer the GUI is currently in, so the GUI will only 

recognize a certain set of commands while in a particular mode. Current implementation 

registered all of the commands during the GUI initialization. Hence, it only prevented the 

GUI from executing the command when the current mode did not have that command 

displayed, but not prevented the GUI from recognizing that command. The second 

improvement for the speech recognition can be in the form of user-specific calibration, 

similar to that of the gaze tracking. Before using the GUI, the operator can be given a 

sentence to train the speech recognition engine to adapt with the operator’s voice. 
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 Based on the results shown in Table 4, the grand mean for the speech recognition 

error ratio was 21.1%, while the maximum error ratio could reach up to 55.6%. This high 

error ratio was mainly due to the fact that aside from the actual commands, the GUI also 

picked up the following two things as its input: 1) normal conversation between the subject 

and the observer (when the subject clarifying the image quality to the observer) and 2) 

background voice. The first source of error is expected to occur even in the actual surgical 

settings, since the surgeon needs to constantly communicate with the rest of the team. 

Therefore, it is considered as an external factor that the GUI has little or no control over. 

However, the second source of error can be greatly reduced by decreasing the gain of the 

microphone further to only pick up the operator’s voice as its input. Moreover, the addition of 

trigger word to start the speech recognition engine in the next iteration of the GUI can 

potentially nullify both sources of error and consequently reduce the error ratio. 

 

5.3 Graphical User Interface 

The addition of voice only mode in the GUI was proven to be effective, proven by the grand 

mean of 40.0% for the percentage of time spent using the voice only mode. It allowed the 

subject to continue with the task as the gaze accuracy deteriorated over time. One subject 

even dominantly used this feature instead of the combination between gaze and voice inputs. 

 On the other hand, all subjects almost never used the gaze contingency feature on the 

edge of the screen. The lack of visual cues regarding this feature was most likely the cause of 

this low usage. Since each subject had to perform multiple subtasks during the image 

optimization task, the subjects tended to forget about this feature. In the future, the addition 

of visual feedback for the gaze contingency implementation may help the user in recognizing 

this feature on the GUI. 
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 The dynamic dwell-time attribute on latched buttons has helped the subject in 

changing the values of B-mode gain and Color Doppler gain faster, since those parameters 

have a wide range of values. However, this attribute also made it more difficult for the 

subject to gain a fine control over the depth value. When trying to increase the depth, the 

subject tended to overshoot the value. Similarly, when the subject tried to decrease the depth, 

the final value appeared to be too low. One possible fix to this problem is to add fine and 

coarse options to the dwell-time attribute. When fine option is selected, the dynamic property 

can be deactivated or the increment can be set to smaller value. On the other hand, when 

coarse option is selected, the dynamic property can be activated or the increment can be set to 

larger value. 

 Nearly all of the features in the GUI can be activated using either the eye gaze or the 

voice command. For example, showing the menu buttons on the screen can be done either by 

using the voice command display or looking on the upper edge of the screen, switching the 

video stream from the surgical scene to the ultrasound image can be done either by using the 

voice command switch or looking on the right edge of the screen, and pointing on a button 

can be done by directly looking at the button or calling out the inherent voice command on 

the button during the voice only mode. However, confirming the selection of a button, which 

is a crucial feature in this GUI, can only be done through the use of voice command select. 

This limitation posed a problem during the user study, which caused the fifth subject to not 

complete the task. Therefore, the addition of button confirmation method using the eye gaze 

or other non-voice input in the next iteration of the GUI can eliminate similar problems in the 

future. From the user study, it can be concluded that the addition of the counterpart for each 

modality in this multimodal environment is essential in helping the subject completing the 

task, in case one of the modalities fails to perform reliably during the task. 
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 Regarding the menu layout, two subjects noticed that the value of the selected 

parameter, which was displayed on the parameter button itself, was situated at their 

peripheral vision when they were trying to increment or decrement the value. As a result, 

when the subjects wanted to change the parameter value to a specific number, they had to 

look back and forth between the increment or decrement button and the parameter button. 

This gesture ultimately prolonged the duration of the image optimization task. In the future, 

the menu layout should be redesigned in order to place the parameter value around the central 

vision of the operator, when the operator is incrementing or decrementing the value. 

Alternatively, gaze contingency can also be implemented when the ultrasound image is 

displayed on the screen, so that the operator can change the value of the depth by focusing 

his/her gaze on a certain area of the ultrasound image. 

 Some subjects also pointed out that due to the large dimensions of the menu buttons, 

they were unable to clearly see the changes they made on the ultrasound image. As discussed 

in Section 2.3, finding the right balance between the free space for the video stream and the 

button dimensions that were able to accommodate the limited accuracy of the gaze tracker, on 

a screen with the resolution of 640 x 480 pixels, required a couple cycles of design and user 

evaluation. An alternative to this trade-off would be the addition of auxiliary display such as 

TilePro, which is available in other versions of da Vinci system, but not on the da Vinci 

classic system (the system used for this work). 

 

5.4 Technical Issues 

Due to hardware limitations, the setup used in this initial user study was not the same as what 

the author had initially planned. Ideally, the gaze tracking and the GUI software should run 

directly on SonixTouch. However, due to the driver error, when one of the gaze tracking 

cameras (Leopard Imaging LI-OV5640-USB-72) was plugged in to the front USB port of 
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SonixTouch and the other camera was plugged in to the USB port at the back of SonixTouch, 

an error screen as shown in Fig. 18 occurred. After a thorough investigation regarding this 

issue using a software package called BlueScreenView by NirSoft and Bug Check Code 

Reference from Microsoft Corporation, the cause of this error was found to be Duplicate 

PDO. The details of the error code can be seen in Fig. 19. 

 

Figure 18. Blue screen appeared on SonixTouch 

 On the other hand, if both gaze tracking cameras were connected to the front USB 

ports of SonixTouch, no error screen occurred. However, when the gaze tracking software 

was running, OpenCV (computer vision library used in this work) could not access both 

cameras simultaneously. Based on this camera interfacing issue, it was concluded that the 

gaze tracking software had to run on another computer. 

 Another source of technical issues was the video interface. Initially, the author 

thought that the video signals from SonixTouch could be fed to the CRT screens of da Vinci 

system in order to show the GUI on the surgeon console. Using this setup, the GUI software 

could run directly on SonixTouch and the ultrasound image frames would not have to be sent 
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via a TCP/IP connection, thereby reducing the time required to display the ultrasound image 

on the GUI. However, the author did not manage to interface the digital output of 

SonixTouch with the analog input of the CRT screens successfully. Even with the use of 

DVI-D to VGA active adapter in combination with H-Sync and V-Sync to Composite Sync 

adapter, SonixTouch could not detect the CRT screen as external monitors and consequently 

the CRT screens on da Vinci surgeon console could not show the video from SonixTouch. As 

a result, the GUI had to run on another computer, and the ultrasound image frames had to be 

sent to the GUI via a TCP/IP connection. This setup resulted in a delay when the ultrasound 

image was displayed on the GUI. The hardware and software connectivity for the user study 

can be found in Appendix G. 

 

Figure 19. Error code details  
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Chapter 6 

Conclusions 

This thesis presents the design and the development of a hands-free multimodal GUI for 

controlling an ultrasound machine. A prototype of the GUI was built, which enabled the user 

to change some parameter values directly from the da Vinci surgeon console using a 

combination of eye gaze and voice commands. Initial evaluation in the form of user study 

was performed, and using the GUI, the subjects were able to complete an image optimization 

task without having to take their hands off the da Vinci master tool manipulators. However, 

the current implementation of the speech recognition caused one subject unable to complete 

the task. In an iterative design process, especially for the first iteration of the GUI, this kind 

of failure is expected and becomes an invaluable feedback. Combined with other user 

feedbacks, they help the author pointing out not only the good features of the GUI, but also 

its weak features that need to be redesigned, so that the next GUI iteration will have 

improved usability. 

 Based on the results and observations from the user study, the improvements that can 

be made to the GUI and its overall system in the future include: 

1. The implementation of fine-tuning algorithm for the gaze calibration to accommodate 

different iris color, eye shape, and skin tone of the operator and consequently improve the 

accuracy of the gaze tracking. 

2. The use of a mechanism which minimizes the relative motion between the gaze tracking 

cameras and the operator’s head, such as head frame on the da Vinci surgeon console or 

head-mounted gaze tracker. 

3. The addition of user-specific calibration and trigger word for the speech recognition to 

reduce its error ratio. 
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4. The addition of visual cue or feedback for the gaze contingency implementation in order 

to help the operator in recognizing and using this feature on the GUI. 

5. Further research regarding effective menu layout in order to deliver a GUI that is more 

intuitive to use and ready to be used in actual surgical settings. 

 Despite its limitations, the current iteration of the GUI shows that controlling the 

ultrasound machine directly from da Vinci surgeon console during robot-assisted MIS, using 

a combination of eye gaze and voice commands, is feasible. It allows the surgeon to 

manipulate the ultrasound parameters independently even when both of the surgeon’s hands 

are occupied with surgical tools. This hands-free GUI has a practical application in the 

surgical room especially when no assistant is present to help the surgeon operating the 

ultrasound machine. Future works to improve the GUI usability will substantiate its potential 

adoption in actual surgical settings. 
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Appendices 

Appendix A: Visual Angle Error to Pixel Error Calculation 

Figure 20. Diagram of the operator’s eye to the da Vinci screen 

w = width of the screen = 640 pixels 
h = height of the screen = 480 pixels 
s = diagonal size of the screen = 14 in 
d = distance from the operator’s eye to the screen = 18 in 
e = gaze tracker error on the screen (in inches) 
! = gaze tracker error (in degree of viewing angle) 

Since the ratio between the width and the height of the screen is 4:3 and the diagonal size of 

the screen is 14 inches, it is assumed that the width of the screen is 11.2 inches and the height 

of the screen is 8.4 inches. 

 These three equations for converting from pixel error to visual angle error are adapted 

from the paper written by Craig Hennessey [29], with modification necessary for this work: 
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For the following calculation, it is assumed that the horizontal and vertical pixel errors are the 

same ("Xpixel = "Ypixel = "Epixel). The gaze tracker error is the sum of mean pixel error (#) 

and the standard deviation, !. Assuming that the error follows a normal distribution, this 

calculation will cover around 68% of the error caused by the operator’s gaze. The final value 

of the pixel error ("Epixel) in this calculation is used to determine the minimum gap 

surrounding each button. 
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Appendix B: Source Code Modification to speech Python Module 

• Original code: 

_recognizer = win32com.client.Dispatch(“SAPI.SpSharedRecognizer”) 

Modification: 

_recognizer = win32com.client.Dispatch(“SAPI.SpInProcRecognizer”) 
_recognizer.AudioInputStream = win32com.client.Dispatch( 
 “SAPI.SpMMAudioIn”) 

• Original code: 

_ListenerBase = win32com.client.getevents(“SAPI.SpSharedRecoContext”) 

Modification: 

_ListenerBase = win32com.client.getevents(“SAPI.SpInProcRecoContext”) 
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Appendix C: Speech Recognition Implementation in the GUI 

• Word dictionary initialization in the main thread of the GUI: 

# Add basic commands to the word dictionary 
self.word_dict = {‘display’:(lambda x:self.showMenu(0)),   
 ‘select’:(lambda x:self.buttonAction(0)), 
 ‘switch’:(lambda x:self.toggleStream(0)), 
 ‘voice only’:(lambda x:self.overrideGaze(0)), 
 ‘use gaze’:(lambda x:self.revertGaze(0)), 
 ‘stop’:(lambda x:self.canvas.coords( 
 self.crosshair,self.width/2,self.height/2))} 
# Add words specific to each button 
for key,val in self.button_dict.iteritems(): 
    self.word_dict[val[1].voice_command] = ( 
        lambda x,y:self.moveCursorByVoice(x, y)) 
    # Save the X and Y coordinates of the button center and button ID 
    self.btn_voice_dict[val[1].voice_command] = (val[1].center[0], 
        val[1].center[1],val[1].buttonID) 

• Speech notification checking and function invocation depending on which word or 

phrase gets passed on to the main thread of the GUI, inside the main loop: 

try: 
    temp_word = self.speech_queue.get(block=False, timeout=0) 
except Queue.Empty: 
    pass 
else: 
    self.command_word = temp_word 
    # Check whether the command is button-specific or basic command 
    if self.command_word in self.btn_voice_dict.keys(): 
        temp_buttonID = self.btn_voice_dict[self.command_word][2] 
        if temp_buttonID not in self.button_hidden_list: 
            force_x = self.btn_voice_dict[self.command_word][0] 
            force_y = self.btn_voice_dict[self.command_word][1] 
            self.word_dict[self.command_word](force_x,force_y) 
    else: 
        self.word_dict[self.command_word](0) 
    self.command_word = ‘’ 

• Speech recognition engine initialization in the background thread: 

self.listener = speech.listenfor(self.word_list, self.callback) 

• Callback function definition in the background thread, where this function is 

invoked everytime the word or phrase in the list passed to the speech recognition 

engine is picked up by the computer: 

def callback(self, phrase, listener): 
    print ‘Command detected: ’, phrase 
    self.queue.put(phrase.lower()) 
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Appendix D: System Setup and Path Configuration File for pyUlterius 

• System setup for pyUlterius: 

The following system setup assumes that the Python version installed to the system is 2.7, 

and the Ulterius SDK used is 6.1.1. 

1. Copy the main Python module, pyUlterius.py, and the path configuration file, 
pyUlterius.pth, into C:\Python27\Lib\site-packages 

2. Create a new directory named _pyUlteriuslib in C:\Python27\Lib\site-packages 
3. Copy the Python DLL, _pyUlterius.pyd, into _pyUlteriuslib 
4. Copy all the contents from the directory \sdk_6.1.1\bin\ into _pyUlteriuslib 

• Sample content of pyUlterius.pth: 

The path configuration file basically contains the directory name where the DLL of the 

corresponding module can be found, which based on the above system setup is 

_pyUlteriuslib. Note that this path configuration file has to be in the same directory as the 

main Python module. 

# pyUlterius package configuration 
_pyUlteriuslib 
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Appendix E: List of Member Functions for ulterius Class of pyUlterius 

The functions below are meant to be used in Python to access the original functions of 

Ulterius SDK. The description found in each member function only specifies what the 

corresponding original function is. The complete description for each function can be found 

in the original Ulterius SDK documentation. Finally, this list is non-exhaustive, since it only 

contains functions that are found in pyUlterius but not in the original SDK and functions that 

can be found in the original SDK but have different calling or return method from the 

original SDK. 

• getActivePreset ( sz ) 
o Arguments 

! sz (int): The size of the buffer 
o Returns: [ success, preset ] 

! success (bool) : True if call is successful, False otherwise 
! preset (str) : The character string containing active preset name 

o Description 
! This function performs the same task as getActivePreset in the original 

SDK. However, the function calling method is different. 

• getActiveProbe ( sz ) 
o Arguments 

! sz (int): The size of the buffer 
o Returns: [ success, probe ] 

! success (bool) : True if call is successful, False otherwise 
! probe (str) : The character string containing the active probe name 

o Description 
! This function performs the same task as getActiveProbe in the original 

SDK. However, the function calling method is different. 

• getImageData ( encap_data, size ) 
o Arguments 

! encap_data (PyCapsule) :  The capsule object containing the pointer to the 
  image data 

! size (int) : The total pixel length of the image data 
o Returns: pixel_array 

! pixel_array (bytearray) : The array containing the 8-bit pixel information 
  of the ultrasound image 

o Description 
! This function is a helper function to convert an image data type from 

PyCapsule to bytearray. 
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• getLastError ( sz ) 
o Arguments 

! sz (int): The size of the buffer 
o Returns: [ success, err ] 

! success (bool) : True if call is successful, False otherwise 
! err (str) : The character string containing the error message 

o Description 
! This function performs the same task as getLastError in the original SDK. 

However, the function calling method is different. 

• getParamValue ( id, ref ) 
o Arguments 

! id (str) : The identifier of the parameter 
! ref (IntByRef reference) : The reference to a Python integer value 

o Returns: success 
! success (bool): True if call is successful, False otherwise 

o Description 
! This function performs the same task as getParamValue in the original 

SDK, which retrieves the value of an integer imaging parameter. However, 
the function calling method is different. 

• getParamValue ( id, size ) 
o Arguments 

! id (str) : The identifier of the parameter 
! size (int) : The size of the buffer 

o Returns: [ success, value ] 
! success (bool) : True if call is successful, False otherwise 
! value (str) : The character string storing the parameter value 

o Description 
! This function performs the same task as getParamValue in the original 

SDK, which retrieves the value of a string imaging parameter. However, 
the function calling method is different. 

• getPatientInfo ( sz ) 
o Arguments 

! sz (int): The size of the buffer 
o Returns: [ success, ptinfo ] 

! success (bool) : True if call is successful, False otherwise 
! ptinfo (str) : The character string containing the patient fields, 

  separated by newline characters (\n) 
o Description 

! This function performs the same task as getPatientInfo in the original 
SDK. However, the function calling method is different. 
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• getPresets ( sz ) 
o Arguments 

! sz (int): The size of the buffer 
o Returns: [ success, presets ] 

! success (bool) : True if call is successful, False otherwise 
! presets (str) : The character string containing the preset names, 

  separated by newline characters (\n) 
o Description 

! This function performs the same task as getPresets in the original SDK. 
However, the function calling method is different. 

• getProbes ( sz ) 
o Arguments 

! sz (int): The size of the buffer 
o Returns: [ success, probes ] 

! success (bool) : True if call is successful, False otherwise 
! probes (str) : The character string containing the probe names, 

  separated by newline characters (\n) 
o Description 

! The function performs the same task as getProbes in the original SDK. 
However, the function calling method is different. 

• set_pyCallback ( callback ) 
o Arguments 

! callback (callable) : The callback function that is triggered when new 
  frames arrive or the server has disconnected 

o Returns: None 
o Description 

! This function is the wrapper to setCallback in the original SDK. 
! callback has to have 5 arguments: data, type, sz, cine, and frmnum. 

• set_pyParamCallback ( param_callback ) 
o Arguments 

! param_callback (callable) : The callback function that monitors the status 
  of some parameters on the server side 

o Returns: None 
o Description 

! This function is the wrapper to setParamCallback in the original SDK. 
! param_callback has to have 3 arguments: paramID, ptX, and ptY. 
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Appendix F: Untested Member Functions for ulterius Class of pyUlterius 

The member functions listed here have not been tested, since their functionalities were not 

utilized in this work. 

• getCineData 

• getStreamStatus 

• injectImage 

• stopStream 

• streamScreen 
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Appendix G: Hardware and Software Setup for User Study 
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