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Abstract

The motivation, theory and applications of atomic traps are briefly reviewed
before delving into the primary motivation for the research: the disagree-
ment between theory and experiment for the calculation of trap loss rate
constants (< σv >) for Rubidium Magneto-Optical Traps. We use a pure
magnetic trap to calibrate for the density of background Rubidium in our
system while varying this density and measuring the loss and loading rates
for multiple magnetic traps for which the trap depth has been measured
previously. This variation of density allows us to infer < σv >, a quantity
whose behaviour we attempt to explain in relation to the the excited state
fraction of the trapped atoms. We find a strong correlation between the ex-
cited state fraction and the loss rate constant which we are, unfortunately,
unable to quantify due to data quality issues. In addition to this study,
experimental evidence for the confirmation of the Reif Model is provided as
well as a new method (based on this model) for measuring the depth of a
magneto-optical trap.
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Preface

All theoretical predictions for < σv > were carried out by collaborators
within the Quantum Degenerate Gas Laboratory at the University of British
Columbia, principally by David Fagan and Dallas Clement.
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Chapter 1

Introduction

1.1 Neutral Atom Traps

Neutral atom traps provide the ability to cool and confine atoms to mil-
likelvin and submillikelvin temperatures. The resulting cloud of trapped
atoms is typically about 10µm - 5 mm in radius, containing up to 1010

atoms. The cooling and confining mechanisms require the use of optical and
/ or magnetic forces which are localized within a vacuum cell. The opti-
cal forces are implemented with lasers of a specific frequency and cause the
atoms to absorb and emit photons, an effect which we exploit in order to
measure their presence. Using a CCD camera, we image the cloud of cold
trapped atoms as in figure 1.1.

Figure 1.1: A picture of cold trapped atoms taken within the QDG lab at
UBC. The atoms emit light because we are shining lasers on them which
cause the absorption and emission of photons.
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1.1. Neutral Atom Traps

1.1.1 Magnetic traps

In the presence of a magnetic field our atom (which can be thought of as a
magnetic dipole) will have an energy

EB = −~µ · ~B (1.1)

where ~µ is the magnetic moment of the atom and ~B is the applied mag-
netic field. Since we concoct a field such that ~Bz ∝ z, , ~Bx ∝ x, ~By ∝ y

(where ~Bz, ~Bx and ~By are the z, x and y components of the magnetic field
respectively) the lowest energy state for the atom is at (x, y, z) = (0, 0, 0).
This is the basis of the magnetic trapping force.

The trap can be considered a potential well of a certain depth (called
the ”Trap Depth”, U) which is calculable according to

U = µr∇Br (1.2)

where r is the distance from the magnetic zero at (0, 0, 0) to the wall of
the vacuum cell and Br is the magnetic field strength along either the x̂, ŷ.
Along the ẑ axis the field gradient is different, and a the gravitational force
on the atoms must be accounted for. Once an atom touches the wall of the
vacuum it is instantly heated to room-temperature and will escape the trap.

This type of trap which uses only magnetic fields to confine the atoms is
called a magnetic trap. It typically has exhibits a shallower potential well
(a smaller trap depth) than with the addition of optical forces which would
create what is called a magneto-optical trap.

1.1.2 Magneto-optical traps

By adding lasers of a specific frequency to a magnetic trap, we obtain a
magneto-optical trap. With lasers of the correct frequency we may bombard
our atoms with photons that have an energy mapping to some atomic energy
level transition. Actually the lasers we use are ”detuned” from this resonance
- that is, the frequency is slightly too small to drive the desired energy level
transition. This is illustrated diagrammatically in figure 1.2 where a few
energy levels are drawn with a red arrow indicating the transition driven by
the laser. Note that figure 1.2 does not show the detuning.
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1.1. Neutral Atom Traps

Figure 1.2: Some energy levels in 87Rubidium. The red arrow indicates the
energy of an incident photon driving the transition from energy eigenstates
F=2 to F’=3. The detuning from has not been shown on this diagram.
Childish depictions of the wavefunctions for each fine structure state are
sketched in blue.
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1.1. Neutral Atom Traps

To obtain an optical trapping force we add a detuning to our lasers which
then need to be set up in pairs which counter propagate. That is, we need
two lasers pointing in opposite directions. This is illustrated in figure 1.3
where Rubidium atoms are drawn in black.

Figure 1.3: Two counter propagating lasers are aligned such that moving
atoms doppler shift incoming photon frequency onto the resonance of an
energy level transition thus causing the atom to absorb preferentially from
the laser which acts to slow its motion.

4



1.2. Motivation

A Rubidium atom traveling with some speed towards a laser will ex-
perience a doppler shift causing photons from one laser to have a higher
frequency in the atom’s frame, while photons from the other laser would
have a lower frequency. Photons travelling in a direction opposite the atom
will shift onto the resonance needed to drive an energy transition, while
photons travelling in the same direction will shift away from this resonance.
Therefore, the atom preferentially absorbs photons which oppose its motion!

If we align three of these laser pairs along the x̂, ŷ and ẑ directions then
we can confine the atom in three dimensions such that no matter which way
the atoms move the lasers act to slow them down thus obtaining an ”optical
molasses” which exists anywhere within the beam lines of the lasers. If
the atoms are in the presence of a magnetic field their energy levels shift
according to the Zeeman effect. Since the magnetic field experienced by the
atom depends only (to first order) on its position, the detuning of our lasers
becomes position dependant thus giving the trap a preferential location.

This is the basis of laser cooling, and the addition of such optical forces
to a magnetic field defines the magneto-optical trap.

1.2 Motivation

Both understanding and applications of cold atom traps resulting from laser
cooling and magnetic confinement have grown many fold since it was first
shown that light could be used to cool and confine atoms to submillikelvin
temperatures. This section will attempt to briefly outline some of the ways
in which these methods have become valuable to science and technology.

1.2.1 Applications

Radiation pressures and magnetic potentials have been used in magneto-
optic traps and pure magnetic traps to realized Bose-Einstein Condensates
(BEC) in the laboratory and thus confirm long predicted quantum mechan-
ical theories on bosons at low temperatures [1]. The BEC is a new, novel,
excotic form of matter in which bosons become macroscopically degenerate
in the ground state of some potential landscape. Their observation in the
lab resulted in a nobel prize in 2001. Though they have no well defined ap-
plications at present, their nature is often likened to the widely applicable
laser (which is comprised of many photons occupying the same state).

Atomic traps have also been scaled down in size to become an ”atom
chip”. The atom chip uses nano-fabricated current carrying and charged
wires to create microscopic magnetic potentials that trap atoms. The fact
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1.2. Motivation

that the trap has been scaled down in size greatly improves the portability
of the device and opens up possibilities for a wide range of applications. For
example, in matter wave optics the versatility of the atomic chip has been
likened to that of the integrated circuit in electronics [8].

The atom chip has even been scaled small enough to produce many par-
ticle entangled states and thus become a candidate for quantum quibits.
The ability of the chip to create microscopic potentials for different atomic
states provides distinction between the quibit |0〉 and |1〉 states. Atoms in
a quantum superposition of states can be trapped in two separate potential
wells. The chip’s potential landscape can be modified to connect and dis-
connect these two wells in order for one quantum state to interact (or not)
with the other. The interaction is thought to be able to produce a two quibit
gate with the truth-table-like properties necessary for quantum computing.
[3]

Yet another application of the atomic trap is found in the atomic clock.
Atomic clocks utilize trapped and cooled atoms to electronically link regular
time keeping crystal oscillators to the frequency of an atomic transition [4]
[6]. Since a time interval (like a second) can be mapped to an exact number
of cycles for some oscillator (like a quartz crystal) the oscillator is able to
keep accurate time. The accuracy of a measured time interval depends
on the reliability of the oscillator. Since crystal oscillations depend in part
on environmental conditions, stabilizing the crystal’s time keeping frequency
with the atomic transition frequency can provide a clock accurate to 10−12%.

All of these applications: BEC’s , atom chips, atomic clocks and quantum
gates utilize magnetic or magneto-optic trapping. Yet all traps experience
loss: atoms which escape the trap. Escape occurs for a number of reasons
which should be understood in order to properly utilize the trap for any
given purpose. Such understanding will likely yield new applications. A
recent example exists within our lab in the form of a patent for a new
type of pressure sensor which infers pressure in a gaseous environment by
measuring the loss of cold atoms in the trap due to collisions with the hotter
surrounding gas.

1.2.2 Loss Rates from Magneto-optical Traps

Since the loss of atoms from a trap can effect the performance of any device
which depends on this technology, it is important that we understand and
be able to quantify this loss. Atoms are lost from the trap for a number of
reasons. Trap loss can occur when:

6



1.2. Motivation

1. Hot atoms in the vacuum cell collide with cold atoms in the trap.

2. Two cold atoms collide within the trap causing an energy transfer
greater than the trap depth thereby ejecting one of the atoms

3. Two cold atoms and a photon converge in a three body collision which
ejects one or both of the atoms from the trap.

4. An inelastic collision occurs where some internal atomic energy is
transformed into kinetic energy, or where the atomic state changes
to something no longer trappable.

In most cases (particularly at high densities), the dominate loss mode
is the collision of cold atoms with hot atoms. If this is true we can define
a collisional ”loss rate constant”, or ”cross section for trap loss” < σv >
which characterizes the fundamental interactions between the hot and cold
atoms which are able to cause loss from the trap. Actually < σv > is
a velocity averaged cross section for interaction. It represents the cross
sectional volume for atomic interaction (since σ is a characteristic area and
v is the velocity of the particle). The quantity σv is averaged over the
Maxwell-Boltzmann distribution to obtain < σv > in units of volume /
time. If the density profile of the cold atom trap is such that there exist
atoms within this characteristic volume, then those atoms are ejected from
the trap. The volume is calculated in such a way that collisions which do
not impart enough energy to eject atoms from the trap are not included [19].
See figure 1.4 for a sketch of this process.

7



1.2. Motivation

Figure 1.4: A pictorial interpretation of < σv > , the cross section for trap
loss.
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1.2. Motivation

In the past, < σv > was thought to depend almost entirely on the trap
depth (U). A theoretical curve relates these two quantities in figure 1.5.
The curve is calculated by numerically solving the Schrödinger equation
with an interatomic potential called a Lennard-Jones Potential. Lennard-
Jones potentials are models of the potential landscape which an atom feels
as a result of another nearby atom, and are functions of distance between
these two atoms. This method for determining is < σv > best outlined in
[7]. Typical Lennard Jones potentials are seen in figure 1.7.

Figure 1.5: Our Theorectical model of the dependence of < σv > on trap
depth U is plotted in red. Data corroborating the theory is in black (mag-
netic traps) and blue (magneto-optical traps). Figure from [7]

9



1.2. Motivation

In figure 1.5 we trap Rubidium atoms and introduce some Argon into
the vacuum cell which acts as our hot background gas and causes trap loss.
We may measure the cross section < σv > and the Trap Depth U in order
to compare with our predictions. In this case the theory and data are well
matched. However, when we conduct the same experiment without any
Argon, and with only Rubidium acting as the hot background gas, something
puzzling happens. The measured < σv > agrees with the prediction when
we trap atoms magnetically, however, once we change to a magneto-optical
trap, we see pronounced disagreement (see figure 1.6).

Figure 1.6: Our Theorectical model of the dependence of < σv > on trap
depth U is plotted in red. This time there is no Argon but only Rubidium
acting as a hot background gas. The theory (dark red) matches for the
magnetic traps, but fails for the magneto-optical one. Figure from [19]

In attempting to explain this disagreement, we note the main difference
between the magnetic and magneto-optical trap is the presence resonant
laser light. This light causes some fraction of the atoms to exist in an
excited state. It should not be hard to believe that such states would have
significant effects on the trap loss. Intuitively one expects the interaction
between an excited state and a ground state atom should be different from
that between two ground state atoms just from inspection of the shapes

10



1.2. Motivation

of their wavefunctions (see figure 1.2). Further this difference is quantified
by the interatomic Lennard Jones potentials which are different for ground-
ground state interactions versus ground-excited state interactions (see figure
1.7). The ground-excited interactions take a different, stronger form that has
a longer range. This longer rage potential would suggest a higher interaction
rate, and thus a larger cross section for trap loss than predicted in by the
curves in figures 1.5 and 1.6 which are calculated using the ground-ground
state potential.

In light of all this, the following thesis is intended to investigate trap loss
dependence on excited state atoms in the hope of explaining the anomalous
magneto-optical trap data in figure 1.6.

Figure 1.7: Typical lennard jones potentials for interactions between two
ground state atoms (red) as well as for a ground and excited state interaction
(green).
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Chapter 2

Theory

2.1 Neutral Atom trap overview

2.2 Atomic Energy Levels: 85Rb and 87Rb

We model 85Rb and 87Rb as two level atoms where excited states are de-
termined first by the orbital angular momentum and then by further hyper-
fine structure corrections. This experiment will involve transitions between
52S1/2 → 52P3/2. This labelling convention denotes the energy level of the
outermost electron bound to the atom. An energy level XyPz informs the
reader that the principle quantum number is X, Y = 2s+ 1 is the electron
spin degeneracy, and Z = J where J is the total electronic angular momen-
tum ~J = ~S + ~L and ~L is the orbital angular momentum. The letters P and
S correspond to different~L states (S → L = 0, P → L = 1).

This convention is sufficient for what is called the “Fine Structure” of
an atom.

As in typical quantum mechanics texts [9], the time-independant Hamil-
tonian

Hψ = Eψ (2.1)

where H = −ih̄∇2 − e2

4πǫo

1

r2 , yields a spectrum of allowed energy lev-
els for the bound electron. Adding a perturbation for spin-orbit coupling

HSO = −~µ · ~B and relativistic effects Hrel = − p4

8m3c2
[9], where ~µ is mag-

netic dipole moment of the electron, ~B is the effective magnetic field which
it experiences, p is the standard momentum operator, m is the mass of the
electron and c is the speed of light. Perturbation theory tells us that differ-
ent states of the same principle quantum number (n) can split to different
energy levels. A Rubidium atom (with n = 5) could theoretically be com-
posed of a superposition of L = 0 and L = 1 states.

12



2.2. Atomic Energy Levels: 85Rb and 87Rb

This description holds only to a certain precision. If we consider an even
smaller perturbation to the Hamiltonian, we see further splittings in the
allowed energy levels. This is called “Hyperfine structure”. The new per-
turbation results from the interaction between the nucleus and the electrons.
The nuclear angular momentum, I, couples to J . The same rules as before
apply for addition of angular momentum. With

~F = ~J + ~I (2.2)

we obtain energy eigenstates according to the quantum number F . Also
important to note is the 2F + 1 degeneracy inherent in each F state which
results from the different possible projections of ~F along a particular axis
(usually, by convention, the z-axis). For example, if F = 2 the 2F + 1 = 5
states correspond to projections denoted mF = −2,−1, 0,+1,+2.

More detailed theoretical consideration of the hyperfine corrections to
the hamiltonian resulting energy levels can be found in [17],[16] and [2].

Some of these atomic states are sketched for 85Rb in figure 2.1.
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2.2. Atomic Energy Levels: 85Rb and 87Rb

Figure 2.1: A sketch (not to scale) of both the fine and hyperfine energy
levels in a 85Rb atom . The 52P1/2 states have been omitted. Childish
depcitions of the corresponding wavefunctions are drawn in blue.
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2.3. Scattering Rate and The Excited State Fraction

With knowledge of these energy levels in hand, lasers of the correct
frequency can be used to excite atoms from lower to higher energy states,
thus producing the desired cooling force.

2.3 Scattering Rate and The Excited State

Fraction

A steady state solution to the Optical Bloch equations [11] yields an expres-
sion for the fraction of atoms in an excited state ,fe.

fe =
Ω/Γ

1 + 4(∆/Γ)2 + 2(Ω/Γ)2
(2.3)

Where Ω is the Rabi-frequency, ∆ is the detuning from resonance, and
Γ is the natural decay rate from the excited state. We then define the
saturation intensity by

I

Isat
= 2

(

Ω

Γ

)2

. (2.4)

and therefore

Isat =
cǫoΓ

2h̄2

4|ǫ̂ · ~d|2
(2.5)

where ǫo is the permittivity of free space, ǫ̂ is the unit vector of the
light field and ~d is the dipole moment of the atom. The Rabi - frequency
can be defined Ω = −~d · ~Eo/h̄ where ~Eo is the electric field resulting from
resonant lasers. In general the expression for the saturation intensity is more
complicated but in the case of circularly polarized light it reduces to

Isat =
h̄ω3Γ

12πc2
(2.6)

and the equation for for the fraction of atoms in an excited state can be
written

fe =
1

2

I/Isat

1 + 4(∆/Γ)2 + (I/Isat)
(2.7)

Another related quantity worth knowing is the scattering rate. The
scattering rate is the rate at which photons are emitted from a population
of trapped atoms. This is simply the fraction of excited atoms times the
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2.4. Cooling forces in MOTs and magnetic traps

rate (Γ) at which they decay to a ground state. Therefore the scattering
rate is Rs = Γfe, or

Rs =
Γ

2

I/Isat

1 + 4(∆/Γ)2 + (I/Isat)
(2.8)

Equations 2.3 - 2.8 can be found in [17]

2.4 Cooling forces in MOTs and magnetic traps

The force on a atom results from the bombardment of photons and the
momentum transfer which must therefore result. Since we align two counter-
propagating beams we would expect that the forces would be equal and
opposite, thus cancelling each other. However, since the atoms are moving
with some velocity within a magnetic field, we must also consider both the
Doppler and Zeeman effects which will effect detuning from resonance for
each laser in the frame of the atom.

The force experienced by the atom is the net momentum transfer per
photon per time [7]

~F = h̄~kRs (2.9)

where h̄ is plank’s constant divided by 2π, ~k is the wave-vector of the
photon and Rs is the scattering rate from equation 2.8.

Atomic motion causes a doppler shift which will cause the laser detuning
from resonance to change by ~k · ~v, where ~v is the velocity of the atom.

The magnetic field causes a spatially dependent Zeeman shift. This
causes photons to shift further from resonance by [12] (geme−ggmg)µBB/h̄
where g is the Lande-g factor, µB is the Bohr magneton, m is projection of
the total angular momentum along the magnetic field and the subscripts e
and g denote the excited and ground states respectively.

The overall effective detuning from resonance experienced by the atom
is therefore

∆eff = ∆ + ~k · ~v + (geme − ggmg)µBB/h̄ (2.10)

Putting these effects together yields an expression for the force exerted
on the atom by one laser

~F = h̄~k
γ

2

I/Isat

1 + 4(∆eff/Γ)2 + (I/Isat)
(2.11)
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2.5. Rate Equations

Note that the net force must consider the sum resulting from lasers
propagating in both the ”+” and ”-” directions: ~Fnet = ~F+ + ~F−.

Next we consider the cooling force present in the purely magnetic trap.
This force is much simpler to calculate and results from the atomic tendency
towards lower energy configurations. The change in the atomic energy due
to the Zeeman effect is

∆Ez = µBgFmFB (2.12)

Since our coil configuration produces a roughly linear magnetic field, we
may re-write this equation

∆Ez = µBgFmF
dB

dz
z (2.13)

where z is the cartesian coordinate. Therefore the resulting magnetic
force is

F = −µBgFmF
dB

dz
. (2.14)

Of note is that this type of trap will necessarily have both high and low
field seeking states depending on the sign of gFmF . Since our coil system
has a field zero at its centre, we call low field seeking states, ”trappable”,
while the others are ”untrappable”.

2.5 Rate Equations

2.5.1 Elastic Collisions

The equation which governs the number of atoms (N) confined to a given
trap is [12]

dN

dt
= R− ΓN − β

∫

n2 dV (2.15)

Where R is the rate at which atoms are loaded into the trap, n is the
density of trapped atoms and V is the volume which the trap occupies. The
loss rate coefficients (Γ and β) are each representative of trap loss via differ-
ent mechanisms. Γ is a term representing a decrease in N due to collisions
between hot background atoms and cold trapped ones. Typical MOT’s are
created in a high vaccum cell where the densities are very low so that optical
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2.5. Rate Equations

and magnetic cooling forces can act undisturbed by comparatively high den-
sity, high temperature conditions which would destroy any confined cloud
of cold trapped atoms. When, however, an atom comes into contact with
the vacuum wall it is nearly instantaneously heated to room-temperature.
When such atoms collide with cold trapped atoms the trap experiences atom
loss. These are the types of losses described by the Γ term in equation 2.15.

More fundamental than the loss rate, Γ, is the cross section for trap loss,
< σv >. The two are related by

Γ =
∑

a

na < σv >a (2.16)

where na is the density of a background gas ”a” and < σv >a is the cross
section for trap loss that considers interactions between species ”a” and the
trapped species. As illustrated in figure 1.4 < σv >a represents a likelihood
for interaction between two atoms resulting in trap loss.

Also possible are cold collisions between trapped atoms as well as light
assisted collisions, where a photon and two cold atoms scatter via a three -
body collision. Either of these collisions could cause an energy transfer which
would raise an atom’s energy above the “trap-depth” (ie: the maximum
trappable energy) thus causing this atom to be lost from the trap. β is
multiplied by the integral of n2 over the entire volume of the trap inorder
to account for the fact that collisions between trapped atoms should scale
like the probability of one atom interacting with another (n · n). The terms
in equation 2.15 are illustrated pictorially in figure 2.2.

18



2.5. Rate Equations

Figure 2.2: Coefficients from equation 2.15 are summarized graphically
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2.5. Rate Equations

2.5.2 Inelastic Collisions

The previous section discussed collisions in which the internal energy of the
participants did not change between their initial and final states. However,
other sources of trap loss can be found via collisions which do just that. Two
models for this type of loss were put forward by Gallagher and Pritcher in
1989 [18]. Their semi-classical picture involved one of two atoms absorbing a
photon causing the pair to enter an excited molecular state where the atoms
are bound to eachother via dipole interactions described by potential wells
like that of figure 2.3. In an optical trap the absorption of a photon drives
the transition S1/2 → P3/2. One of two different things may then happen to
the molecule to transform internal energy into the kinetic energy necessary
for an atom to escape its trap. Firstly a fine structure change can occur,
P3/2 → P1/2 , releasing an energy, ∆EFCC , to be equally divided between the

two atoms. In the case of Rubidium ∆EFCC/h ≃ 7THz ≃ 4.6×10−21J

kB
≃ 340K

(where h and kB are Plank’s and Boltzmann’s constants respectively) which
is much greater than the typical MOT trap depths of ≃ 2K.
Radiative escape is another form of inelastic collision. An excited molecular
pair of the form S1/2 + P3/2 may traverse the potential landscape of figure
2.3 towards the lower energy regions of the potential well. If the molecule
releases less energy by photon emission in its decay that was absorbed in
its excitation, the remaining energy is transformed into kinetic energy and
may then be carried away by the atoms. That is:

S1/2 + S1/2 + h̄ω → S1/2 + P3/2 → S1/2 + S1/2 + h̄ω′ (2.17)

where ω > ω′ and the atoms each gain kinetic energy h̄(ω − ω′)/2.
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2.5. Rate Equations

Figure 2.3: Possible paths take by atoms in a molecular state through an
energy phase space. Radiative escape occurs when the molecular pair of
atoms rolls into a potential well and then emits a photon of a lower energy
than it absorbed inorder to reach that molecular state. The difference in
energy is carried away by the atoms which could then escape the trap. Fine
structure changing collisions occur when one atom falls from the P3/2 state
to the P1/2 state. Again the difference in energy is carried away by the
atoms. Figure from [18].
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2.6. The Reif Model for loading rates and trap depth

2.6 The Reif Model for loading rates and trap

depth

Reif models the flux of particles, dN/dt, through a surface, dA, [15]

dN = f(v)v cos(θ)dtdAd3v (2.18)

where f(v) is the maxwell boltzman distribution

f(v)d3v =

(

m

2πkBT

)3/2

e
−

mv
2

2kBT v2 sin(θ)dvdθdφ (2.19)

θ and φ are the usual spherical coordinates , v is the velocity of the
particle, kB is the Boltzmann constant, T is the temperature of the particles
and m is their mass.

From this, applying the logic of [13], we may derive a model for the
Loading rate R which depends on the MOT capture velocity vc, or possibly
the trap depth U .

Knowing that atoms below a velocity called the capture velocity (vc) are
captured by magnetic and optical forces we can integrate equation 2.18 from
v = 0 to v = vc obtaining

R =
dN

dt
=

∫ vc

0

f(v)d3v v cos(θ)dtdA (2.20)

R =

∫ vc

0

(

m

2πkBT

)3/2

e
−

mv
2

2kBT v2 sin(θ) v cos(θ)dtdAdvdθdφ. (2.21)

Assuming that the capture velocity is low, we make the approximation

that mv2

2kBT ≪ 1 for the relevant region of the integral and substitute e
−

mv
2

2kBT ≃
1 in equation 2.21 allowing us to evaluate the integral and obtain:

R =
2An

π2v3
T

v4
c (2.22)

where A is the cross sectional area of the trap, n is the density of particles

and vT =
√

8kBT
πm .

If we want to incorporate the trap depth into this model for the loading
rate, we can make the further approximation that

U =
1

2
mv2

c (2.23)
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2.6. The Reif Model for loading rates and trap depth

and write

R =
2An

π2v3
T

4U2

m2
. (2.24)

Of course the approximation in equation 2.23 is not strictly true. The
trap depth should really be defined

U =
1

2
mv2

e (2.25)

where ve is the escape velocity. This is the velocity needed for a trapped
atom to make it out of the trap, and is in principle different from that needed
to trap an untrapped atom. Untrapped atoms can traverse the MOT area
many times as they are bombarded with photons and spiral into the trap
while trapped atoms only traverse this area once on their way out. This
difference is illustrated in figure 2.4.

Figure 2.4: A hot (red) atom can traverse the trap many times experiencing
continual bombardment of photons as it spirals into the trap, while a cold
(blue) escaping particle only traverses this area once as leaves.
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Chapter 3

Experiment

3.1 Experiment Set-up

The experimental set up of our apparatus is shown in figure 3.1.

Figure 3.1: A sketch of our apparatus from [7]

A Rubidium dispenser introduces gaseous Rubidium to the a vacuum
cell which is centred within a quadrupole coil system in anti-hemholtz coil
configuration. Also centred on the cell are three pairs of two circularly
polarized counter-propagating lasers.

The presence of trapped atoms is detected with a photodiode located
behind a lens which focuses the light emitted from atoms as in figure 3.2
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3.2. Experiment Procedure

Figure 3.2: A diagram illustrating the detection of atomic florescence [7]

Given the picture in figure 3.2, one can calculate the power received by
the photodiode as

P = hv
r2lens

d2
lens

RsN (3.1)

where r2lens/d
2
lens is the ratio of light hitting the lens from the spherically

symmetric light emitted from the trap as calculated from the distance be-
tween the trap and the lens (dlens) as well as the radius of the lens (rlens). Rs

is the scattering rate from equation 2.8, N is the number of trapped atoms,
and hν is the energy of the photon. Not accounted for here are power losses
due to atomic florescence reflection at the walls of the glass vacuum cell.

A more detailed description of the laser systems can be found in [10].
Detailed description of the vacuum system and pumps, rubidium vapourizer,
magnetic coils, and imaging systems (photodiode) can be found in [7] and
[19].

3.2 Experiment Procedure

With the previously mentioned apparatus, we are ready to conduct our
experiment. The procedure is as follows:

1. Fill Rubidium cell: At the beginning of a data run, a 5 Amp current
is applied to a piece of Rubidium for roughly 2 - 3 minutes. This pro-
cess is typically referred to as a ”fill”. The exact amount of time for

25



3.2. Experiment Procedure

which the current is applied is not accurately measured as later cali-
brations will allow us to infer the density of Rubidium in our vacuum
cell independent of the time for which this fill is preformed.

2. Wait approximately two hours for density levels to equilibrate. For
sometime after the fill has been stopped Rubidium will continue to
enter the system causing the density to rise on a time-scale that is
comparable to that needed to take a density measurement (≃ 25 min-
utes). We therefore wait for the Rubidium density to stabilize and
decay normally from some peak value before beginning to take data.

3. Having decided which trap parameters we wish to take data for, we
proceed to take ”loading curves”. This means that we turn the MOT
on with lasers at a specific detuning and intensity setting as well as
with a specific current on our anti-helmholtz coils (which results in a
desired magnetic field gradient). The trap parameters which we have
studied so far are summarized in table 3.1.

Trap Detuning AOM Intensity Trap Depth Magnetic field gradient
# δ (MHz) setting (mW/cm2) (K) (G/m)

1 12 0.8 34.5 2.2 2785

2 12 0.3 9.6 1.99 2785

3 12 0.27 6.9 1.8 2785

4 10 0.21 2.7 1.06 2785

5 10 0.3 9.6 1.1??? 2785

6 8 0.21 2.7 0.92 2785

7 5 0.21 2.7 0.64 2785

8 8 0.21 2.7 0.92 2785

Table 3.1: A Summary parameters for different Magneto-optical traps for
which we have taken data.

Once the MOT has been on for some time and reach an equilibrium
state where the number of trapped atoms is no longer changing, the
magnetic fields are turned off allowing almost all the atoms to leave
the trap. After this the fields are turned back on and photodiode data
is recorded on an oscilloscope as the trap fills up again. A typical
loading curve can be seen in figure 3.3.
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Figure 3.3: A typical loading curve for a Magneto-optical trap. This par-
ticular one has detuning δ = 12 MHz and Intensity 34.5 mW/cm2. The
beginning portion of the trace which starts with a full trap and the drops
abruptly (when the magnetic fields are turned off) has been cut from the
plot.
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3.2. Experiment Procedure

We typically take five or six loading curves for three or four different
MOTs before initiating a magnetic trap.

4. Initiate a magnetic trap. There is some greater difficulty in taking data
for a magnetic trap since it requires that we turn our lasers off. This
in turn means that our atoms are no longer absorbing and emitting
photons and that we are unable to continuously measure the number
of trapped atoms. In order to take such a measurement the lasers
are flashed on for a short instant before being turned off again. The
amount of light which we receive from the atoms as a result of the flash
tells us how many atoms are in the trap. Unfortunately this method
completely disturbs the evolution of the trap, which will no longer act
as a purely magnetic trap. Therefore, each time a new measurement of
trapped atoms is made it is necessary to create a new magnetic trap.

We are interested in the loss rate of the magnetic trap. Because there
is no light on, there is no loading term in equation 2.15 which can be
simplified to

dN

dt
= −ΓmtN (3.2)

, an equation with an exponential solution N = Noe
−Γmtt.

A magnetic trap can be initialized by turning on a magneto-optical
trap and then ”dropping” our atoms into the purely magnetic trap
by turning off the lasers and increasing the magnetic field strength.
The lasers are kept off for some amount of time (called the hold-time)
before they are flashed on quickly in order to take a measurement
of the number of atoms in the trap. The process is then repeated for
many different hold-times which allows us to record a set of data points
of the form (Ni,ti) with which we can fit to the exponential model of
equation 3.2 and extract the magnetic trap loss rate Γmt.
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Figure 3.4: Multiple data curves for a magnetic trap are shown. The sharp
spikes in the data correspond to the ”flash” measurement conducted when
the lasers are turned on. In red an exponential model has been fit to these
points in order to determine the magnetic trap loss rate Γmt. After the
”flash” measurement, the lasers are turned on again so that we can measure
a load rate.
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3.2. Experiment Procedure

We also use the magnetic trap to measure the density of the hot back-
ground Rubidium in the vacuum cell, and so need to take a magneto-
optical trap loading curve. Therefore, after this ”flash” measurement
of the number of atoms in the magnetic trap, we turn our magnetic
fields off for one second to allow the trap to empty, before turning the
lasers and fields on to a standard setting (Trap 1 from table 3.1) and
measuring the load rate from the resulting curve. A few of these data
curves are shown in figure 3.4 with the exponential fit to the ”flash”
measurements of the number of atoms in the magnetic trap overlaid.

Knowing from theory that both the magnetic trap loss rate Γmt and the
loading rate R are proportional to the background density (nRb), we
can use our knowledge of the depth of the magnetic trap to determine
the relation between R and nRb.

In other words, since Γmt =< σv >mt nRb and R = knRb a linear
fit to the (Γmt,R) data (as well as prior measurement of < σv >mt)
will allow us to measure k. The linear relation of Γmt and R can be
seen in figure 3.5. The magnetic trap therefore allows us to turn every
measurement of R into a measurement of nRb, thus computing the
density of background Rubidium in our vacuum cell. At the begining
of a data run the cell is filled with Rubidium and allowed to decay.
The decay of the density (as calculated by this method) is plotted in
figure 3.6.

30



3.2. Experiment Procedure

Figure 3.5: The loss rate for the magnetic trap Γmt is plotted against the
loading rate, R, measured at the end of each data curve in figure 3.4.
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3.2. Experiment Procedure

Figure 3.6: A plot of the density, calculated by the method of this section,
is plotted versus time throughout a data run. At the beginning of the run
we fill our vacuum cell with Rubidium and allow it to decay over the course
of a day of data taking.
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3.2. Experiment Procedure

5. Having recorded the time of each nRb measurement , as well as the
time at which each MOT loading curve is recorded, we interpolate
nRb as a function of time and approximate the background Rubidium
density at the time of each MOT loading curve.

Making the approximation that

ΓN ≪ β

∫

n2 dV (3.3)

and solving

dN

dt
= R− ΓN (3.4)

as

N = No(1 − e−Γt) + b (3.5)

where No = R/Γ is the steady state number of atoms trapped in the
MOT, Γ is the loss rate due to hot background collisions, and b is
a background term related primarily to laser reflections off the glass
vacuum cell.

We fit data as in figure 3.3 to the model in equation 3.5 in order to
determine the loss rate Γ. Having already measured the density nRb

with magnetic trap, and remembering that Γ =< σv > nRb we preform
a linear fit to the (Γ,nRb) data in order to extract the cross section for
trap loss (as in figure 3.7)

Though the majority of Γ versus nRb graphs follow this trend, the
linear relation is sometimes called into question with plots like figure
3.8 where the same data for another trap is plotted. This time a slight
kink is observed at low densities.

We preform these measurements on all of the traps in table 3.1.
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3.2. Experiment Procedure

Figure 3.7: The loss rate for a magneto-optical trap (Γ) is determined by
fitting data like in figure 3.3 to equation 3.5 and plotted versus the density
nRb. The slope of a linear fit to this data gives us the cross section for trap
loss < σv >. This plot is for Trap 4, table 3.1.
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Figure 3.8: A suspicious kink is observed in this plot at low densities. The
loss rate for a magneto-optical trap (Γ) is determined by fitting data like in
figure 3.3 to equation 3.5 and plotted versus the density nRb. The slope of
a linear fit to this data gives us the cross section for trap loss < σv >. This
plot is for Trap 1, table 3.1.
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Chapter 4

Numerical Methods

4.1 Algorithm for fitting the Loading rate

In an attempt to determine the loading rate of a MOT one might take a
trace like that in figure 3.3 and fit the data to equation 3.5 (N = No(1 −
e−Γt) + b) thereafter employing the relation R = ΓNo.

However, equation 3.5 does not actually satisfy the most general rate
equation (equation 2.15, from which we have dropped the β term). We
therefore attempt to determine the loading rate from a linear fit to the data
for which there are few atoms in the MOT. In the limit N → 0 equation
2.15 reduces to

N = Rt+ b. (4.1)

So a linear fit has the advantage of being applicable for any MOT, re-
gardless of whether or not the approximation of equation 3.3 holds.

The most obvious problem with a linear fit is the question of how long
the relation remains linear, and therefore: which data points should be
considered in the fit? In the limit that Γt≪ 1 we see that equation 3.5 also
reduces to N = Rt + b. This requirement on Γt is essentially a restriction
on how long we allow the MOT to load and therefore on how many atoms
we allow in the trap before considering equation 4.1 invalid. But even now
we have no exact boundaries for the region. The question has only become
: how much less than 1 must Γt be for equation 4.1 to hold?

At first glance there is no obvious choice for the right amount of time,
or the right number of points to be considered when preforming the fit.
However, if one plots the value of R versus the number of points considered
in the fit, as in figure 4.1, one observes large fluctuations in the value of
R followed by stabilization and a steady decrease in the fit result for the
loading rate. Actually figure 4.1 is plotted with the maximum Γt on the
x-axis - that is, no points such that Γt > Γtmax are considered in the fit.
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Figure 4.1: The loading rate R is determined from a linear fit to the first n
points in the trace such that Γt is less than a certain value. This value is on
the x-axis and ranges from 0 to 1. The red ’x’ is the best R selected by the
algorithm. In this particular case, n such that Γt < 0.068 has been selected.
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4.1. Algorithm for fitting the Loading rate

The wild fluctuations at small Γtmax map to too few points being consid-
ered in a fit which becomes dominated by noise and thus produces extreme
values of R, typically with large errors. As the fit begins to consider larger
and larger Γtmax, the value for R begins to decrease because the fit has con-
sidered points which are exhibiting the exponential nature of the data. The
slope of the line is pulled down as the trace flattens out and tends towards
a constant equilibrium value ( No + b , from equation 3.5).

I consider that the best value for R is the highest value that is also stable.
Intuitively, the most likely R should be the maximum one (the one which is
least decreased due to effects of the exponential data) that is not dominated
by noise in the data - noise which would produce a poor measurement of R.

This section is designed to present an algorithm which searches for this
particular value of R - the maximum stable R - but the reader should note
that I provide no quantitative test that this R is the correct one. The
purpose of the algorithm will be to select a reasonable Γtmax which can be
applied universally to traces for all MOTs in the hope that consistency will
be achieved. That is, even if the R resulting from a linear fit to the first few
points in a loading curve using some universal Γtmax is slightly wrong, the
value will be systematically wrong by the same amount for each MOT.

The maximum stable R can be coherently searched for by first computing
R based on a linear fit to the first n points in the loading curve such that
Γt ≤ 1. By first fitting with this many points we guarantee that we overshoot
the region in figure 4.1 where the value of R is noise dominated.

Call this value Rn, and remember its error, dRn. These values will also
be used to initialize the current ”best” value for R: Rn = RBest and dRn =
dRBest. Next preform the fit again, this time allowing consideration of only
the first n-1 points. Call this value Rn−1 with error dRn−1. Next we want
to check if this new value of R, which was computed by considering less
points in the fit, has entered a region of large fluctuation indicative of noise
dominated data.

If Rn−1 < RBest+dRBest , Rn−1 > RBest−dRBest and Rn−1 > RBest , the
algorithm interprets the value of R to have risen smoothly by considering
one less point in the fit, and sets Rn−1 = RBest and dRn−1 = dRBest. Next
the algorithm repeats this process with Rn−2, Rn−3...
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The process continues until the latest value computed for R does not agree
with RBest within experimental error. That is, when considering R fit to
some number of points i, Ri > RBest + dRBest or Ri < RBest − dRBest. At
this point the algorithm interprets the R to have entered a region of ”too
much fluctuation”. Once this happens computation of R is complete and
the last RBest is the maximum stable R in the set.

Having preformed this algorithm on all of our MOT traces for data taken
throughout this thesis, I find an average Γtmax = 0.18. However, before
obtaining this value, all computations of R were obtained by fitting with
Γtmax = 0.1. Future analyses might consider switching to Γtmax = 0.18 and
re-analysing past data.

4.2 Confirming the Reif Model and Measuring

Trap Depth

Recall from the Reif Model that

R =
2A

π2v3
T

nRbv
4
c (4.2)

or

R =
8A

π2v3
T

U2nRb

m2
Rb

(4.3)

where vT is the mean velocity of the background gas, vc is the capture
velocity of the trap, mRb is the mass of the Rubidium atom and A is the cross
sectional area of the MOT. In equation 4.3 we have made the substitution
U = 1

2
mRbv

2
c .

We measure most of the quantities present in this model: R, nRb and
sometimes (with more considerably more difficulty) U . (Note that R is cal-
culated using the method of section 4.1 and by normalizing to the scattering
rate from equation 2.8).

For a given apparatus alignment (which might effect A) and a given
trapped species, I define the quantity

Q =
R

U2nRb
=

2A

πm2
Rbv

2
T

= constant (4.4)
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4.2. Confirming the Reif Model and Measuring Trap Depth

Next consider two different MOT’s (i and j): one for which we know the
trap depth U and one for which we do not. For any pair of measurements
(Ri, nRb,i) and (Rj , nRb,j) we may couple data from the trap of known depth
to the other and thereby measure the unknown depth. If Q is really a
constant between the two traps then the logical question is: What U would
scale the measurements of Q for the unknown trap so that they matched
the known one as well as possible?

To answer this, I next consider

Qi −Qj =
Ri

U2
i nRb,i

−
Rj

U2
j nRb,j

=
2∆A

πm2
Rbv

2
T

(4.5)

where ∆A is the difference in cross sectional area between the two MOTs.
If we approximate ∆A ≃ 0 then I can turn the determination of the unknown
trap depth into a minimization problem. The function

S =
∑

i

∑

j

(Qi −Qj)
2 =

∑

i

∑

j

(

Ri

U2
i nRb,i

−
Rj

U2
j nRb,j

)2

(4.6)

couples every measurement of Q for one MOT (MOT i) to every other
measurement of Q for the other MOT (MOT j). Letting Uj be a fit param-
eter and minimizing S produces a prediction for Uj .

In order to test this method, consider three traps for which separate
measurements of the trap depth have already been made (Traps 1, 4 and
7 from table 3.1. To obtain results in table 4.1 I take Trap 7 to be the
”known” trap, and test the method on Traps 1 and 4. The agreement is
good, generally within 10 - 20 %.

Table 4.1: Comparing predictions for trap depth to previous measurement

MOT Measured trap depth (K) Fit Prediction (K) percent difference

Trap 4 1.1 1.2 ± 0.05 8%

Trap 1 2.2 2.8 ± 0.14 21%

Since the capture velocity is typically higher than the escape velocity,
we expect a slight overestimation of the trap depth.

Specifically, if vc ∝ ve

vc = kve (4.7)
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4.2. Confirming the Reif Model and Measuring Trap Depth

then separate measurement of the trap depth allows us to determine a

value for k =
√

Ufit/Umeasured. In the case of Trap 4 we get k4 = 1.04± 0.6

while for Trap 1 we see k1 = 1.13 ± 0.03, which agree within errors. Note
that the errors on these k values are obtained only from considering error in
the fit result for U and not from the independently measured values. So in
the future trap depth corrections can be further corrected with this k factor.

But all of this is contingent on our trust in the Reif model. To check
weather the value of Q is really constant, we plot many measurements of
it throughout a data run (ie: for many different R and nRb). In figure 4.2
we normalize Q with the independently measured trap depths and in figure
4.3 with ones predicted by the minimization. Both plots exhibit a uniform,
constant nature which suggests the Reif model is valid.

Figure 4.2: Q calculated with the independently measured trap depth is
plotted for a particular data set (taken Feb 18, 2011). The roughly con-
stant nature of the value for multiple measurements throughout the day (at
different R and nRb regimes) points to a validation of the Reif model.
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4.2. Confirming the Reif Model and Measuring Trap Depth

Figure 4.3: Q calculated with the trap depth predicted from the mini-
mization of equation 4.6 is plotted for a particular data set (taken Feb 18,
2011). The roughly constant nature of the value for multiple measurements
throughout the day points to a validation of the Reif model.
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Chapter 5

Results

5.1 Comparison of < σv > between 85Rb , 87Rb

and theoretical predictions

With knowledge of the fact that

Γ = nRb < σv >Total +b (5.1)

(where b is a background term accounting for residual unwanted gases
and 2-body losses) and in order to incorporate dependence of the excited
state fraction, we write

Γ = nRb(fe < σv >e +(1 − fe) < σv >g) + b (5.2)

where fe is the fraction of the atoms in an excited state, < σv >e is the
cross section for interactions between excited and ground state atoms, and
where < σv >g is the cross section for interactions between only ground
state atoms.

Since the excited state fraction is calculable via equation 2.3 past work
within our lab [5] has attempted to predict the values for < σv >e and
< σv >g based on the method of [7] and the predicted total cross section
in equation 5.2 to the measured one, which takes the form of equation 5.1.
That is, for our predicted values of < σv >e and < σv >g, and using our
calculable fe, does fe < σv >e +(1−fe) < σv >g match our measured value
for < σv >Total ? The results of such a computation can be seen in figure
5.1.
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5.1. Comparison of < σv > between 85Rb , 87Rb and theoretical predictions

Figure 5.1: A plot comparing the predicted total cross section based on
equation 5.2 (red dots) with the measured cross section as in equation 5.1
(black squares). The pure ground state model is also plotted in green [5]
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5.1. Comparison of < σv > between 85Rb , 87Rb and theoretical predictions

The model presented by equation 5.2 and tested in figure 5.1 is able to
reproduce the same shape, or trend, displayed by the data, yet fails to agree
within experimental error, and still appears to be systematically different
from the measured result. But in spite of the overall failure to predict our
data, we are assured that the excited state fraction is an important quanity
to be considered when attempting to understand the fundamental nature of
cross sections for trap loss. The following paragraphs will, outline possible
flaws with this model while the next section will outline an alternative one.

Complicating the jump from equation 5.1 to equation 5.2 is the fact that
our background Rubidium gas is actually approximately 2/3 85Rb and 1/3
87Rb. The differences in atomic interactions, and thus cross sections, be-
tween ground state 85Rb and ground state 87Rb, ground state 85Rb and
excited state 87Rb and excited state 85Rb and ground state 87Rb have been
ignored on the assumption that most of the interactions result from the
outer electrons which are not much effected by the slightly different nucleus
of each isotope.

Further, while equation 5.2 considers interactions between ”isotope-general”
ground and excited states, it does not consider interactions resulting be-
tween two excited state atoms. Such contributions would have to consider
that the probability for two excited state atoms interacting would go like f2

e

which is typically at least an order of magnitude less than the corresponding
probability for ground-excited state interactions fe(1 − fe).

However, since our results are not conclusive, both of these simplifications
may have to be revisited in the future in order to explain our results.

Another assumption inherent in the model is that, while we trap one
isotope of Rubidium, our lasers to not excite any significant fraction of the
other, untrapped isotope. Since the difference between resonant frequencies
(ω) for each isotope is

∆ω85−87 = ω85 − ω87 ≃ 1.126 GHz (5.3)

we can relate the detunings for each isotope by δ85 = δ87 − 1.126 GHz.
Typical detunings for magneto-optical traps are 1 - 10 MHz, about two or
three orders of magnitude less than the unintentional detuning which acts
on the untrapped isotope.
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5.2. < σv > dependence on the excited state fraction

A typical excited state fraction for such a detuning is ≃ 10−5, significantly
less than the ≃ 10−1 excited state fraction of the intentionally trapped
isotope.

So though unintentional excitation of the untrapped isotope seems negligi-
ble based on the relatively large difference between their resonant excitation
frequencies, this large difference actually provides a method for direct mea-
surement of the differently trapped species. If light from fluorescent atoms is
first passed through a bandpass filter centred on the resonance of the correct
isotope, information about the trapping of each isotope could be recorded
independently of the overall florescence signal resulting from the MOT.

5.2 < σv > dependence on the excited state

fraction

Considering the strong trend present in figure 5.1, we plot the cross section
versus the excited state fraction (< σv > versus fe) and attempt to infer
a relation. Figure 5.2 shows a plot of cross section versus the excited state
fraction where an almost linear dependance is observed.

Figure 5.2: < σv > versus fe for Traps 1, 4 and 7 in table 3.1.
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5.2. < σv > dependence on the excited state fraction

If there was such a simple linear dependence of the cross section on the
excited state fraction, then we would be forced to look at modes of trap
loss which are related to these types of atoms. Inelastic collisions (some
of which are outlined in section 2.5.2) would be prime candidates for this
mechanism because they allow for the excess energy in the excited state to
be transformed into a kinetic energy that is typically far in excess of any
trap depth which our lasers and magnetic fields are able to produce. Since
we expect the number of fine structure changing collisions and/or radiative
escape occurrences to be directly related to the number of atoms in the
excited state, we infer that if these mechanisms are significant modes for
trap loss, there should be a dependence of cross section on excited state
fraction.

Why don’t we put a filter on the photodiode that only passes the frequency
mapping to the P3/2 → P1/2 transition? Wouldn’t this show if there was a
significant amount of FCC collisions going on?

In order to test weather the cross section was indeed solely dependent on
the excited state fraction, we measured the cross sections for two pairs of
two MOTs each having the same excited state fraction. The summary of
these MOTs and their parameters are shown in table 5.1

Trap Detuning AOM Intensity Trap Depth Excited State < σv >
# δ (MHz) setting (mW/cm2) (K) Fraction 10−9 cm3/s

9 12.69 0.7 30.8 ? 0.15 9.96 ± 1.12

10 5.56 0.3 7.3 ? 0.15 4.83 ± 1.62

11 11.21 0.4 16.1 ? 0.11 3.37 ± 1.02

12 15.47 0.6 29.7 ? 0.11 8.81 ± 1.16

Table 5.1: A summary of MOT settings and the corresponding excited state
fractions for each. There are two pairs of different excited state fractions
over four traps of different parameters. The idea is to test whether these
different MOTs have the same cross section as a result of having the same
excited state fraction.

When cross sections for the traps in table 5.1 are measured and included
in a plot like that of figure 5.2 we observe even more puzzling behaviour (see
figure 5.3).
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5.2. < σv > dependence on the excited state fraction

Figure 5.3: < σv > versus fe for Traps 1, 4 and 7 in table 3.1 (Blue) as well
as all the traps in table 5.1. The red dots are the results for the traps in
table 5.1.
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5.3. Data quality issues: different < σv > measurements for the same trap

If one could imagine anyway in which the system had directionality - some
way in which these MOTs traversed the excited state fraction space - then
figure 5.3 might appear to exhibit a hysteresis. However, given that the
next section is devoted entirely to data quality issues, I won’t speculate any
farther possible relations between the excited state fraction and the cross
section for trap loss.

5.3 Data quality issues: different < σv >

measurements for the same trap

Having measured the cross section for all traps in tables 3.1 and 5.1, we
can add these results to plots like those of figures 5.3 and 5.1. Figures
5.4 and 5.5 plot < σv > versus trap depth for multiple traps containing
either 85Rb or 87Rb. Immediately these plots tell us that, while we are still
observing the anomalous behaviour which disagrees with our current model,
we are not able to obtain reproducible results. A new measurement of the
same quantity for the same trap sometimes yields different results.

This failure to obtain reproducible results also inhibits the analysis of
section 5.2. If one adds all the data in figure 5.4 to a plot of the cross section
versus the excited state fraction, the possible linear relation that looked so
hopeful in figure 5.2 becomes rather an eyesore (see figure 5.6).
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5.3. Data quality issues: different < σv > measurements for the same trap
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Figure 5.4: < σv > versus Trap depth (U) for the traps in table 3.1. The
same measurement of the same trap was taken on different days and some-
times produced different results. Measurements of the same trap appear in
the same colour. The measurements of traps for 85Rb are in squares , while
87Rb uses triangles.
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5.3. Data quality issues: different < σv > measurements for the same trap
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Figure 5.5: < σv > versus Trap depth (U) for some of the traps in table
3.1. The same measurement of the same trap was taken on different days
and sometimes produced different results. Measurements of the same trap
appear in the same colour. The measurements of traps for 85Rb are in
squares , while 87Rb uses triangles.
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5.3. Data quality issues: different < σv > measurements for the same trap

Figure 5.6: < σv > versus exited state fraction (fe) for the traps in tables
3.1 and 5.1. The same measurement of the same trap was taken on different
days and sometimes produced different results. Measurements of the same
trap appear in the same colour. The measurements of traps for 85Rb are in
squares , while 87Rb uses triangles.
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5.3. Data quality issues: different < σv > measurements for the same trap

So it is clear that before a concrete quantification of the dependence of
the cross section on the excited state fraction can be made, the experimen-
tal procedure, set up, or data analysis must be altered or at least better
understood so that we can be certain our measurements are correct and
reproducible.
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Chapter 6

Conclusions

6.1 The Reif Model and Trap Depth predictions

We have produced experimental evidence that verifies the Reif model. The
constant nature of equation 6.1

Q =
R

U2nRb
=

2A

πm2
Rbv

2
T

(6.1)

for different trap depths (U) across different density regimes (nRb) is
displayed in figures 4.2 and 4.3.

The model has allowed us to turn the determination of the trap depth
into a simple minimization problem. Since we have measured the trap depths
independently, a correction for the determination of trap depth with vc, the
capture velocity, instead of the more accurate escape velocity, ve can also be
made. We determine this correction factor to be k = 1.1±0.45 (see equation
4.7), and note that it should be included when attempting to measure trap
depth, as well as monitored for verification.

The Reif model and the presented method for measuring trap depth can
be strained in the following ways:

• Misalignment of the lasers: If the lasers are realigned between mea-
surements of R, nRb and possibly trap depth (U), then our assumption
that ∆A ≃ 0 may break the constant nature of Q. If this were the
case we will be forced to consider a dependence of R or U on the laser
alignment. If there was such a dependence, this might explain the
large scatter in our data for measurements of cross sections for trap
loss (< σv >).

• Drive the Reif Model to extreme Regimes: If we take our traps to
either very high or low regimes of density, nRb; load rate ,R; Trap

depth, U ; or temperature, T (remember vT =
√

8kBT
πm ); we can put

the Reif Model under greater scrutiny. It would be very interesting to
find a regime where the model broke.
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6.2. Speculations on the cross section for trap loss, < σv >

Future work should consider re-measureing trap depths for those traps in
table 3.1 and attempting to confirm the viability of the presented method.
This method would also allow us to take data for both the cross section,
< σv >, and Trap depth, U , in order to populate < σv > vs U curves
like in figures 1.5 and 1.6. More data points would help better map the
parameter space and either confirm the theoretical curve or provide more
distinct structure to the disagreement.

6.2 Speculations on the cross section for trap

loss, < σv >

We see a disagreement from theoretical predictions of the cross section for
trap loss (see figure 1.6), and a strong correlation between the cross section
and the excited state fraction of the trapped atom population (figures 5.6
5.1). In order to quantify this more concretely future work must be able to
obtain reproducible data.

Possible sources of error that might result in different measurements of
the same cross section include laser alignment as well as our model of the
scattering rate (equation 3.1). As previously mentioned, aligning the lasers
slightly differently for each data run may effect the cross-sectional area of
the trap A, the loading rate R, or even the trap depth U , any of which would
certainly change our measurement of < σv >.

The scattering rate is derived from a two level atomic model yet Ru-
bidium atoms are multi-levelled. Instead of normalizing equation 3.1 to the
scattering rate, we might instead normalize to the atomic florescence of some
standard MOT. Calculation of the number of trapped atoms would then be-
come a relative quantity. However, if the two level model is insufficient, the
scattering rate normalization may be wrong to different degrees for different
traps - a pitfall we avoid with normalization to a standard MOT florescence.

So addressing these two issues is the next step in obtaining reliable data
and quantifying the relation between the cross section ,< σv >, and the
excited state fraction, fe.
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Appendix A

Below are tables outlining the which traps were measured on which dates.
In all cases, the experimental method follows that of section 3. Table A.1
represents data taken for this thesis while table A.2 contains data from [5].

Traps Trapped Rb Isotope Date

1,2,4 87 October 5, 2010

1,5,7 85 November 4, 2010

1,5,7 85 January 24, 2011

1,4,7 85 February 18, 2011

1,4,7 85 March 7, 2011

8,9,10,11 85 March 18, 2011

Table A.1: Measurements of different traps are displayed according to data
and trapped isotope. Trap numbers are from table 3.1

Traps Trapped Rb Isotope Date

1,3,4,7 87 July 13, 2010

1,2,8 87 July21, 2010

Table A.2: Measurements of different traps (from [5] are displayed according
to data and trapped isotope. Trap numbers are from table 3.1
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