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Abstract

We perform the ab-initio calculation of photonuclear sum rules for 4He and 6He

using semi-realistic potentials. Our results include the first ab-initio calculation

of the electric polarizabililty of 6He. We perform the calculation by expanding the

the wavefunctions in a Hyperspherical Harmonic basis and solving the Schrödinger

equation exactly. Model space trunction effects are estimated by incrementing the

size of the Hilbert space, and evaluating the convergence pattern. We also compute

sum rules by integrating the theoretically computed cross section available from the

literature. Full convergence is not yet achieved. A discussion of the preliminary

results is presented. Future work, taking advantage of negligible symmetries in the

hyperspherical harmonic basis, should be able to achieve full convergence.
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Chapter 1

Introduction

The interaction of nucleons with the electromagnetic field (photons or electrons)

is well understood and enables a clear separation of the analysis of the probe from

that of the nuclear dynamics, which is still not well understood. In particular, ab-

initio methods are very valuable for understanding nuclear dynamics. An ab-initio

calculation is “from first principles” in that it describes the quantum mechanical

problem as nucleons interacting via a nuclear Hamiltonian. In cases where the

Schrödinger equation is solved without introducing approximations, we say such

calculations are exact. In this work we perform exact, ab-initio calculations and

the terms are used interchangeably1.

Exact calculations also allow us to test the role that three-body forces play

in the determination of electromagnetic observables. Understanding what observ-

ables are sensitive to many-body forces is important for constraining self-consistent

models of many-body forces such as Chiral Perturbation Theory [4].

Due to the obvious computational constraints, exact calculations have been re-

stricted to the light nuclei with mass numbers about A≤ 12−16 for bound states.

In the case of the electromagnetic breakup observables, which depend on contin-

uum properties of the nucleus, i.e. properties of unbound states, then typically we

are restricted to about A≤ 7. Often, the full continuum response must be calculated

in these situations, for which some powerful tools including the Lorentz Integral

Transform technique have been developed.

1Note that in the literature this may not generally be the case.
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In this work, I have studied the photonuclear sum rules of light nuclei including
4He and 6He. Photonuclear sum rules are related to the moments of the photonu-

clear cross section which can be compared with experiment. I have used semi-

realistic potentials in my calculations, i.e. potentials that do not include high l

parts of the interaction, to simplify the calculations. This may lay the groundwork

for more sophisticated future calculations.

Of particular interest is the polarizability sum rule, which allows a direct cal-

culation of the electric polarizability of the nucleus. When a nucleus is placed in

an electric field, the field displaces the nucleons and creates a dipole moment in

the nucleus centre of mass. In the weak field limit, the induced dipole is directly

proportional to the external field:

Dz = αEEz. (1.1)

Where αE is the polarizability of the nucleus. Of the several nuclear systems we

can study, “halo” nuclei like 6He are of particular interest. The name “halo” is

given to nuclei with anomalously large matter radius attributed to loosely bound

outer neutrons. Scattering experiments suggest that these nuclei have radii much

larger than other isotopes of the same element and are often comparable to nuclei

with much larger mass numbers. For example, while the radius of 4He is measured

to be about 1.7 fm [5], the radius of 6He is found to be about 3.7 fm [6]. Figure 1.1

plot the relative size of light nuclei. For 6He, the neutron halo makes the electric

polarizability markedly interesting because we would expect it to be much larger

than other helium isotopes, especially the extremely compact 4He. The diffuse

neutron halo also makes it particularly difficult to achieve convergent results with
6He as many basis states are needed to capture the long tail.

In Table 1.1, I have presented previous ab-initio calculations of nuclear polar-

izability of hydrogen and helium isotopes. Note the lack of values for 6He. I will

be presenting the first computations of this observable for 6He. There is a single

experimental measurement of the polarizability of 6He, and the estimated error on

this value is large due to the method used to extract it from the data [7].

The electric polarizability also has importance in high-precision atomic spec-

troscopy. Here, accurate measurements of the energy difference between atomic

2



Figure 1.1: A nuclear chart showing the relative sizes of light. Highlighted
are 4He, 6He, and some other halo nuclei.

Nucleus αE(fm3) Reference
2H 0.6328(17) [8]

0.6314(19) [9]
3H 0.139(2) [10]

0.139 [11]
3He 0.149(5) [10]

0.145 [12]
4He 0.0683(8)(14) [10]

0.0655(4) [1]
6He

Table 1.1: Ab inito calculations of electric dipole polarizability of various nu-
clei. Note there is no value at all for 6He.
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energy levels (also called the transition frequency when referring to the resonant

laser frequency) are becoming precise enough to see effects of nuclear structure

[13]. In general, transition frequencies between S states in single-electron atoms

and ions are determined by a initial value derived from a relativistic hydrogen-atom

model, to which corrections are applied resulting from Quantum Electrodynam-

ics (QED) and nuclear effects. The QED effects are much more important than

nuclear effects in light nuclei, but recent progress in this area ensures the highest-

order terms have already been calculated and remaining terms are estimated to have

smaller effect than nuclear corrections [14]. The biggest nuclear corrections are as-

sociated with the non-zero charge radius of the nucleus, and due to the fact that it is

not a rigid body. The latter effect is dominated by the electric polarizability, which

is effectively a measure of how much the electron deforms the nucleus and “drags”

the deformation as it orbits (in analogy to the way the moon creates the tides).

Recent measurements of hydrogen-like atoms and ions can be used as mea-

surements of the charge radius by fitting the charge-radius correction to the experi-

mental data while using calculated values for the QED and polarization corrections

[10], and it has been shown that these kinds of measurements agree with the results

from direct measurements of proton radius using electron scattering [15, 16].

Although at the current stage [17], electric polarizability plays only a marginal

role in comparison to other contributions to atomic observables in the case of six-

body nuclei, future improvements of experimental precision will require reliable

values for this observable.

While the electric polarizability is perhaps the most interesting observable in

terms of its implications to other research, the other sum rules I have studied in-

clude the bremsstrahlungs sum rule (BSR) and the Thomas-Reiche-Kuhn (TRK)

sum rule, which have mostly theoretical interest. The former is relatable in several

ways to the geometric structure of the nucleus. This may be useful in understand-

ing the neutron halo in 6He and potentially other halo nuclei. The later is related

to the so-called TRK enhancement factor, which is used in the study of nuclear

potential models by providing a way to quantify the role of exchange effects in the

interaction (for more details, see A.1).
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Chapter 2

Theoretical Framework

In this chapter we discuss the photonuclear cross section as a way to gain infor-

mation about nuclear observables coupled to the electromagnetic field, and the use

of sum rules to relate photonuclear moments to tractable computable expressions.

Before introducing the more generic case, we consider a concrete example with a

classical analogue; namely, the electric polarizability of a nucleus, which can be

thought of as the effect of a perturbation by a small external electric field.

2.1 Electric Polarizability
The perturbed Hamiltonian resulting from applying an electric field with magni-

tude Eext pointed along the z direction is H = H0−EextDz, where Dz is the z com-

ponent of the induced dipole moment. Due to parity symmetry of the ground state,

the first order correction 〈0| (-Eext Dz)|0〉 is zero. The second order correction is

E2
0 =−1

2
αE2

ext,

where α corresponds to the classical definition of polarizability; namely, if |0〉 is

the ground state of the full Hamiltonian H we have:

αE = lim
Eext→0

〈0|Dz |0〉
Eext

.

5



By using the standard perturbation theory arguments, we can thus show

αE = α
∑n | 〈n|Dz |0〉 |2

En−E0
. (2.1)

Where the sum ranges over all possible final states |n〉, including continuum states.

By convention, the fine structure constant α is included, which absorbs various

electromagnetic units from the dipole operator. In this work, αE will always refer

to the electric polarizability while α will always refer to the fine structure constant.

In the following sections we will show that equation (2.1) can be calculated as

a sum rule for the photonuclear cross section and that, in a similar way, other

sum rules, including the bremmstrahlungs and Thomas-Reiche-Kuhn sum rule,

will lead to analagous formulas related to other electromagnetic observables with

theoretical interest.

2.2 Photoabsorption Cross Sections
The photoabsorption cross section can be defined in terms of a response function

R(ω), where ω is the photon energy:

σ
γ(ω) = G ωR(ω),

where G is a constant which we define as G = 4π2α .

The response function encodes the effect of a small perturbation by a photon to

the system. For the most general effect of photoabsorption, the response function

is written in terms of the electromagnetic current four-vector Jµ = (ρ, j).

R(ω) = ∑
n
| 〈n|Jµ(q) |0〉 |2δ (En− (E0 +ω)), (2.2)

where q is the momentum transfer (for photoabsorption q = ω). As before, the

sum over final states must also include an integral over continuum states.

We perform a multipole decomposition on Jµ , first by expanding ρ in terms of

6



Coulomb multipoles:

ρ(q) = 4π ∑
lm

ilYlm(q̂)Clm(q),

Clm(q) =
i−l

4π

∫
dq′ρ(q′)Ylm(q̂′).

Where Ylm are the spherical harmonics. An analogous expansion of j can be per-

formed in terms of the vector spherical harmonics1:

j(q) = 4π ∑
Jlm

YJl1
m (q̂)Jm

Jl(q),

Jm
Jl(q) =

1
4π

∫
dq′j(q′)YJl1

m (q̂′).

In the low energy limit, the current multipoles Jm
Jl can be expressed in terms of

the Coulomb multipoles, and of the Coulomb multipoles the dipole is the most

dominant. 2

It is thus possible to relate the full response (equation (2.2)), which can in

principle be measured, to the unretarded dipole response:

RE1UR(ω) = ∑
n
| 〈n|Dz(ω) |0〉 |2δ (En− (E0 +ω)). (2.3)

For this reason we can consider the unretarded dipole (E1UR) cross section:

σ
E1UR
γ (ω) = G ωRE1UR(ω),

where Dz refers to the unretarded dipole operator Dz = ∑
A
i=1 riτ

z
i /2. Unretarded

refers to the neglect of relativistic effects. From now on when referring to the

photonuclear cross section, I shall be referring to the E1UR approximation.

1If unfamiliar with the vector spherical harmonics, one can find definitions and lists of properties
in [18]

2This is called the Siegert theorem, a full derivation can be found in [19].
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2.2.1 Photonuclear Moments and Sum Rules

We define the moments of the photonuclear cross section, labeled by k, as

mk =
∫

∞

ωth

dωω
k
σ

E1UR
γ (ω),

where ωth is the smallest frequency where photoabsorption is allowed (due to en-

ergy conservation). Applying the definitions from the previous section we have:

mk = G ∑
n
| 〈n|Dz |0〉 |2(En−E0)

k+1. (2.4)

Various ways of evaluating the sum over final states will result in expressions gen-

erally referred to as sum rules. In particular, we will consider three sum rules: the

Thomas-Reiche-Kuhn (TRK), bremsstrahlungs (BSR), and polarizability sum rule

(PSR) given respectively by

Σ
T RK = m0 =

G

2
〈0| [D, [H,D]] |0〉 ,

Σ
BSR = m−1 = G 〈0|D†

z Dz |0〉 ,

Σ
PSR = m−2 = G ∑

n

| 〈n|Dz |0〉 |2

En−E0
.

Derivations of the first two equations can be found in the Appendix section A.1.1

and A.2.1.

In the next section we will interpret the above sum rules in terms of other

nuclear observables.

2.3 Sum Rules and Nuclear Observables
To handle the sum over final states in the expressions for the photonuclear sum

rules (2.4), one takes advantage of the closure relation:

∑
n
|n〉〈n|= 1.

By performing this analysis, we can connect the sum rules to various nuclear ob-

servables. We will briefly go over some of the results here; complete derivations

8



are provided in Appendix A.

2.3.1 Polarizability Sum Rule

We now refer back to the discussion in section 2.1 and see that evidently

Σ
PSR = 2π

2
αE ,

so that calculation of the sum rule amounts directly to calculation of the electric

polarizability.

In order to avoid the sum over final states, we can rewrite the sum rule (as

shown in A.3.1)

Σ
PSR =−G 〈0|

D†
z Dz

E0−H
|0〉 . (2.5)

In later chapters, we will see how to compute the right hand side of (2.5) by using

the Lanczos algorithm.

2.3.2 Thomas-Reiche-Kuhn Sum Rule

The TRK sum rule is defined by

Σ
T RK =

G

2
〈0| [D, [H,D]] |0〉 . (2.6)

We can split the Hamiltonian in (2.6) into a kinetic and potential energy part:

Σ
T RK =

G

2
(〈0| [Dz, [T,Dz]] |0〉+ 〈0| [Dz, [V,Dz]] |0〉) .

The kinetic energy part can be explicitly calculated (A.1.2):

G

2
〈0| [Dz, [T,Dz]] |0〉= G

NZ
2mA

,

so that we can write

Σ
T RK = G

NZ
2mA

(
1+κ

T RK) ,

9



where

κ
T RK =

2mA
NZ
〈0| [Dz, [V,Dz]] |0〉 .

The TRK sum rule thus allows for a computation of κT RK , known as the TRK

enhancement factor, which is a measure of how much the potential does not com-

mute with the dipole operator. If the potential has derivatives or isospin-dependent

terms, then it will not commute with Dz. For a purely central potential (i.e. V =

V(r)), κT RK is zero. The TRK enhancement factor is of purely theoretical interest

and is a useful comparison of different potential models.

2.3.3 Bremstrahlungs Sum Rule

The BSR sum rule is defined as

Σ
BSR = G 〈0|D†

z Dz |0〉 .

There are a number of interesting ways to relate the BSR sum rule to geometric

properties of the nucleus. In particular, we can show (A.2.2):

Σ
BSR = G

(
NZ
A

)2 〈
R2

PN
〉
, (2.7)

where RPN is the distance between the proton and neutron centres of mass.

We define
〈
r2

p
〉

to be the mean square proton radius with respect to the nuclear

centre of mass, and
〈
r2

pp
〉

to be the mean square distance between protons. We can

show that (see A.2.3):

Σ
BSR = G

(
Z2 〈r2

p
〉
− Z(Z−1)

2
〈
r2

pp
〉)

.

An identical derivation can be done for neutrons (A.2.4):

Σ
BSR = G

(
N2 〈r2

n
〉
− N(N−1)

2
〈
r2

nn
〉)

. (2.8)

Also, if we let
〈
r2

pn
〉

be the mean square distance between protons and neutrons we

10



can show (A.2.5):

Σ
BSR = G

NZ
2
(〈

r2
pn
〉
−
〈
r2

p
〉
−
〈
r2

n
〉)

. (2.9)

Finally, if
〈
r′2p
〉

is the mean square distance of protons from the proton centre of

mass, we have (A.2.6):

Σ
BSR = G

(
Z2 〈r2

p
〉
−Z2 〈r′2p 〉) . (2.10)

11



Chapter 3

Computational Techniques

As evidenced by the formulas in the previous chapter, calculating photonuclear sum

rules requires computing the nuclear ground state, as well as applying the dipole

operator. In order to do this we need a concrete representation of the ground state,

which we compute by expanding in a particular basis and solving the Schrödinger

equation. In practice, we use a truncated model space to compute our observables.

By expanding the model space and repeating the calculations we can examine the

convergence behaviour. The quality of convergence can be used to characterise the

theoretical errors of our calculations.

For A = 3,4 nuclei, the No Core Shell Model (NCSM) has been used to calcu-

late some of the observables we are looking at [10]. The standard NCSM is based

on a harmonic oscillator basis, which has a Gaussian tail, and thus it is hard for

this method to converge rapidly for nuclei with long tails, like halo nuclei. We are

interested in computing observables for A = 6,7 nuclei including the halo nucleus
6He, so we use a basis built on the hyperspherical harmonic basis which has the

correct exponential asymptotic behaviour built in.

3.1 Hyperspherical Basis
The Hyperspherical formalism is based on a generalization of the standard solu-

tion to the two-body problemin which you you move to the center of mass frame

and consider a single body with relative coordinates and reduces mass. The hy-

12



perspherical coordinates are built up from the Jacobi coordinates(see section B.1),

which remove the centre of mass motion and consider A−1 radial coordinates with

2(A− 1) corresponding polar angles. Using the radial Jacobi coordinates ηi, we

construct a hyper-radial coordinate ρ related to the “size” of the system:

ρk
2 =

k

∑
i=1

ηi
2 =

1
k

k+1

∑
i< j

(ri− r j)
2 .

and through a recursive process generate A−2 hyper-angles ϕi, which correspond

to polar angles in and abstract 3(A−1) dimensional space.

By transforming the Laplace operator into hyperspherical coordinates we find

∆ =
∂ 2

∂ρ2 +
3(A−1)−1

ρ

∂

∂ρ
− 1

ρ2 K̂2,

where K̂ is an operator that depends on the angles and hyper-angles but not the

hyper-radius. One interprets K̂ to be a generalization of the angular momentum

operator l̂, and we refer to khat as the grandangular momentum operator. More

details are provided in Appendix B.

Using these coordinates, we can construct the hyperspherical basis Rν(ρ)HK(Ω),

where HK(Ω) is made by the eigenstates of K̂2, called the hyperspherical harmon-

ics. The HK(Ω) must be constructed to be antisymmetric since we are working

with fermions.

3.2 Evaluation of Matrix elements
One of the advantages of using an antisymmetrized hyperspherical basis is the way

we can simplify matrix elements. With any totally antisymmetrized states |ψ〉, |ψ ′〉
and a one-body operator O(1) = ∑

A
i=1 Oi, we can reduce the matrix element to that

of an operator that acts on only one particle:

〈ψ|O(1) |ψ〉= A〈ψ|OA |ψ〉 .
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Similarly, for a two-body operator O(2) =∑
A
i< j Oi j, we can write the matrix element

as
〈ψ|O(2)

∣∣ψ ′〉= A(A−1)
2

〈ψ|OA,A−1
∣∣ψ ′〉 .

In the case of one-body operators, we note that when we use Jacobi coordinates,

that last coordinate ηA−1 is proportional to the position of the last particle with

respect to the centre of mass of the system:

ηA−1 =

√
A

A−1
r′A.

And in fact the last Jacobi coordinate is also proportional to the hyper-radius ρ:

ηA−1 = ρ sinϕA−1.

If we have the matrix element of a one body operator O(1), we can write it in terms

of an operator that acts only on the last particle, and so in terms of the magnitude,

direction, and spin-isospin components of the last particle coordinates:

〈ψ|O(1) |ψ〉= A〈ψ|OA |ψ〉= A〈ψ|O(r′A, r̂
′
A,σA,τA)

∣∣ψ ′〉 ,
where now we can replace r′A above with

√
A−1

A ρA−1 sin(ϕA−1).

The spin-angular and isospin portions of the matrix element can now be calcu-

lated analytically using standard angular momentum methods. The hyper-angular

and hyper-radial portions of the matrix element are reduced to two one-dimensional

integrals since the wavefunction |ψ〉 and |ψ ′〉 are both expanded in terms of the hy-

perspherical basis, which are products of hyper-radial and hyper-angular functions.

The details of these final integrals are left out and can be found in [20] and [19].

In practice, we have used Gaussian Quadrature to compute these integrals numeri-

cally.

Now let us consider two-body operators. We can write two-body matrix ele-

ments in terms of the last two particles matrix elements only,

〈ψ|O(2)
∣∣ψ ′〉= A(A−1)

2
〈ψ|OA,A−1

∣∣ψ ′〉 .
14



If our operator only cares about the particle relative position and spin-isospin (for

example, a central potential), then

A(A−1)
2

〈ψ|OA,A−1
∣∣ψ ′〉= A(A−1)

2
〈ψ|O(r′A− r′A−1,σA,σA−1,τA,τA−1)

∣∣ψ ′〉 .
Then we can use the reverse-choice for our Jacobi coordinates, i.e. we choose the

last Jacobi coordinate ηA−1 as pointing between the last two particles,

ηA−1 =

√
1
2
(r′A− r′A−1),

then ηA−2 points between the third-to-last particle and the centre of mass of the

last two, and so on. Then we have:

〈ψ|O(2)
∣∣ψ ′〉= A(A−1)

2
〈ψ|O(

√
2ρA−1 sin(ϕA−1, η̂A−1,σA,σA−1,τA,τA−1)

∣∣ψ ′〉 .
Using very similar ideas to those in the previous section, we can write the ma-

trix element as a sum of products of hyper-radial/hyper-angular, spin-angular and

isospin parts. The later two are again calculable analytically, while the former is

again reduced to two one-dimensional integrals which can be computed numeri-

cally.

3.3 The Lanczos Algorithm
The Lanczos algorithm is used to tridiagonalize matrices, i.e. to convert them to

the following form:

H =



a0 b1 0 0 . . .

b1 a1 b2 0 . . .

0 b2 a2 b3
. . .

0 0 b3 a3
. . .

...
...

. . . . . . . . .


by recursively generating an orthonormal set of vectors {|φi〉}.

Tridiagonalization routines are commonly used to simplify hermitian matrices

because there are very efficient algorithms for computing eigenvalues and eigen-
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vectors of tridiagonal matrices. The Lanczos algorithm in particular has the prop-

erty that even when applied to a truncated linear operator on an infinite dimensional

Hilbert space, the eigenvalues of the resulting finite matrix approach the eigenval-

ues of the original operator. This makes it a useful tool for tridiagonalizing the

Hamiltonian and computing the ground state energy in a truncated model space.

In addition to this useful feature, we have a simple recursive expression for the

determinant of a tridagonal matrix:

det(H) = a0det[H]{2,...,n}−b2
1det[H]{3,...,n} (3.1)

where [H]2,··· ,n is the matrix made from the 2nd to nth columns and rows of H. This

property will be used in section 3.4.1 to derive the closed form expression for the

polarizability sum rule.

To formulate the algorithm, suppose we start with a matrix H. First, a vector

of unit length must be chosen for |φ0〉. In general one can try to choose a starting

vector in such a way as to optimize convergence, but in our case we make a par-

ticular choice of |φ0〉 for analytic reasons which will be described in the following

sections. Once |φ0〉 is selected, the others are calculated recursively by

bi+1 |φi+1〉= H |φi〉−ai |φi〉−bi |φi−1〉 . (3.2)

where

|φ−1〉= 0,
〈
φi|φ j

〉
= δi j,

a0 = 〈φ0|H |φ0〉 ,b0 = 0.

We can see from (3.2) that

〈
φ j
∣∣H |φi〉=

〈
φ j
∣∣(bi+1 |φi+1〉+ai |φi〉+bi |φi−1〉) =



bi j = i−1

ai j = i

bi+1 j = i+1

0 otherwise

and thus, in the basis formed by the Lanczos vectors, H is tridiagonal with coeffi-
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cients ai and bi (called Lanczos coefficients).

3.4 Implementation
Given the form of the sum rules derived above, we see that there are three funda-

mental computational tasks which must be performed to calculate them. The first

is calculation of the nuclear ground state |0〉, which entails solving the Schrödinger

equation and requires calculating matrix elements of the form

HKK′νν ′ = 〈K| 〈ν |H
∣∣K′〉∣∣ν ′〉 ,

where here we identify |K〉, |ν〉 with the hyper-angular-spin-isospin and hyper-

radial parts of the hyperspherical harmonic basis states, respectively.

As is the case with most algorithms for solving for eigenvalues and eigenvec-

tors of hermitian matrices, the Hamiltonian is first trigiagonalized, for which the

Lanczos algorithm is used.

The number of matrix elements that need to be calculated can be limited by

choosing only those basis states which share quantum numbers with the states of

interest. In particular, for the ground state we only compute matrix elements for

basis states with total angular momentum, isospin, and isospin projection (J,T,Tz)

equal to that of the ground state. The hyperspherical harmonics are all character-

ized by a grandangular moment quantum number K. We control the size of our

model space by generating all states with the correct J,T,Tz quantum numbers and

K less than or equal to some maximum number Kmax. Then, by increasing Kmax,

we can assess the truncation error of our calculations.

We also have to multiply the Hamiltonian by the Lanczos vectors
∣∣φ i
〉

as part

of the Lanczos algorithm, which corresponds to calculating

φ
n+1
Kν

= ∑
K′ν ′

HKK′νν ′φ
n
K′ν ′−anφKν −bnφ

n−1
Kν

,

where φ n
Kν

= 〈K| 〈ν | |φ n〉. As this computation must be performed for every Lanc-

zos vector (the number of which is determined by the number of basis states used),

this is the most computationally intensive part for the larger model spaces. This is

the algorithm that I focused on parallelizing.
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Finally, we also have to compute 〈0|D†
z Dz |0〉. To do this we must expand Dz

|0〉 by generating the basis states with the quantum numbers determined by the

selection rules for Dz, namely ∆J = 1, ∆T = 1, and ∆Tz = 0. So, for the case of
4He, where in the ground state J = 0,T = 0,Tz = 0, we would need to generate

states for Dz |0〉 with quantum numbers J = 1,T = 1,Tz = 0.

In general there will be multiple transition channels. In particular for the case

of 6He we have for the ground state (J = 0,T = 1,Tz = −1), and so we have two

transition channels (J = 1,T = 1,Tz =−1) and (J = 1,T = 2,Tz =−1). The com-

putations must be performed for each channel and then the results combined to

calculate the sum rules. This is described in more detail in later sections.

These main computational tasks are performed by a code written by Barnea

and Novoselsky (referred to henceforth as the HH code), which computes com-

pletely antisymmetrized hyperspherical basis states and computes Lanczos coeffi-

cients [21, 22]. I wrote a code from scratch that combined these raw elements into

calculated values for the sum rules. The details of this sum rule computation is

presented in the next subsection.

3.4.1 Calculating the Sum Rules

Recall equation (2.5):

Σ
PSR =−G 〈0|

D†
z Dz

E0−H
|0〉 .

We rewrite this as

Σ
PSR =−G 〈0|D†

z Dz |0〉〈φ0|
1

E0−H
|φ0〉 ,

where |φ0〉 = Dz|0〉√
〈0|D†

z Dz|0〉
, which is by construction of unit length. Let |φ0〉 be the

first Lanczos vector, from which the complete set {|φi〉} are recursively defined.

Then define xnm = 〈φn| 1
E0−H |φm〉. Clearly

|φ0〉= (E0−H)
1

E0−H
|φ0〉 .
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which we can write component-wise as

∑
n
(E0−Hmn)xn0 = δm0,

where δi j is the Kronecker delta function. Using Cramer’s Rule for linear systems,

we have

x00 =
det([E0−H]{2,··· ,n})

det(E0−H)
.

By definition, H is tridiagonal in the |φi〉 basis, so clearly E0−H is also tridiagonal.

Thus we can apply the recursive formula for the determinant of a tridiagonal matrix

(3.1), the end result of which (in terms of the Lanczos coefficients ai,bi is

x00 =
1

E0−a0−
b2

1

E0−a1−
b2

2

E0−a2−
b2

3

. . .

.

This continued fraction is very fast to compute given the Lanczos coefficients and

converges quickly with the number of Lanczos coefficients (in practice the first

1000 terms is more than sufficient to converge to machine precision). The Lanczos

coefficients are calculated by the HH code as part of the Lanczos algorithm, and

are then used as an input to my code.

Finally, we have a number for the polarizability sum rule:

Σ
PSR =−G 〈0|D†

z Dz |0〉x00.

In practice, for 6He we have two transition channels which will each produce a

set of Lanczos coefficients. The results is the sum over each channel:

Σ
PSR =−G ∑

T
〈0|D†

z Dz |0〉T xT
00. (3.3)
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For the TRK sum rule we have:

Σ
T RK = G ∑

n
〈0|D†

z |n〉〈n|Dz |0〉(En−E0),

= G ∑
n
〈0|D†

z En |n〉〈n|Dz |0〉−〈0|D†
z |n〉〈n|Dz |0〉E0,

= G
(
〈0|D†

z HDz |0〉−〈0|D†
z Dz |0〉E0

)
,

= G 〈0|D†
z Dz |0〉(〈φ0|H |φ0〉−E0),

= G 〈0|D†
z Dz |0〉(a0−E0).

where |φ0〉 is defined as before. Thus we can calculate ΣT RK using 〈0|D†
z Dz |0〉 and

the first Lanzcos coefficient.

In the case of multiple transitions channels:

Σ
T RK = G ∑

T
〈0|D†

z Dz |0〉T
(
aT

0 −E0
)
. (3.4)

The BSR sum rule is given simply by

Σ
BSR = G 〈0|D†

z Dz |0〉 ,

or

Σ
BSR = G ∑

T
〈0|D†

z Dz |0〉T . (3.5)

in the case of multiple channels.

Equations (3.3), (3.4), (3.5) therefore allow us to compute the sum rules given

the Lanzcos coefficients and the value of 〈0|D†
z Dz |0〉 produced by the HH code.
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Chapter 4

Calculating the Full Continuum
Response

The methods described in the previous chapters used the Lanczos technique to

calculate the moments of the photonuclear cross section without resorting to com-

puting the full continuum response. This response can be computed, however,

using a Lorentz Integral transform method. Since some of these cross sections are

available from previous work [3], it will be interesting to check our results from

the computation of sum rules with the results from direct integration of the cross

section, using the definition of the moments:

mk =
∫

∞

ωth

dωω
k
σ

E1UR
γ (ω).

The Lorentz Integral Transform of the response function (equation (2.3)) is

defined:

L (σ) =
∫

dω
R(ω)

(ω−σR)2 +σ2
I
,

where σ = σR + iσI .
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Plugging in the form of the response, we have:

L (σ) =
∫

dω

∫
dn
|〈n|Dz |0〉|2 δ (En−E0−ω)

(ω−σR)2 +σ2
I

,

=
∫

dω

∫
dn
〈0|D†

z |n〉〈n|Dz |0〉δ (En−E0−ω)

(ω−σR)2 +σ2
I

,

=
∫

dn
〈0|D†

z |n〉〈n|Dz |0〉
(En−E0−σR)2 +σ2

I
.

Now it is useful to expand

(En−E0−σR)
2 +σ

2
I = (En−E0−σR + iσI)(En−E0−σR− iσI),

and, using the fact that En |n〉= H |n〉, we can apply the closure relation to derive:

L (σ) = 〈0|D†
z

(
1

H−E0−σR + iσI

)(
1

H−E0−σR− iσI

)
Dz |0〉 ,

=
1
σI

Im
[
〈0|D†

z

(
H−E0−σR + iσI

H−E0−σR + iσI

)(
1

H−E0−σR− iσI

)
Dz |0〉

]
,

=
1
σI

Im
[
〈0|D†

z

(
1

H−E0−σR− iσI

)
Dz |0〉

]
,

=− 1
σI

Im
[
〈0|D†

z

(
1

E0 +σR + iσI−H

)
Dz |0〉

]
,

=− 1
σI

Im
[
〈0|D†

z

(
1

z−H

)
Dz |0〉

]
.

where z = E0 +σR + iσI .

Now we can apply an argument analagous to section 3.4.1 by setting

|φ0〉=
Dz |0〉√
〈0|D†

z Dz |0〉
,
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so that we can write

L (σ) =− 1
σI
〈0|D†

z Dz |0〉 Im
[
〈φ0|

1
z−H

|φ0〉
]
,

L (σ) =− 1
σI
〈0|D†

z Dz |0〉 Im



1

z−a0−
b2

1

z−a1−
b2

2

z−a2−
b2

3

. . .


.

Where again ai,bi are the Lanczos coefficients.

Inverting the transform L (σ) to obtain R(ω) is a numerical task accomplished

by fitting the transformed response function to an easily transformable ansatz with

many parameters. Thus the full response can be calculated from the same Lanczos

coefficients used in the sum rule computations.

As mentioned above, some cross sections calculated with this method are avail-

able for 6He from [? ]. I have used these cross sections to extract values for the

photonuclear moments by direct integration which can be compared with the sum

rule calculation. The difference between this method and the direct computation

of the sum rules is that one has to go through the inversion procedure, which intro-

duces additional numerical errors.
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Chapter 5

Results

5.1 Testing the Sum Rule Code
To test my sum rule code, I compared results from Gazit et al. [1], which performed

these sum rule calculations for 4He using the AV18-UIX potentials. Their result

at various sizes of model space are shown in Table 5.1, compared to my results

computing the sum rules using the same Lanzcos coefficients. The values agree to

within what can be attributed to machine precision.

As a next step, I calculated the polarizability sum rule for 4He using the same

simple potentials that I would be using for 6He: the Minnesota (MN) [23, 24],

Argonne V4’ (AV4’) [25], and the Malfiet-Tjon I-III (MT13) [26]. The x-axis

denotes the maximum grandangular momentum of the basis states used for the

PSR BSR TRK
Kmax [1] This work [1] This work [1] This work

16 0.06434 0.06434 2.406 2.405 146.0 145.9
18 0.06473 0.06473 2.410 2.409 146.2 146.2

Table 5.1: Previous calculations from Gazit et al. [1] of the sum rules using
the Lanzcos coefficients are compared with our calculations using the
same Lanzcos coefficients to test the validity of the sum rule code. We
compared our results for largest model spaces denoted by Kmax.
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Figure 5.1: Polarizability of 4He computed using different sized model
spaces denoted by maximum grandangular momentum Kmax. The ex-
perimental points were obtained by Compton scattering with experi-
mental error indicated by the shaded regions.

calculation. As discussed in the Chapter 3, the maximum grandangular momentum

is allowed to vary as a way to assess the error due to truncation of our model space.

States with even grandangular momentum K have even parity, so for the ground

state we used even Kmax, which is why points appear on the plot in increments of

two. In fact we are also generating states up to K = Kmax + 1, since the dipole

operator carries odd parity, so the odd Kmax +1 states are needed to expand Dz |0〉.
Thus, I will refer to model space sizes as Kmax = X/X +1 for even X , to reflect the

states used to expand |0〉/Dz |0〉.
The values appear fairly well converged in Kmax. We can estimate the trun-
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Convergence Error
MN 1.0%
AV4’ 0.1%
MT13 1.1%

Table 5.2: Convergence error in the polarizability sum rule for 4He with the
simple potential models. The value is estimated as the percentage change
from the Kmax = 10 to Kmax = 12 model space size.

Theory Experiment
0.06830(8)(14) [10] 0.072(4) [2]
0.0655(4) [1] 0.076(8) [27]
0.0635(4) This work

Table 5.3: Theoretical and experimental results for the polarizability of 4He.
The two other theoretical values were computed using more realistic two-
body potential models and included three-body forces. The experimental
values were obtained through Compton scattering.

cation error by taking the percentage change in the last two points, which we

summarize in Table 5.2. There is clearly a non-negligible potential dependence

in the theoretical results shown in Figure 5.1. For this reason, we take as our best

value the average of the three results in the largest model space, using their stan-

dard deviation as the error. The value is compared with existing theoretical and

experimental results in Table 5.3. Note that the result from [10] and [1] include

realistic two-body forces and three-body forces, whereas ours have neither. These

factors both help the comparison with experiment. The deviation of our calcula-

tions from the experimental data are not large, but they are also not unexpected,

as the semi-realistic potentials used are only expected to reproduce the bulk of the

nuclear dynamics and not the details.

5.2 Parallelization
The version of the HH code I started with was a serial code, only able to run on a

single processor. This is not a problem for the 4He calculations, but the number of
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Figure 5.2: A cartoon of how the matrix elements in a hermitian matrix can
be allocated efficiently between four processors. The colour of each
matrix element corresponds to the processor it is assigned to.

hyperspherical harmonics becomes large when A > 4, meaning calculations take

much longer for 6He. In the interest of saving computation time, I attempted to

parallelize the part of the code which multiplied a Lanczos vector by the Hamil-

tonian matrix (recall equation (3.2)), as this is the most significant bottleneck for

large model spaces1.

The parallel algorithm splits the columns of the Hamiltonian matrix and the

corresponding components of the vector among the processors in an efficient way

and then allows the results to be collected and summed together for the final an-

swer. Since the Hamiltonian is hermitian, only the upper or lower triangular el-

ements needed to be considered, which meant the effective size of each column

was not constant. The simplest method we used was going through the columns in

order while rotating the processor which it would be assigned to. So, for instance,

(with four processors) the nth processor would be assigned all columns numbered

n modulo 4. See Figure 5.2 for a illustration.

The implementation of the parallel algorithm was done using the Message

1Some other parts of the code had already been parallelized.
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Passing Interface (MPI) and run on the TRIUMF Theory Cluster known as cougar2.

An actual speed up of computation time was achieved. The magnitude of the speed

up will depend greatly on the computation that is being done, since certain parts of

the code are parallelized more efficiently than others and the location of the bottle-

neck can depend on the nature of the input. Since the focus of the parallelization

was the Hamiltonian multiplication in the Lanczos Algorithm, the parallel code is

expected to do better with larger Hilbert spaces. For an intermediate sized space

using Kmax = 6/7 (corresponding to a matrix dimension of 104) and the MN poten-

tial, I was able to observe a decrease in time from about 170 minutes to just over

17 minutes when running on 12 processors, leading to a speed up factor of 10.

5.3 Sum Rules
We have calculated all three of the sum rules for 6He using the three semi-realistic

potentials we used for 4He. The results for the TRK, BSR, and Polarizability sum

rules are plotted in Figures 5.3, 5.4, and 5.5 respectively. We identify two sources

of theoretical error, a convergence error and a model dependent error. The con-

vergence error is the error due to the truncation of the model space; we estimate

it as the percentage change between the last two model space sizes. We estimate

the model dependent error as the standard deviation of the values that the three

potential models give for a given sum rule.

The TRK and BSR sum rules appear better converged than the PSR. From a

theoretical point of view, it is interesting to note that the AV4’ potential has the

largest TRK sum rule, meaning it has the largest enhancement factor. The TRK

sum rule is least sensitive of the model dependence, with a spread of about 5.82%.

The BSR sum rules measures the total dipole strength and happens to be bigger as

well for the AV4’. The MT13 is has a more converged value for the BSR sum rule,

but it is also smaller than the other two. The model dependence for the BSR sum

rule is 10.1%.

The PSR presents the weakest convergence pattern. The AV4’ and MN val-

ues are still growing, while only the MT13 shows a decent convergence pattern.

The PSR has the largest model dependence of 31.1%. In fact, we can note that

2http://cougar.triumf.ca
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Figure 5.3: TRK sum rule computations for different sizes of model space
characterized by max grandangular momentum Kmax.

the model dependence in the PSR is much larger than the same sum rule for 4He

using the same potentials. This is consistent with the results from [3] in which

the photoabsoption cross sections were calculated: Since the PSR depends on the

inverse-square energy-weighted integral of the cross section, it is most sensitive to

the low-energy portion of the cross section, in particular the location of the thresh-

old energy (Recall that the threshold energy is the minimum energy required for

photoabsorption). The threshold energy of 4He is about 20 MeV, while the thresh-

old for 6He is only about 1 MeV (since the neutron halo is loosely bound), so 6He

should be much more sensitive to the threshold energy than 4He, which is where

[3] found there to be the largest discrepancy between potentials. The computed

values for the model dependent error and the convergence error are listed in Tables
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Figure 5.4: BSR sum rule computations for different size of model space
characterized by max grandangular momentum Kmax.

MN AV4’ MT13
TRK 4.34% 2.47% 2.66%
BSR 5.27% 8.38% 4.76%
PSR 22.0% 28.3% 13.4%

Table 5.4: Convergence error estimate for sum rules. Computed as the per-
centage change in the value from the second-largest to the largest model
space.
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Figure 5.5: Polarizability sum rule computations for different sizes of model
space characterized by max grandangular momentum Kmax. The exper-
imental point is from Pachucki and Moro [2] using Coulomb breakup,
the shaded region is the experimental error.

5.5 and 5.4 respectively. Note that even though there is non-negligible convergence

error in all the sum rules, this error is still dominated by the model dependent error,

as was the case for 4He.

Different potential models may overbind or underbind the ground states of nu-

clei. We would expect that a potential that overbinds a nucleus would also compute

a polarizability that is too small. In Table 5.6, I have plotted the computed binding

energies using the three different potentials for the Kmax = 12 model space. This

can be compared to the binding energy from the National Nuclear Data Center:

−29.27. I have included the 4He results as well, which can be compared to its
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Mean Spread
TRK 132.3 5.82%
BSR 6.599 10.1%
PSR 0.812 31.1%

Table 5.5: Estimated model-dependent error. Computed as the standard devi-
ation from the mean value among potential models used.

BE (MeV) rrms (fm)
6He

MN -30.50(3) 2.42(7)
AV4’ -32.90(3) 2.38(7)
MT13 -31.81(9) 2.25(2)

4He
MN -23.95(1) 1.410(1)
AV4’ -32.25(36) 1.386(2)
MT13 -30.74(17) 1.422(2)

Table 5.6: Binding energies and root mean square radii for 6He and 4He using
Kmax = 12. The error in the last digit is taken to be the difference between
the Kmax = 12 and Kmax = 10 values.

measured binding energy −28.30. We see that all our potentials overbind 6He.

In fact, our calculated values for the PSR are smaller than the experimental result

provided by Pachucki and Moro [2] determined from Coulomb breakup of 6He on

lead,

5.4 Photoabsorption Cross Section
The 6He photoabsorption cross sections were calculated by Bacca et al. [3] using

the Lorentz Integral Transform technique discussed in chapter 4. The cross section

is only computed up to some finite energy, but the integrals are required to be taken

to infinity to calculate the photonuclear moments. In the case of the PSR, how-

ever, since the cross section is inverse-square energy-weighted, the tail contributes

little to the value of the integral. In fact, attempting to fit the tail to a reasonable
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Figure 5.6: The photoabsorption cross section computed by Bacca et al. [3]
using the AV4’ potential. The inverse-square energy-weighted cross
section is included (scaled to be visible) to show how the lack of data
going to infinity does not effect the value of the PSR. The model space
size used to compute the cross section was Kmax = 12.

ansatz and integrating results in a contribution on the order of 0.01%, which is

significantly smaller than both the convergence and model dependent error. Fig-

ure 5.6 shows the computed cross section from [3] compared to the inverse-square

energy-weighted cross section, which has been scaled to appear in the Figure.

We can use the integral of the computed cross section as another test of the

sum rule computations. Since the cross section was computed with AV4’ and us-

ing Kmax = 12, we can compare the integral of the inverse-square energy-weighted

cross section to the sum rule calculation using the same potential and model space

33



Integral Sum Rule
0.946 0.951

Table 5.7: PSR of 6He calculated by integrating the cross section compared
to sum rule approach.

size. This is summarized in Table 5.7. The only difference between the calcula-

tion of the cross section and the integral are the fact that the integral introduces

numerical errors due to the inversion procedure which are avoided in the sum rule

calculation. Thus, we can attribute a small discrepancy between these two values

as due to this numerical error.

5.5 Conclusions
In this work, I present the first ab-initio calculation of the polarizability sum rule

for 6He. The calculation is performed with simple potentials as a starting point.

This lays the groundwork for future, more sophisticated calculations.

The truncation of the Hilbert space still plays a large role in our computed

results for the 6He sum rules, i.e., the calculations are not fully converged. Evi-

dently the dipole operator couples more strongly to high grandangular momenta

of 6He than 4He. The values may now be beginning to converge, however, and

perhaps K = 14 or K = 16 states will show reasonable convergence. These much

larger Hilbert spaces can be achieved using our parallel code, but we were unable

to complete the calculations due to lack of time. Certainly a proper truncation of

the hyperspherical harmonics negligible symmetries to reduce the number of states

will have to be used.
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Appendix A

Complete Derivations of Sum
Rule Formulas

I have attempted to provide convincing derivations of all of the sum rules formulas

that were cited in this work.
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A.1 Thomas-Reiche-Kuhn Sum Rule

A.1.1

Σ
T RK = G ∑

n
|〈n|Dz |0〉|2 (En−E0) ,

= G ∑
n
〈0|Dz |n〉〈n|Dz |0〉(En−E0) ,

= G ∑
n
〈0|Dz |n〉(En−E0)〈n|Dz |0〉 ,

= G ∑
n

1
2
〈0|Dz |n〉(En−E0)〈n|Dz |0〉−

1
2
〈0|Dz |n〉(E0−En)〈n|Dz |0〉 ,

= G ∑
n

1
2
(〈0|Dz |n〉〈n|(EnDz−DzE0) |0〉−〈0|(E0Dz−DzEn) |n〉〈n|Dz |0〉) ,

= G ∑
n

1
2
(〈0|Dz |n〉〈n|(HDz−DzH) |0〉−〈0|(HDz−DzH) |n〉〈n|Dz |0〉) ,

= G ∑
n

1
2
(〈0|Dz |n〉〈n| [H,Dz] |0〉−〈0| [H,Dz] |n〉〈n|Dz |0〉) ,

=
G

2
(〈0|Dz [H,Dz] |0〉−〈0| [H,Dz]Dz |0〉) ,

=
G

2
〈0| [Dz, [H,Dz]] |0〉 .

A.1.2

We can split the Haniltonian into a kinetic and potential energy part H = T +V :

G

2
〈0| [Dz, [H,Dz]] |0〉=

G

2
(〈0| [Dz, [T,Dz]] |0〉+ 〈0| [Dz, [V,Dz]] |0〉) ,

where T is the kinetic energy and V is the potential.

We can further simplify the kinetic energy part by actually calculating the com-

mutators. Two possible choices of coordinates in which the dipole is easy to define

are the lab frame and the centre-of-mass frame.
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Using lab-frame coordinaties

PCM =
A

∑
i=1

pi,

RCM =
1
A

A

∑
i=1

ri,

[PCM,RCM] =−ih̄,

[pi,RCM] =
1
A

A

∑
j=1

[pi,r j] =
−ih̄
A

,

[PCM,ri] =
A

∑
j=1

[
p j,ri

]
=−ih̄,

Tint = Tlab−TCM =
1

2m

(
A

∑
i=1

p2
i −

1
A

P2
CM

)
,

Dz =
A

∑
i=1

(ri−RCM)qi =
A

∑
i=1

riqi−ZRCM.

First calculate [T,Dz].

[T,Dz] =
1

2m

[
A

∑
i=1

p2
i −

1
A

P2
CM,

A

∑
j=1

r jq j−ZRCM

]
,

=
1

2m

(
A

∑
i=1

A

∑
j=1

[
p2

i ,r jq j
]
−

A

∑
i=1

[
p2

i ,ZRCM
]
−

A

∑
j=1

[
1
A

P2
CM,r jq j

]
+

[
1
A

P2
CM,ZRCM

])
,

=
1

2m

(
A

∑
i=1

A

∑
j=1

(pi [pi,r j]q j +[pi,r j]piq j)−
A

∑
i=1

2Z [pi,RCM]pi−
A

∑
j=1

2
A
[PCM,r j]PCM +

2Z
A

[PCM,RCM]PCM

)
,

=
−ih̄
m

(
A

∑
i=1

piqi−
A

∑
i=1

Z
A

pi−
A

∑
j=1

1
A

PCMq j +
Z
A

PCM

)
,

=
−ih̄
m

(
A

∑
i=1

(
qi−

Z
A

)
pi−

Z
A

PCM +
Z
A

PCM

)
,

=
−ih̄
m

A

∑
i=1

(
qi−

Z
A

)
,pi
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Now calculate [Dz, [T,Dz]].

[Dz, [T,D]] =
−ih̄
m

[
A

∑
i=1

riqi−ZRCM,
A

∑
j=1

(
q j−

Z
A

)
p j

]
,

=
−ih̄
m

(
A

∑
i=1

A

∑
j=1

[
riqi,

(
q j−

Z
A

)
p j

]
−

A

∑
j=1

[
ZRCM,

(
q j−

Z
A

)
p j

])
,

=
−ih̄
m

(
A

∑
i=1

A

∑
j=1

qi

(
q j−

Z
A

)[
ri,p j

]
−

A

∑
j=1

Z
(

q j−
Z
A

)[
RCM,p j

])
,

=
h̄2

m

(
A

∑
i=1

(
q2

i −qi
Z
A

)
−

A

∑
j=1

Z
(

q j−
Z
A

)
1
A

)
,

=
h̄2

m

(
Z− Z2

A
−
(

Z2

A
− Z2

A

))
,

=
h̄2

m

(
Z(Z +N)

A
− Z2

A

)
,

=
h̄2

m
ZN
A

.

Then we have:

Σ
T RK =

G

2
〈0| [Dz, [H,Dz]] |0〉 ,

=
G

2
h̄2

m
ZN
A

(
1+κ

T RK) ,
where

κ
T RK =

mA
h̄2NZ

〈0| [Dz, [V,Dz]] |0〉 .
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Using centre-of-mass frame coordinates

First we have to derive the commutators. As before we have:

PCM =
A

∑
i=1

pi,

RCM =
1
A

A

∑
i=1

ri,

[pi,RCM] =
1
A

A

∑
j=1

[pi,r j] =
−ih̄
A

,

[PCM,ri] =
A

∑
j=1

[
p j,ri

]
=−ih̄,

[PCM,RCM] =−ih̄,

Now we define the centre-of-mass frame coordinates:

r′i = ri−RCM,

p′i = pi−PCM.

Thus the commutators are:

[
p′i,r

′
j
]
=

[
pi−

1
A

PCM,r j−RCM

]
,

= [pi,r j]− [pi,RCM]− 1
A
[PCM,r j]

1
A
[PCM,RCM] ,

= δi j(−ih̄)− 1
A
(−ih̄)− 1

A
(−ih̄)+

1
A
(−ih̄),

=

(
δi j−

1
A

)
(−ih̄),[

PCM,r′i
]
= [PCM,ri−RCM] = (−ih̄)− (−ih̄) = 0,[

p′i,RCM
]
=

[
pi−

1
A

PCM,RCM

]
=

1
A
(−ih̄)− 1

A
(−ih̄) = 0.
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Now we observe that in these coordinates:

Tint =
1

2m

A

∑
i=1

p′2i ,

Dz =
A

∑
i=1

qir′i.

We precede thus:

[T,Dz] =
1

2m

A

∑
i=1

A

∑
j=1

[
p′2i ,r

′
jq j

]
,

=
1

2m

A

∑
i=1

A

∑
j=1

(
p′i
[
p′i,r

′
j
]

q j +
[
p′i,r

′
j
]

q j
)
),

=
−ih̄
m

A

∑
i=1

A

∑
j=1

(
δi j−

1
A

)
p′iq j,

=
−h̄
m

(
A

∑
i=1

p′iqi−
A

∑
i=1

A

∑
j=1

1
A

p′iq j

)
,

=
−ih̄
m

A

∑
i=1

(
qi−

Z
A

)
p′i.
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Then we can calculate:

[Dz, [T,Dz]] =
−ih̄
m

A

∑
i=1

A

∑
j=1

[
qir′i,

(
q j−

Z
A

)
p′i

]
,

=
−ih̄
m

A

∑
i=1

A

∑
j=1

qi

(
q j−

Z
A

)[
r′i,p′i

]
,

=
h̄2

m

A

∑
i=1

A

∑
j=1

qi

(
q j−

Z
A

)(
δi j−

1
A

)
,

=
h̄2

m

(
A

∑
i=1

q2
i −

Z
A

qi−
A

∑
i=1

A

∑
j=1

qi

(
q j−

Z
A

)
1
A

)
,

=
h̄2

m

(
Z− Z

A
−
(

Z2

A
− Z2

A

))
,

=
h̄2

m

(
Z(Z +N)

A
− Z2

A

)
,

=
h̄2

m
NZ
A

.

And so, as before:

Σ
T RK =

G

2
〈0| [Dz, [H,Dz]] |0〉 ,

=
G

2
h̄2

m
ZN
A

(
1+κ

T RK) ,
where

κ
T RK =

mA
h̄2NZ

〈0| [Dz, [V,Dz]] |0〉 .
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A.2 Bremstrahlung Sum Rule

A.2.1

Σ
BSR = G ∑

n
| 〈n|Dz |0〉 |2,

= G ∑
n
〈0|Dz |n〉〈n|Dz |0〉 ,

= G 〈0|Dz ∑
n
|n〉〈n|Dz |0〉 ,

= G 〈0|D†
z Dz |0〉 .

A.2.2

We can re-write the dipole operator in terms of RPN , the distance between the

proton and neutron centres of mass:

Dz =
1
2

A

∑
i=1

τ
z
i r′i,

=
1
2

(
N +Z

A

) A

∑
i=1

τ
z
i r′i,

=
1
2

NZ
A

(
1
Z
+

1
N

) A

∑
i=1

τ
z
i r′i,

=
NZ
A

(
1
Z

A

∑
i=1

τ
z
i r′i
2

+
1
N

A

∑
i=1

τ
z
i r′i
2

)
,

=
NZ
A

(
1
Z

A

∑
i=1

(1+ τ
z
i )

2
r′i−

1
N

A

∑
i=1

(1− τ
z
i )

2
r′i

)
, 1

=
NZ
A

(RPCM−RNCM) =
NZ
A

RPN .

45



Now we can re-wrtie the BSR sum:

Σ
BSR = G 〈0|D†

z Dz |0〉 ,

= G

(
NZ
A

)2 〈
R2

PN
〉
.

A.2.3

Considering that we can also write the dipole operator as a sum over only the proton

coordinates: Dz = ∑
Z
i=1 r′i, we can derive the following relation:

D†
z Dz =

Z

∑
i, j=1

r′i · r′ j,

=
1
2

(
r′2i + r′2j −

(
r′i− r′ j

)2
)
,

=
1
2
(2Z)

Z

∑
i=1

r′2i −
1
2

Z

∑
i, j=1

(
r′i− r′ j

)2
,

= Z2 〈r2
p
〉
− Z(Z−1)

2
〈
r2

pp
〉
,

where r2
p and r2

pp are the mean-square proton radius and the mean square proton-

proton distance respectively, defined as:

r2
p =

1
Z

Z

∑
i=1

r′2i ,

r2
pp =

1
Z(Z−1)

Z

∑
i, j=1

(
r′i− r′ j

)2
.

Then the BSR sum rule becomes:

Σ
BSR = G

(
Z2 〈r2

p
〉
− Z(Z−1)

2
〈
r2

pp
〉)

.

1Recal that since r′i are the centre of mass coordinates, their sum over all particles is zero. Thus
we can add arbitrary constant terms into the sum over r′i’s
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A.2.4

Observe that since we’re in the centre of mass, we can also re-write the dipole

operator as Dz =−∑
A
i=1 (1−qi)r′i =−∑

N
i=1 r′i. But then we have that

D†
z Dz =

N

∑
i, j=1

r′i · r′ j,

which has the same form as the previous derivation only now we are summing over

neturons instead of protons. Thus we can immediatley derive:

Σ
BSR = G

(
N2 〈r2

n
〉
− N(N−1)

2
〈
r2

nn
〉)

,

where r2
n and r2

nn are defined similarly as for protons.

A.2.5

We can also consider the following form for D†
z Dz:

D†
z Dz =

A

∑
i, j=1

τ
z
i τ

z
jr
′
i · r′ j

4
.

We can split this sum into proton-proton, neutron-neutron, and proton-neutron

pairs:

D†
z Dz =

1
4

Z

∑
i, j=1

r′i · r′ j +
1
4

N

∑
i, j=1

r′i · r′ j−
1
4

2
Z

∑
i=1

N

∑
i=1

r′i · r′ j,

where we introduce a factor of 2 in the third term because the original sum would

double-count each pair. We see that the first two terms, from previous analysis, are

multiples of the dipole square-norm:

D†
z Dz =

1
4

D†
z Dz +

1
4

D†
z Dz−

1
4

2
Z

∑
i=1

N

∑
i=1

r′i · r′ j.
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Thus, we can regroup terms and proceed:

D†
z Dz =−

Z

∑
i=1

N

∑
i=1

r′i · r′ j

=−1
2

(
Z

∑
i=1

N

∑
i=1

r′2i + r′2j −
Z

∑
i=1

N

∑
i=1

(
r′i− r′ j

)2

)
,

=
1
2
(
NZr2

pn−NZr2
p−NZr2

n
)
,

=
NZ
2
(
r2

pn− r2
p− r2

n
)
,

where r2
pn is the mean-square proton-neutron distance:

1
NZ

Z

∑
i=1

N

∑
i=1

(
r′i− r′ j

)2
.

So then the BSR sum rule can be written:

Σ
BSR = G

NZ
2
(〈

r2
pn
〉
−
〈
r2

p
〉
−
〈
r2

n
〉)

.

A.2.6

We can observe that the dipole magnitude is proportional to the magnitude of the

proton centre of mass.

D†
z Dz =

Z

∑
i, j=1

r′i · r′ j,

= Z2

(
1

Z2

Z

∑
i, j=1

r′i · r′ j

)
,

= Z2R2
p.
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Then we can see that:

D†
z Dz =

Z

∑
i, j=1

r′i · r′ j,

= 2
Z

∑
i=1

r′i
Z

∑
i=1

r′ j−Z2Rp,

= 2Z
Z

∑
i=1

r′iRp−Z
Z

∑
i=1

R2
p,

=−Z
Z

∑
i=1

(
r′2i − r′2i −2r′iRp +R2

p

)
,

= Z
Z

∑
i=1

(
r′2i −

(
r′i−Rp

)2
)
,

= Z2r2
p−Z2r′2p ,

where r′2p is the mean square distrance between protons and the proton centre of

mass:

r′2p =
1
Z

Z

∑
i=1

(
r′i−Rp

)2
.

This gives us another expression for the BSR sum rule:

Σ
BSR = G

(
Z2 〈r2

p
〉
−Z2 〈r′2p 〉) .
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A.3 Polarizability Sum Rule

A.3.1

Σ
PSR =

∫
∞

ωth

dωG
R(ω)

ω
,

=
∫

∞

ωth

dω
G

ω
∑
n
|〈n|Dz |0〉|2 δ (En−E0−ω),

= G ∑
n

〈0|D†
z |n〉〈n|Dz |0〉
En−E0

,

= G ∑
n

〈0|D†
z |n〉〈n|Dz |0〉
H−E0

,

= G 〈0|
D†

z Dz

H−E0
|0〉 ,

=−G 〈0|
D†

z Dz

E0−H
|0〉 .

50



Appendix B

Hyperspherical Formalism

Here I have presented some more details about the hyperspherical formalism. The

main ideas are sketched, while the more technical derivations are left out.

B.1 Jacobi Coordinates
The hyperspherical coordinates are recursively defined in terms of a set of Jacobi

coordinates. Jacobi coordinates are an extension of the technique used in the two-

body problem with a central potential where the center of mass motion is ignored

and the relative position vector between the two masses is imagined as the position

vector of a single pseudo-particle.

The Jacobi coordinates for a two body system are the magnitude and two angles

associated with the vector from the regular two-body problem. In a four-body

system, we first pick two particles and their relative position vector as before. Next

we take the position vector of the third particle with respect to the centre of mass

of the first two, and then the relative position of the fourth particle with respect to

the centre of mass of the first three. This is illustrated in Figure B.1

We continue this process up to A particles, thus defining A− 1 lengths and

2(A− 1) angles. These are the Jacobi coordinates of the system. It’s easy to see

that for A identical mass particles with positions rk in the lab frame, the kth Jacobi
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Figure B.1: The (unnormalized) Jacobi coordinates for four particles. The η̃ i
vectors point along the direction of the normalized η i given by equation
(B.1).

coordinate is defined:

ηk =

√
k

k+1

(
rk+1−

1
k

k

∑
i=1

ri

)
k = 1, ...,A−1. (B.1)

B.2 Hyperspherical Coordinates and the Laplace
Operator

Suppose we have a set of A− 1 Jacobi coordinates {ηk} with magnitudes ηk and

angular parts η̂k. Then we define the first hyper-radial coordinate ρ1 = η1 and the

kth hyper-radial coordinate is defined such that:

ρk
2 =

k

∑
i=1

ηi
2 =

1
k

k+1

∑
i< j

(ri− r j)
2 . (B.2)
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Figure B.2: Geometric interpretation of the recursive generation of hyper-
spherical coordinates

The the kth hyperangle is defined such that:

ρk−1 = ρk cos(ϕk),

ηk = ρk sin(ϕk).

We can visualize this geometrically (as shown in Figure B.2) by placing the pre-

vious hyper-radius and the next Jacobi coordinate on a plane at right angles. Then

the magnitude of their difference is the next hyper radius, and the angle between

the hyper-radii is the next hyper-angle.

One can show that, if dη̂1 and dη̂2 are the volume elements of the angular parts

of the first two Jacobi coordinates in a three-body problem, then the total volume

element in the hyperspherical coordinates for the three-body problem is

dV6 = ρ2
5dρ2 sin2(ϕ2)cos2(ϕ2)dϕ2dη̂1dη̂2 ≡ ρ2

5dρ2dS5,

and then the A body volume element can be defined recursively:

dV3(A−1)= ρA−1
3A−4dρA−1dS3A−4≡ ρA−1

3A−4dρA−1 sin2(ϕA−1)cos3A−7(ϕA−1)dϕA−1dη̂A−1dS3A−7.

Note that the volume element only depends on the last hyper-radial coordinate and

all the angles, but not on any lower-order radial coordinates. As we will see, this is

a useful property for evaluating matrix elements in hyperspherical coordinates.

53



As we can see from (B.2), the hyper-radial coordinate does not depend on

which Jacobi coordinates are used and is symmetric under the permutation of par-

ticle positions. The whole A body system can thus be described by the centre of

mass motion plus one hyper-radial coordinate ρA, A−2 hyper-angular coordinates

ϕ(A−1) = {ϕ2, ...ϕA−1}, and 2(A−1) angular coordinates Ω(A−1) = {η̂1, ..., η̂A−1}.
(Note that the angular and hyper-angular coordinates do depend on the choice of

Jaboci coordinates).

Since it appears in the Schödinger equation, we must derive the Laplace opera-

tor in hyperspherical coordinates. Recall that for a two-body system, we can write

the Laplace operator as

∆(1) = ∆η1−
1

η12 l̂2
1 ,

where

∆η1 =
∂ 2

∂η12 +
2

η1

∂

∂η1
,

and l̂1 is the relative angular momentum operator. We can easily see that for the

three-body problem expressed with two Jacobi coordinates, the Laplace operator

becomes

∆(2) = ∆η1 +∆η2−
1

η12 l̂2
1 −

1
η22 l̂2

2 .

If we apply the transformation into hyperspherical coordinates directly, we find that

we can split the Laplace operator into a term that depends only on the hyper-radial

coordinate, and an angular term:

∆(2) = ∆ρ2−
1

ρ22 K̂2
2 ,

where

∆ρ2 =
∂ 2

∂ρ22 +
5
ρ2

∂

∂ρ2
,

and

K̂2
2 =− ∂ 2

∂ϕ22 −4cot(2ϕ)
∂

∂ϕ2
+

1
cos2(ϕ2)

l̂2
1 +

1
sin2(ϕ2)

l̂2
2 .

We want to recursively define ∆ρA−1 and 1
ρA−12 K̂2

A−1 to be the radial and angular part
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of ∆(A−1). To do this we first observe that

∆(A−1) ≡ ∆ρA−1−
1

ρA−12 K̂2
A−1, (B.3)

= ∆ρA−2−
1

ρA−22 K̂2
A−2 +∆ηA−1−

1
ηA−12 l̂2

A−1. (B.4)

Then we transform ρA−2 and ηA−1 into ρA−1 and ϕA−1. Equating (B.3) and (B.4)

gives:

∆ρA−1 =
∂ 2

∂ρA−12 +
3(A−1)−1

ρA−1

∂

∂ρA−1
,

and

K̂2
A−1 =−

∂ 2

∂ϕA−12 +
3A−9− (3A−5)cos(2ϕA−1)

sin(2ϕA−1)

∂

∂ϕA−1
+

l̂2
A−1

sin2
ϕA−1

+
K̂2

A−2

cos2 ϕA−1
.

Defining L̂A−1 = L̂A−2+ l̂A−1 as the total internal angular momentum of the A-body

system, one can show that the operators

K̂A−1 = {K̂2
A−1, ..., K̂

2
2 , L̂

2
A−1, ..., L̂

2
2, l̂

2
A−1, ..., l̂

2
1 , L̂

z
A−1}

all commute with each other and thus a hyperspherical state can be described by

the associated eigenvalues.

B.3 Hyperspherical Harmonics
One can see that the hyperpherical harmonics are an extension of the spherical

harmonics in a multidimensional space. In 3-dimensional space, we consider the

eigenfunctions of the l̂ operator, known as the spherical harmoics. We can ask

what the 3(A− 1) dimensional analogue of the spherical harmonics are, namely,

the hyperspherical harmonics. We note that K̂1 = {l̂2
1 , l̂

z}. Thus, by definition,

the eigenfunctions of K̂1 are the spherical harmonics. We then ask that the hyper-

spherical harmonics of order A−1 be the eigenfunctions of K̂A−1.

We can construct such eigenfunctions recursively using the spherical harmon-

ics. First consider the base case: K̂2 = {K̂2
2 , L̂

2
2, L̂

z
2, l̂

2
1 , l̂

2
2}. We can construct an

eigenfunction of {L̂2
2, L̂

z
2, l̂

2
1 , l̂

2
2} by standard angular momentum coupling (for any
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operator Q̂, Q refers to the corresponding quantum number):

ΦL2M2;l1l2
(
Ω(2)

)
= ∑

m1,m2
CL2M2

l1m1l2m2
Yl1m1(η̂1)Yl2m2(η̂2)

Where Ylm refers to the spherical harmonic with angular momentum l and projec-

tion z and CL2M2
l1m1l2m2

are the Clebsch-Gordan Coefficients [18].

The eigenfunctions of K̂2
2 (with eigenvalues K2(K2+4), K2 ≥ l1+ l2) are given

by [20]:

ψK2;l1l2 (ϕ2) = N (K2, l1, l2)(cos(ϕ2))
l1 (sin(ϕ2))

l2 P(l2+ 1
2 ,l1+

1
2 )

n2 cos(2ϕ2),

where P(l2+ 1
2 ,l1+

1
2 )

n2 is a Jacobi polynomial, n2 =
K2−l1−l2

2 , and

N2(K2, l1, l2) =

√
(2K2 +4)n2!Γ(n2 + l1 + l2 +2)

Γ(n2 + l2 + 3
2)Γ(n2 + l1 + 3

2)
.

Then, since K̂2 all commute, we construct the hyperspherical harmonic

YK2(Ω(2),ϕ(2)) = ψK2;l1l2 (ϕ2)ΦL2M2;l1l2
(
Ω(2)

)
,

where KA−1 are the set {KA−1, ...,K2,LA−1, ...,L2, lA−1, ..., l1,MA−1} of quantum

numbers associtated with K̂A−1.

We recall that since K1 = {l1,m1}, YK1 =Yl1m1 . We can now define a recursive

procedure to construct higher order hyperspherical harmonics. Given YKA−2 we

construct YKA−1 by first coupling YlA−1mA−1 to YKA−2 :

ΦLA1 MA−1;KA−2lA−1

(
Ω(A−1)

)
= ∑

MA−2,mA−1

CLA−1MA−1
lA2 mA−2lA−1mA−1

YKA−2(Ω(A−2),ϕA−2)YlA−1mA−1(η̂A−1).

Then we construct the eigenfunction of K̂2
A−1 with eigenvalue KA−1(KA−1+3A−5)

[20]

ψKA−1;l1KA−1 (ϕA−1)=N (KA−1, l1,KA−2)(cos(ϕA−1))
KA−2 (sin(ϕA−1))

lA−1 P(lA−1+
1
2 ,KA−2+

1
2 )

nA−1 cos(2ϕA−1),
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where nA−1 =
KA−1−KA−2−lA−1

2 and

NA−1(KA−1, l1,KA−2) =

√
(2KA−1 +3A−5)nA−1!Γ(nA−1 +KA−2 + lA−1 +

3A−5
2 )

Γ(nA−1 + lA−1 +
3
2)Γ(nA−1 +KA−2 +

3A−6
2 )

.

And finally, since all of K̂A−1 commute, we can construct the (A− 1)th order hy-

perspherical harmonic

YKA−1

(
Ω(A−1),ϕ(A−1)

)
=ψKA−1;lA−1KA−2

(
ϕ(A−1)

)
ΦLA−1MA−1 ;KA−2lA−1

(
Ω(A−1),ϕ(A−2)

)
.

(B.5)

Thus defined, the hyperspherical harmonics form an orthonaromal set of eigen-

functions on the hypersphere satisfying〈
YKN |YK ′

N

〉
= δKN ,K ′

N
.

B.4 Hyperspherical Basis
The hyperspherical harmonics as constructed above have no particular symmetry

under particle permutation. One must construct completely antisymmetrized hy-

perspherical harmonics when dealing with fermions. The more difficult problem

of generating anti-symmetrized hyperspherical harmonics is solved in [21, 22].

With anti-symmetrized harmonics, we can build the basis:

|K〉 |ν〉 ≡ Rν(ρ)HK(Ω,s1, · · · ,sA, t1, · · · , tA), labelbasis (B.6)

where HK is a hyperspherical harmonic and spin-isospin state which is totally an-

tisymmetrized, K is a set of quantum numbers including a grandangular momen-

tum, total angular momentum L with projection M, total spin/isospin S/T with

projection Sz/Tz, as well as those related to permuational symmetry [20]. The

hyper-radial part of the wave function (depending on ρ) needs to be expanded in a

hyper-radial basis:

ψ(ρ) = ∑
ν

Rν(ρ).

The hyper-radial coordinate is a measure of the size of the system and we expect
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the ground state wavefunction to fall off exponentially with hyper-radius, so we

wish to use an expansion of the form

RKν(ρ) = e−aρPν(ρ),

where Pν(ρ) is a polynomial. A natural choice turns out to be the Laguerre Poly-

nomials, because they satisfy the orthogonality relation

∫
∞

0
ρ

αe−ρL(α)
n (ρ)L(α)

m (ρ)dρ =
(n+α)!

n!
δn,m,

and can be defined

L(α)
n (ρ) =

n

∑
i=0

(−1)i
(

n+α

n− i

)
ρ i

i!
.

Then, the wavefunction is expanded

Ψ = ∑
Kν

CKνRν(ρ)HK(Ω,σ1, · · · ,σA,τ1, · · · ,τA) = ∑
Kν

CKν |ν〉 |K〉 .
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