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Abstract

The search for new particles is an important topic in modern particle physics. New

stable massive particles are predicted by various models, including R-parity con-

serving variants of supersymmetry. The ATLAS Transition Radiation Tracker can

be used to look for charged stable massive particles by using the momentum and

velocity of particles passing through the detector to calculate its mass. A program

named TRTCHAMP has been written to perform this analysis.

Recently, ATLAS changed their data retention policies to phase out the use

of a particular format of output file created during reconstruction. TRTCHAMP

relies on this file type, and therefore this change prevents the algorithm from work-

ing in its original state. However, this problem can be resolved by integrating

TRTCHAMP into the official reconstruction, which has now been done.

This paper documents the changes involved in integrating TRTCHAMP with

the existing InDetLowBetaFinder reconstruction package. Topics discussed in-

clude the structure of reconstruction algorithms in ATLAS, the retrieval of calibra-

tion constants from the detector conditions database, and the parsing of necessary

parameters from multiple reconstruction data containers. To conclude, the output

of TRTCHAMP is shown to accurately estimate the velocity of protons in mini-

mum bias tracks. Additionally, mass plots generated with the TRTCHAMP results

are shown to agree with the known mass for both monte carlo and real protons in

minimum bias tracks, and agreement is shown between the input and output masses

for a monte carlo sample of 300 GeV R-Hadrons.
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Chapter 1

Introduction

The Large Hadron Collider (LHC), based in Geneva, Switzerland, is currently the

highest energy particle accelerator in the world. Now that the LHC is operational

and colliding beams of protons as intended, the search for new physics has begun.

With a current collision energy of up to 3.5 TeV per beam, there is the potential for

the discovery of new particles, which would be monumental. The Standard Model

of particle physics predicts the existence of an as of yet unobserved particle, known

as the Higgs boson. The search for the Higgs boson has been highly publicized,

and the discovery of the Higgs boson would be a major accomplishment that is

theorized to be within the LHC energy range[11].

While the Higgs boson would certainly be a notable discovery, it is not the only

new particle that may be discovered. There may be many other exotic particles just

waiting to be found by the LHC.

1.1 New Particles
With higher collision energies, more massive particles can be discovered. This is

due to the relation between energy and matter, as laid out by the relativistic energy-

momentum relationship:

E =
√

(mc2)2 +(pc)2 =⇒ m =
1
c2

√
E2− (pc)2

New particles will have to be extremely massive to have not been discovered
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by previous particle collider experiments, such as those conducted at Fermilab.

Of these massive particles, some of them are expected to be stable, earning them

the name of Stable Massive Particles (SMPS). In the recent past, charged SMPs

were also known as long-lived CHArged Massive Particles (CHAMPS), but more

recently the designation of SMPs has been used in academic papers. Many such

SMPs are theoretically observable by the LHC detectors, such as the A Toroidal Lhc

ApparatuS (ATLAS) Experiment’s Hadronic Calorimeter[2]. In fact, such particles

would stand out in collisions, due to their large mass resulting in less available

space for kinetic energy. As all known particles will be moving at approximately

the speed of light in a 3.5 TeV per beam collision, any particle with a large mass

that is detected to be moving significantly slower is an exotic particle candidate.

The search for SMPs has a strong theoretical backing, including the support

of SUperSYmmetry (SUSY), one of the prominent theoretical models of particle

physics beyond the Standard Model. There are a large number of supersymmetric

models, many of which predict the existence of some form of SMP. In SUSY, each

particle in the Standard Model has a supersymmetric partner particle. Additionally,

supersymmetry introduces a new parity, called R-Parity, which has an associated

value of +1 for every particle in the Standard Model and -1 for each superparticle.

Some SUSY models enforce a conservation of R-Parity, which then requires the

Lightest Supersymmetric Particle (LSP) to be stable, as there is nothing that it can

decay into. Additionally, the decay of the second lightest supersymmetric parti-

cle will be supressed due to only having a single possible decay mode, the LSP.

Therefore, this creates a set of possible SMPs to investigate.

The search for SMPs has numerous applications to further research, and could

even provide answers to some of the mysteries of high energy physics. For exam-

ple, if a supersymmetric SMP is discovered, it could provide the first experimental

validation of supersymmetry, which in turn could supply solutions to two of the

most important puzzles in modern particle physics. First off, SUSY presents a so-

lution to the hierarchy problem related to the Higgs boson by the existence of a

superparticle partner for each normal particle, which leads to a cancellation of the

quantum corrections to the Higgs mass[9]. Secondly, the LSP is generally expected

to be a Weakly Interacting Massive Particle (WIMP), and this WIMP is thought to

be a primary candidate for the source of dark matter in the universe[6]. As such,
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validating or constraining the model parameters of SUSY by searching for SMPs is

a definite possibility at the LHC[5], and would be a major accomplishment.

Supersymmetric particles are by no means the only exotic particle candidates

that could be observed at the LHC. However, they are examples from one promi-

nent theory that have been shown to have theoretical masses within the range of

the LHC[5], either now at 3.5 TeV per beam or later after the 2012 upgrade to 7

TeV per beam.

1.2 Our Project
Our project focuses on using the Transition Radiation Tracker (TRT), which is part

of the inner detector of the ATLAS experiment, to search for SMPs. As such, this

paper will focus on the methods used in the ATLAS experiment from now on, unless

otherwise specified. The TRT can detect charged SMPs by measuring the momen-

tum and relativistic velocity, β , of particles passing through the detector. If the

resulting β value is small compared to the speed of light, then the observed TRT

event may involve a new massive particle, which can then be investigated in more

detail. This is all of the information needed to determine the mass of a particle, as

per the following relativistic momentum equation:

~p = γm~v =⇒ m =
|~p|

√
1−β 2

βc

As the LHC continues to operate, our understanding of the collider improves,

allowing us to increase its luminosity. Luminosity, a measure of the number of

particles per unit area, per unit time, is related to the number of collisions that occur

in a given amount of time. Therefore, as the luminosity of the LHC is increased,

larger and larger quantities of raw data will be available. Increasing the amount of

raw data leads to a data storage problem, as the data acquisition hardware can only

process a set amount of information in a given time period. This creates the need

for hardware triggers to differentiate between interesting and uninteresting events

(individual collisions and their products), and to then only store the raw data for

interesting events.

Events that have passed the hardware triggers must then be converted from raw
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electrical signals into physical quantities, such as 4-vectors. The process by which

this is done is known as reconstruction, and is managed by a program called Athena

in the ATLAS experiment. Athena combines the observations of all of the subde-

tectors in order to recreate the paths of particles as they move through the ATLAS

detector, in addition to determining measurements of the particles within each in-

dividual detector. For our project, the relevant information is that reconstruction

calculates the 3-momentum and direction of particles that pass through the TRT.

As such, in order to determine the mass of particles in the TRT, we are left with the

requirement of measuring their velocity.

Before this project, the program used to calculate particle velocities in the TRT

was executed during data analysis, which is in a separate processing pass multiple

steps beyond reconstruction. As a result, this program relied upon a certain set of

parameters and data to be generated by the reconstruction stage and retained until

the analysis stage. This was adequate at first, but with the luminosity upgrades,

the data throughput was becoming too large to handle. To remedy this problem,

ATLAS controllers decided to discard some of the data past the reconstruction stage,

including some of the parameters the old analysis program depended upon for cal-

culating the velocity of particles. Due to this change, it became very important to

migrate the velocity calculation routines from the analysis stage into Athena.

In addition to allowing the search for SMPs in the TRT to continue and de-

creasing data throughput by around six orders of magnitude[4], this change also

provides a key new feature in the reconstruction. In the past, the velocity of par-

ticles in the TRT was calculated by and available to only our research group, as it

was done with a private algorithm. With the algorithm integrated into the official

reconstruction process, the particle velocity estimate is available for anyone to use.

This change provides new functionality to Athena, which in turn gives everyone in

the ATLAS experiment access to additional information about events that they may

wish to analyze.

As the LHC luminosity continues to increase, this project becomes more and

more important. Our changes aim to drastically decrease the data throughput re-

quired for the search for SMPs in the TRT by integrating a post-processing analysis

script into Athena, the official canonical reconstruction for the ATLAS experiment.

However, even if there were no data limitations, our project still would be benefi-
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cial because it adds additional information, in the form of the relativistic velocity

of particles in the TRT, to reconstruction for use by others.
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Chapter 2

Theory

In order to fully understand the computational requirements of this project, the

means by which the relativistic velocity β = v/c is obtained must be discussed.

This first requires an explanation of how the TRT conducts its primary purpose,

which is to track particles as they move through the detector.

2.1 Tracking Charged Particles in the TRT
The TRT is a combined transition radiation detector and straw tracker, which con-

tains approximately 300,000 straws. Each straw is comprised of a central anode,

an outer wall held at a highly negative voltage with respect to the anode, and a gas

mixture of 70% xenon, 26% carbon dioxide, and 3% oxygen[13], a cross-section

of which is shown in figure 2.1. As a charged particle passes through the straw, it

ionizes the gas, which is referred to as a “hit”. These electrons then move to the

anode due to the influence of the electric field generated by the straw wall to anode

potential difference. The anode records the arrival of electrons as electrical signals.

These electrical signals can then be used to recreate the path of the charged particle,

as the amount of time it takes an ejected electron to reach the anode depends on its

distance from the anode. An electron ionized at the straw wall will take 45ns[10]

to reach the anode, while an electron that is ejected arbitrarily close to the center

of the straw takes essentially zero time to reach the anode. The time at which an

electron would reach the anode if the charged particle were to pass arbitrarily close
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Figure 2.1: The cross section of a straw in the TRT. The red circle in the
middle is the anode, while the outer red circle is the straw wall, held at
-1500V with respect to the anode. The space in between is filled with a
gas comprised of 70%Xe, 27% CO2, and 3% O2. As charged particles
pass through the straw, they ionize the gas. These electrons move to
the anode, due to the potential difference between the anode and straw
wall. The anode records the arrival of electrons as electrical signals,
and can use the difference between the start time, t0, and the arrival of
the first electron to determine the point of closest approach, which is
represented by the drift circle. A series of these drift circles can be used
to reconstruct the path of the charged particle.

to the anode is called the t0 value, and is the start time for TRT calibrations.

On average, a charged particle will generate seven such hits per straw, meaning

that the anode will usually record an electron from approximately the straw wall,

as well as an electron from approximately the point of closest approach. Addition-

ally, particles are assumed to be moving at nearly the speed of light (β ≈ 1), and

therefore each of those hits will occur at approximately the same time relative to

how long it takes for the electron to reach the anode. As the time at which the

first electron would be observed if the charged particle passed arbitrarily close to

the anode is known, and has value t0, we can determine the point of closest ap-

7



proach. Specifically, the difference between the t0 value and the actual arrival time

of the first electron can then be used to reconstruct the radius of closest approach

for the charged particle, which is known as the drift circle radius, and which has a

corresponding drift circle as shown in figure 2.1.

A single drift circle does not give the trajectory of the charged particle, as we

now have a circle of points at which the particle may have passed. However, a

charged particle also does not pass through just a single straw. We can combine

a series of drift circles, corresponding to a series of consecutive straws traversed

by the same particle, to reconstruct the path taken. This is possible because the

average charged particle in the TRT passes through thirty straws, to generate what

is called a track, an example of which is shown in figure 2.2. Using all of the straws

in a path allows us to recreate the trajectory of the particle by fitting a curve to be

best-tangent to all of the corresponding drift circles, which is also shown in the

same figure.

Now that we have a means of recreating the track a particle took through the

TRT, we must turn to velocities. Unfortunately, the TRT was not designed to calcu-

late the velocity of charged particles as they pass through the detector. However,

we can exploit the assumption that particles are moving with β ≈ 1 to obtain an

estimate of their actual velocity.

2.2 Estimating Relativistic Velocities in the TRT
The electrons generated by the traversal of a straw by a charged particle can be

used to construct a timing diagram. We know the time at which the first electron

can possibly reach the anode, as this corresponds to the particle passing arbitrarily

close to the anode. Therefore, this is the earliest possible rising edge time, and

if the anode receives an electron before this point, we know that a problem has

occurred. Otherwise, the rising edge of the timing diagram is simply the time at

which the first electron reaches the anode, which corresponds to the approximate

point of closest approach of the charged particle. The falling edge is then the final

electron to reach the anode, which is from the straw wall, and therefore should

be exactly 45ns after the earliest possible rising edge time. As part of the core

functionality of the TRT implementation, it is calibrated under the assumption that
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Figure 2.2: A charged particle path passing through five straws to create a
track. The solid red circles are straw walls, dashed red circles are drift
circles, and the blue path is the reconstructed track of the particle, which
follows the drift circles. The interaction point is where the actual event
occurred, and the straws are numbered to show the order in which the
charged particle passed through them.

charged particles are moving at approximately the speed of light, or with β ≈ 1.

This results in all of the falling edges of all of the straws in a track being aligned in

a timing diagram, with the straw distance from the interaction point as the vertical

axis. If the particle is actually moving near the speed of light, as per the assumption

made by the calibration, then the timing diagram works out as shown in figure 2.3.

However, we are interested in particles moving slower than the speed of light.

In this case, the ionizing radiation will not arrive at the nominal times correspond-

ing to a track from a β ≈ 1 particle, but will rather be delayed by an amount

determined by its actual velocity. This will cause the timing diagrams to have de-

layed falling edges, as the t0 value is off. That is, the particle will actually enter a

particular straw a time t after the calibration assumed that it would, and therefore

the arrival of the first electron in the straw will occur a time t after it was expected

to. The value of t will increase with the distance from the interaction vertex, as the

9



charged particle falls further and further behind the assumption, as shown in figure

2.4. The rate at which the particle falls behind can be related to the delay between

the falling edges of sequential straws, which gives us an estimate on the relativistic

velocity of the charged particle as it moves through the TRT.
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Figure 2.3: Timing diagram for the track of a particle moving with β ≈ 1.
The vertical axis contains straws in the track. When the signal for a
straw is high, the straw is receiving electrons from the ionized gas. The
rising edge is when the first electron reaches the anode (from the closest
approach), while the falling edge is the arrival of the final electron (from
near the straw wall). Line A marks the end of the last event, and B marks
where the rising edge of the related set of hits could begin if a particle
moving with β ≈ 1 passed arbitrarily close to the anode wire. The TRT
is calibrated so that, for a particle moving with β ≈ 1, the falling edge of
all straws in a track occur at the same time. Line C shows this relation
with all the falling edges occuring 45ns after line B. In this diagram, the
particle passes closest to the center of the second straw, characterised
by the earliest rising edge, and furthest from the center of the first straw,
as seen by the latest rising edge.
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Figure 2.4: Timing diagram for the track of a particle moving with β < 1.
This figure is a continuation of Figure 2.3, where now the particle is
moving slower than the speed of light. Lines A and B still have the
same meaning as before. As the TRT is calibrated to line up falling
edges for particles moving with β ≈ 1, a particle moving with β < 1
will fall further and further behind by comparison. In this example, the
first straw still observes the final electron at 65ns, while the second track
has been delayed by 5ns and the third track by 10ns (relative to a fast
particle). Line C shows this relation. The delay between sequential
falling edges can be used to determine β .
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Chapter 3

Methods

Before discussing the actual changes that were made, it is useful to have an under-

standing of the general process by which data is taken and analyzed in the ATLAS

experiment. Figure 3.1 shows the flow of information and sequence of stages of

programs when acquiring and analyzing data. The first stage is to select “interest-

ing” events to record, managed by hardware triggers, so that we don’t overwhelm

the computer systems. The events that are retained are then stored as raw data,

which is a digitized electrical signal. In the next step, the electrical signals are

turned into physical quantities, such as 4-vectors, through the reconstruction pro-

cess. This stage is also where selection cuts can be made, meaning software filters

can be applied to decide which information is relevant to a particular search or re-

search group. The output of this stage is known as an Event Summary Data (ESD)

file. From there, more selection cuts can be made, which results in Analysis Object

Data (AOD) files. These AOD files can then be used as input to various analysis

scripts to obtain actual results.

3.1 Reasons for Switching to Reconstruction
Before this project, the velocity estimator in the TRT took place in the private anal-

ysis script stage, right at the end of the analysis chain, as shown in figure 3.1. The

program ran on inputs of ESD files, which created an implicit dependence on par-

ticular outputs from the reconstruction stage. This was not a problem before, but
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Figure 3.1: The computer programs and intermediary stages involved in ac-
quiring and analyzing data in the ATLAS experiment, including calcuat-
ing β in the TRT. Interesting events are selected, digitized, and read out
from the TRT via hardware drivers, which results in raw data. Recon-
struction converts these digitized electrical signals into physical quanti-
ties, and then applies selection cuts, generating an ESD file. More cuts
are applied to create AOD files, which are then used as input to user
analysis programs. TRTCHAMP used ESD files, although it was run after
AOD files were generated. The original program’s location in this chain
is shown in red, while the velocity estimator’s new position as a part of
reconstruction is shown in blue.

has become an issue due to a recent change in the ATLAS data retention policy. Due

to a significant increase in the luminosity of the LHC, the ATLAS group has been

forced to find ways to decrease data throughput, which is the amount of data being

written to and read from disk at any given time. To do this, they have elected to

phase out ESDs, and have begun by deleting them six weeks after creation. This

is important because only ESDs contain hit-level information, which is informa-

tion that deals with the individual ionization events, as is needed for the timing

diagrams used by our β estimator. As such, if anything goes wrong and has to

be redone at a later point, this will no longer be possible. This change in the data

retention policy therefore requires our research group to integrate the β estimator

routine into reconstruction stage if we wish to continue the search for SMPs in the

TRT, as there will no longer be a guaranteed way to obtain all of our required inputs

as a private analysis algorithm.

Beyond this strict requirement, there are several benefits to our program being

part of the official reconstruction. Once added to Athena, our algorithm will be run

by default whenever reconstruction is run. Being part of reconstruction means that

we will no longer have to run a separate processing pass afterwards to obtain our

results, which in turn decreases the amount of time required for our research. An-

other reason for our program to be a part of reconstruction is that we are calculating
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a value of physical significance, which could be used by other research groups in

the future. Before our group’s project, there was an estimate of the speed of parti-

cles as they passed through the TRT added by a different research group. However,

our estimate is independent and competitive with theirs, so the two values can be

compared to confirm both individual estimates. As such, by adding our program

to Athena, other groups could benefit from our work and could use the β value for

their own purposes.

3.2 Private Algorithm Implementation
As mentioned, the program was originally run during the user analysis stage, which

is the domain of private algorithms. TRTCHAMP was initially written and run us-

ing an object oriented framework specifically designed for high energy physics

(ROOT). ROOT is an extension of C++, with a set of new libraries, and which is

interpreted instead of compiled. This difference was not too important, because the

C++ code can still be compiled like a normal program, so long as you properly

find and include all of the relevant root libraries. It was a small but crucial step of

the project to find the necessary libraries and then compile TRTCHAMP, in order to

ensure that no required ROOT functions were missing.

The TRTCHAMP program was written before I started this project, and carries

out the actual β estimation given a prescribed set of inputs. The core functionality

of the program did not need to be changed at any point, although a few meth-

ods for providing alternate forms of inputs were added. The program that calls

TRTCHAMP, on the other hand, is what necessitated a major overhaul. As a pri-

vate algorithm, TRTCHAMP was called by a program that read input parameters

from ESD or AOD files. By integrating TRTCHAMP into reconstruction, this was no

longer an option.

3.3 Reconstruction Implementation
Reconstruction is a large and complicated task that involves calculating local physi-

cal values within each individual sub-detector, and then combining the results from

the full ATLAS detector to determine the global value of other physical quantities.

This enormous task is managed by a program named Athena, which coordinates
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the execution of many different algorithms. Each algorithm run by Athena must

conform to a three-stage process of initialization, execution, and finalization. The

initialization and finalization stages are intended to be computationally inexpen-

sive, while execution is generally a very intensive process.

Athena itself is also ordered into a set of individual stages, which can be char-

acterised as:

1. General reconstruction setup routines

2. Algorithm initialization stages

3. Algorithm execution stages, where initialization was successful

4. Algorithm termination stages

5. Data output and general reconstruction termination routines

If the initialization stage of a particular algorithm fails, then its respective execution

stage is not called. This allows for the initialization stage to test the parameters

with which the reconstruction is being run, and to abort if it has detected that the

algorithm will not be successful under the given conditions. For example, if the

algorithm relies on having access to a particular set of calibration constants and

the constants are missing for whatever reason, then there’s no point in running the

execution stage of the program. In short, the initialization stage generally retrieves

data containers necessary for the execution of the algorithm. The finalization stage,

on the other hand, generally releases these containers and frees up memory that the

algorithm used.

These algorithms are sorted into packages, where each package has a specific,

distinct purpose, and a central algorithm. Through coordination with the rest of the

research group, and with the help of the package maintainer[8], we obtained space

for the results of our β estimation routine in the InDetLowBetaFinder package (In-

ner Detector Low Beta Finder). The InDetLowBetaFinder package already existed

as an official reconstruction algorithm searching for slow moving particles in the

Inner Detector (of which the TRT is a part), so the addition of our program to this

package simply adds additional information. To be specific, we were given two

floats per particle that passes the selection cuts, so the value of our β estimate in
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the TRT and the error in that estimate are the two physical quantities that we have

added to the reconstruction.

3.3.1 LowBetaAlg

The central algorithm in the InDetLowBetaFinder package is called LowBetaAlg,

and it implements the three stage framework just discussed. In order to integrate

TRTCHAMP with LowBetaAlg, a set of wrapper functions was created. These wrap-

per functions serve the purpose of providing an intermediary layer between the two

programs, and ensuring that changes can still be made to LowBetaAlg in the fu-

ture without breaking TRTCHAMP, and vice versa. This is possible because the

two are relatively isolated entities that only interact through three very small code

snippets, with one corresponding to each stage (initialization, execution, and final-

ization). In essence, these wrappers create a clear division between LowBetaAlg

and TRTCHAMP, while at the same time providing a rigid framework for connecting

the two, thereby enforcing a clearly defined interaction.

The initialization and finalization stages of LowBetaAlg call the respective

TRTCHAMP wrapper method directly, meaning that so long as the LowBetaAlg

method is called, the associated TRTCHAMP method will also be called. However,

the execution stage is different. During the execution of LowBetaAlg, selection

cuts are applied to determine which particles are considered to be SMP candidates,

and therefore which particles we need to calculate the velocity of. To ensure that

we only calculate the β of relevant particles, the TRTCHAMP execution wrapper is

called after the success of the first round of selection cuts. This is the one possible

point of future conflict, as the execution wrapper is not entirely self-contained. It

requires a particular data container as input, but LowBetaAlg relies on it exten-

sively as well, so removing the container would require a complete rewrite of the

execute stage of LowBetaAlg. As such, so long as LowBetaAlg is not entirely

re-written, the TRTCHAMP functionality should not be interfered with.

The wrapper programs for TRTCHAMP fulfill two main purposes. The ini-

tialization wrapper ensures that TRTCHAMP has access to the correct calibration

constants, while the execution wrapper compiles the necessary data for the input

parameters of TRTCHAMP. The finalization wrapper only performs trivial tasks,
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and therefore will not be discussed in detail. The code for the wrapper methods

is in appendix A. Note that the code for the TRTCHAMP and LowBetaAlg routines

are not included, as my project focussed on integrating the two with only minimal

changes to the core programs, and therefore they can be treated as black boxes for

the most part.

3.3.2 Retrieving TRTCHAMP Calibration Priors

The TRTCHAMP algorithm makes use of a set of calibration values, known as pri-

ors, during the β calculation. The set of priors is a measure of the probabilility

distribution representing the likelihood of finding the falling edge in each possible

time bin, for particles moving with β ≈ 1. That is, there is one prior per time bin.

This probability distribution and the associated priors are determined experimen-

tally by recording the falling edges of a large sample set of minimum bias tracks,

with momenta of greater than 5 GeV[10]. These tracks will be of particles moving

with β ≈ 1, as the heaviest minimum bias track is the proton, and thus a proton

moving with 5 GeV will be moving at approximately the speed of light. Therefore,

we have a sample set of particles moving with β ≈ 1, and we can record in which

timing bins the falling edges for these particles occur, giving us our prior values.

These prior values must be generated on a regular basis in order to stay up to

date with various detector conditions and calibrations. As this is a core part of

TRTCHAMP, we had to find a way to dynamically retrieve the correct set of priors

for a given data set, during the execution of Athena. We were informed that the TRT

conditions database supported such functionality[7], although the documentation

on how to use the database was either sparse or outdated. The documentation that

did exist noted that the database supports tagging[12], meaning that we could tag

a particular set of priors as having been active up to a specified time and date,

therefore providing a way to ensure that the correct priors for a data set undergoing

reconstruction are accessed. This seemed like an elegant solution to the problem,

and so we decided to take this approach.

Unfortunately, the TRT conditions database is challenging to work with, as

there are lots of little quirks that are easy to circumvent once you know what to do,

but hard to figure out in the first place. Again, the lack of recent documentation was
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a problem, but thankfully I was in contact with two individuals who had some fa-

miliarity with the process. First, I was told to use a local database and link it to the

conditions database for testing, and even given a sample local database generation

script[7]. Then, I was informed of some little tweaks that were needed to get the lo-

cal database to be recognized by the conditions database during reconstruction[1].

In the end, I managed to set up a local database with a set of priors, and to link

it to the conditions database. From that point, I was able to start on the code that

retrieves information from the conditions database, as now there was a database to

read priors from.

The code to retrieve data from the conditions database was much simpler, and is

contained in the initialization wrapper and an “update” method. The initialization

wrapper simply loads a bunch of default priors, specifies the folder of the condi-

tions database to connect with, namely our priors folder, and registers a callback

update function with the Athena detector information storage service (detStore).

This means that we want to update our default priors to the most recent set of pri-

ors in the database. Note that this is not what we want in the future, as we want

to work with tags representing timestamps. However, this implementation was in-

tended to lay out the core framework, so that others can add tag support at a later

date.

The update function is called after all of the athena algorithm initializations,

but before executions. This ensures that TRTCHAMP will not be left using the de-

fault priors during execution. In order to replace these default priors, we retrieve a

collection of containers from the (currently local) priors folder linked in the con-

ditions database, parse the containers into a format similar to how TRTCHAMP

stores the priors it needs to use, and then replaces the default priors being stored

in TRTCHAMP with the versions from the database. At that point, the calibration

constants we needed have been read from the conditions database, and are ready

for use by TRTCHAMP once it is asked to calculate β in the execute stage.

3.3.3 Compiling TRTCHAMP Input Parameters

The execution wrapper, which parses data from two containers into the format ex-

pected by TRTCHAMP, is much simpler. The inputs that TRTCHAMP requires are
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the transverse momentum and pseudorapidity values associated with a given par-

ticle track, and a bunch of information for every straw the particle passed through

in the TRT. Vectors are used to store all of the information needed on a per-hit

basis. This per-hit information is comprised of a word that describes whether the

measurement can be trusted, the global cartesian coordinates of the hit, channel in-

dices, the drift circle radius, the track radius, and the timing calibration. All of this

information, except the track radii, can be obtained from the Track container. The

Track container, as the name implies, holds all of the general data about a specific

particle track. This container is widely used, meaning that it is relatively simple to

loop over all of the hits in a track and add the required information to a vector.

The track radii, however, are not used by most groups. As such, it is not in-

cluded in the Track container, making it much more challenging to obtain this

information. These track radii quantify the shortest distance from the anode to the

track for each hit. If the track fits to the drift circle tangents perfectly, then the drift

circle radius and track radius will be equal. However, we have no reason to assume

that we have a perfect fit, and so we need both values for our β estimates.

With TRTCHAMP as a private algorithm using ESDs, we solved the problem by

refitting the track of a particle to every ionization event (hit), and then recaclculat-

ing the track radii. However, as the program is now a part of reconstruction, we

have access to the CombinedIndetTracks container. This container is an unslimmed

version of the Tracks container, meaning that it still has all of the track radii. We

can access this data by retrieving the container from the Athena event information

storage service (evtStore). Once we have done this, we can immediately retrieve

the track radii without the need to recalculate them from the ionization events. We

had to do this when TRTCHAMP was a private algorithm, so our new implementa-

tion has the added bonus of saving some cpu time. More importantly, this solves

the primary problem that this project set out to address. As the track radii and all

of the other required data are obtained during reconstruction and processed imme-

diately, TRTCHAMP no longer relies on ESDs, and therefore we no longer have to

worry about them being phased out.
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Chapter 4

Results

4.1 Comparing the Old and New TRTCHAMP
As the goal of this project was to integrate the existing TRTCHAMP implementation

into the official reconstruction, the most logical way to test that everything is work-

ing is to compare the output of the two programs when run on the same data set.

If the program has been integrated properly, then the two versions should give the

same β estimates. After I completed the addition of TRTCHAMP and the associated

wrappers to the InDetLowBetaFinder package, I sent the code to Bill Mills[10],

the author of TRTCHAMP. He then performed various tests, and confirmed that the

two programs were giving the same results, to within our precision. The small dif-

ferences beyond our precision are due to the use of slightly different track radius

fitting techniques. The technique used in Athena can always be changed, but there

is no indication that any one of the options for fitters will outperform the others in

an outright majority of cases, and so we decided to stick with the default fit that

had already been conducted, thereby saving computational time. Regardless of this

minor difference, the integration can be said to be successful, as the differences are

small enough that the results of the two different TRTCHAMP implementations are

identical to within our precision.
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4.2 Velocity Residuals
One way to confirm that the β estimator is working correctly is to generate a monte

carlo data set of particles with known velocities. If this data is then used for recon-

struction and TRTCHAMP, then you know what the actual velocity of each particle

is, and can therefore determine the error in the estimate. If βe is our estimate from

TRTCHAMP and βt is the true velocity used to generate the data set, then the relative

residuals are defined as:
βe−βt

βt

If we plot the relative residual value on the x-axis and the number of occurrences of

this residual on the y-axis, we get figure 4.1. We can then fit a curve to the peaks to

determine how accurate our estimator is, which shows us that they are very nearly

centered around an error of zero, and have a small standard deviation from zero.

This tells us that our estimator is performing reasonably well. The secondary peaks

in this figure correspond to fake β ≈ 1 particles, which occur so often in minimum

bias tracks that they were not completely supressed.

4.3 Monte Carlo Mass Plots
Now that we have confirmed the velocity estimator is working as intended, we

can confirm that our mass estimates are accurate too. To do this, we created a set

of monte carlo minimum bias tracks. As protons are the heaviest stable standard

model particle, they will be the primary constituent of any minimum bias track in

the TRT. Therefore, if we apply TRTCHAMP to this data set, we should get the mass

of the proton, which is 938.272 MeV. It turns out, as shown in figure 4.2, that we

do get this result, to within our uncertainty. The barrel of the TRT gives a mass of

938±0.3 MeV, with a standard deviation of 84±0.3 MeV, while the endcap gives

a mass of 923±0.5 MeV and a standard deviation of 85±0.5 MeV. As such, the

barrel gave exactly the result we wanted, while the endcap gave the expected result

to within one standard deviation.

In order to try something slightly more exotic, consider the R-Hadron. The

R-Hadron is a theorized supersymmetric particle, comprised of a supersymmet-

ric particle and at least one Standard Model quark. There are many predicted R-
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Figure 4.1: A pair of plots for the relative residuals of the velocities of pro-
tons selected from minimum bias tracks, as estimated by TRTCHAMP,
created by Bill Mills[10]. The x-axis is the value of the relative residual,
as defined by ([estimated β ] - [true β ])/[true β ], while the vertical axis
is the numer of occurrences of that residual value in the sample. The
left figure is the results from the barrel of the TRT, and the right figure
is the results from the endcap of the TRT. As can be seen, both sets
of residuals are centered very close to zero, and have a small standard
deviation, so the estimator is performing well. The secondary peaks are
due to fake β ≈ 1 particles, which are so numerous in minimum bias
tracks that they can’t all be perfectly supressed.

Hardrons, but it is generally expected that, if they exist, they will have a mass of

greater than 100 GeV. This limit is due to constraints from past experiments, such

as those conducted with the Tevatron. Similarly to the previous case, let us create a

monte carlo sample of 300 GeV R-Hadrons, and if our TRTCHAMP returns a mass

of 300 GeV, then that’s more proof that our program is working properly. Figure

4.3 shows the results, where the barrel estimates are a mass of 298±1.1 GeV with

a standard deviation of 41± 0.9 GeV, and an endcap mass estimate of 286± 1.2

GeV with a standard deviation of 36± 1.1 GeV. Therefore, the estimates of the

particle mass are relatively close to the actual (300 GeV) mass. This continues to

show that our algorithm is properly estimating the mass of SMPs being observed in

the TRT.
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Figure 4.2: Mass plot of a monte carlo proton data set, created by Bill[10].
The x-axis is the mass calculated for a given particle, in MeV, with bins
of size 20 MeV. The vertical axis is the number of times a particle with
the specified mass was observed. The left plot is for the barrel of the
TRT, and the right plot is for the endcap. Fitting a curve to the peak gives
the estimated mass and standard deviation in the mass, which are easily
within one standard deviation of the actual proton mass of 938.272 MeV.
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Figure 4.3: Mass plot of a monte carlo 300 GeV R-Hadron data set, created
by Bill Mills[10]. The x-axis is the mass calculated for a given particle,
in GeV, with bins of size 20 GeV. The vertical axis is the nuber of times
a particle with the specified mass was observed. The left plot is for the
barrel of the TRT, and the right plot is for the endcap. Fitting a curve to
the peak gives the estimated mass and standard deviation in the mass,
which are easily within one standard deviation of the input R-Hadron
mass of 300 GeV.
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4.4 Data Mass Plots
The final set of results is of a proton mass plot with actual data. As before, we

are expecting a mass of 938.272 MeV/c2. Looking at figure 4.4, we do get this

expected result. Specifically, the data gives us a mass estimate of 946± 0.2 MeV

with a standard deviation of 102± 0.2 MeV in the barrel of the TRT, and a mass

of 914±0.4 MeV with a standard deviation of 115±0.5 MeV in the endcap. The

actual proton mass is within significantly less than one standard deviation of the

mass estimates given by both the barrel and endcap measurements. This means

that we get the expected results with actual data, which strongly implies that the

TRTCHAMP program is working as intended.

As a brief note, figure 4.4 is less accurate than the previous figures due to

having more than one source of error. For the monte carlo simulations, the exact

momentum is known, as it was one of the input parameters. Therefore the monte

carlo uncertainties are due to solely the β estimate. On the other hand, the real data

set involved using both the measured momentum and velocity, and both of these

quantities have associated uncertainties.

FE Reconstructed Mass (barrel) [MeV]

400 600 800 1000 1200 1400 1600 1800 2000

E
ve

nt
s/

20
M

eV

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000
24000

 (UBC)TRTChamp
 = 7 TeVs

minBias Data 153565
Protons

 0.2) MeV± = (946 µ
 0.2) MeV± = (102 σ

FE Reconstructed Mass (ec) [MeV]

0 200 400 600 800 100012001400160018002000

E
ve

nt
s/

20
M

eV

0

2000

4000

6000

8000

10000

12000

 (UBC)TRTChamp
 = 7 TeVs

minBias Data 153565
Protons

 0.4) MeV± = (914 µ
 0.5) MeV± = (115 σ

Figure 4.4: Mass plot for a proton from an actual data set, created by Bill
Mills[10]. The x-axis is the mass calculated for a given particle, in
MeV, with bins of size 20 MeV. The vertical axis is the number of times
a particle with the specified mass was observed. The left plot is for the
barrel of the TRT, and the right plot is for the endcap. Fitting a curve to
the peak gives the estimated mass and standard deviation in the mass,
which are easily within one standard deviation of the actual proton mass
of 938.272 MeV.
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Chapter 5

Discussion

Throughout this project, I encountered numerous problems stemming from a lack

of organization in the ATLAS experiment’s computing framework. This absence of

organization was displayed in many ways including, but not limited to, a sparse

documentation, a lack of high-level support algorithms to perform common tasks,

obfuscated job control options, and large log files. These all came up while trying

to set up a local database to link with the calibration database, as discussed in

section 3.3.2, and so I shall discuss this example in more detail below.

5.1 Calibration Database Problems
While attempting to implement a connection to the conditions database, I went to

the ATLAS TWiki[12], which is the general source of documentation, and searched

for “conditions database”. The first link gives a summary that looks like it might

explain the database, but when you click on the link, it says that the page no longer

exists. Then, looking at the other results turned up by the search, there is none

that is immediately apparent as dealing with the conditions database. The second

page actually does have a useful link, but you won’t know this if you don’t already

know that the conditions database is implemented in the COOL language, and

therefore is listed as “AthenaCool”. It was only through talking with others[7]

and reading several related TWiki pages that I realized that the conditions database

and AthenaCool database are the same thing. With this knowledge, you would
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then expect the AthenaCool documentation to provide the answer of how to link

the a local database into AthenaCool. It does give an explanation, but it turns out

that the syntax is incorrect, because it’s from a different revision of the ATLAS

software. To find the correct syntax, you can look through other people’s code,

thanks to LXR[3]. LXR is quite useful, but you have to already know what you’re

looking for. Now, you have the right syntax for how to connect a local database to

the conditions database.

From there, the next step is to add a command to the job options so that the

database is accessible at runtime. However, with the current job transform rou-

tines, this process is obfuscated. The job transforms are intended to handle all

requests in a user-friendly way, and they do if you want to stick to a simple tasks.

However, as soon as you have to change the job options for an individual stage

of the reconstruction, it becomes quite challenging. By reading through the job

transform routine, you can find that another routine is called, which in turn calls

“skeleton.RAWtoESD.py”. This file contains the job options for the raw data to

ESD stage of reconstruction, and is where you have to put the command specifying

to link the local database into the conditions database. This effort to hide the actual

location of the job options from the user may not be intentional, but either way, it

was hard to find.

At this point, I must mention that all of this could be written as a high-level

support algorithm. The steps that are taken would be very similar for any other

addition to the conditions database, and so it would be immensely useful for a

method to be written that performs all of the necessary actions for you, given a

couple of input parameters. There is no need for every group that needs to work

with the conditions database to have to go through the arduous process of setting it

up step by step.

Now that everything is theoretically working, you have to test your code, which

is done by running reconstruction. However, reconstruction takes 15+ minutes on

a data set containing a single event, so this is no quick task. Then, a 75,000+ line

log file is created detailing the reconstruction process. You have to know what types

of errors to look for and where in the file they might appear if you want to have a

chance of debugging any problems that may have occurred. It is possible to only

view warnings and errors in the log file, but often you need the information around
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the problems to determine possible causes, and therefore it’s generally impractical

to work only with warnings and errors.

5.2 Refitted Tracks
The calibration database was a nice example because it showed all of the problems

at once, but it was by no means the only time I encountered each of those problems.

Before we found out about the CombinedInDetTracks container, we thought that it

was necessary to refit the tracks to obtain the track radii during reconstruction, like

we did when TRTCHAMP was a private algorithm (discussed in section 3.3.3). To

do that, we first had to find a flag somewhere in the inner detector job options file,

and switch it to be on, thereby providing track refitting capabilities. I started out

by checking the TWiki[12], to no avail. Next, I used LXR[3], and managed to find

the name of the flag that I wanted. However, I once again had to make use of the

well hidden “skeleton.RAWtoESD.py” file to actually enable this option.

Once enabled, reconstruction started failing. After searching through the enor-

mous log file, I managed to find a line that told me the refitting procedure was being

called more than once, and therefore there were conflicts preventing reconstruction

from executing properly. After going back to the TWiki to read more about job

transforms, I had an idea of what the problem might be. I knew that I had to set the

flag in a conditional statement, but I didn’t know the name of the property that the

condition depended upon. From there, I had to use LXR to go through the source

even more, and I found the actual job control script that decides when the refit flag

is on and when it’s off. That allowed me to determine which flag to watch for be-

fore enabling the refit, and to make the appropriate changes. With that change, the

reconstruction was successful.

Later on, we were encountering more problems from the refit scheme, and

asked the track reconstruction experts for help. Their response was to ask why

we were refitting in reconstruction instead of just using the CombinedInDetTracks

container, as the refit was never meant to be run during reconstruction[14]. We now

use the CombinedInDetTracks container, as it’s easier and fixed all the problems

we had. Even now that I know the name of the container, I can search for it on

the TWiki and get nothing, as the page for the container has not been created.
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A brief glance shows that other pages make reference to the container, but only

because they are using it, not because they are explaining what it is. This is a

perfect example of a large problem that could have been entirely avoided with

better documentation.
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Chapter 6

Conclusions

The discovery of a new particle would be a major breakthrough, and could provide

the first conclusive evidence of physics beyond the Standard Model. The existence

of SMPs is predicted by multiple theories, notably including R-parity conserving

variants of SUSY. Such SMPs should be observable in the ATLAS TRT, and if ob-

served, the mass of such particles can be calculated from the momentum and ve-

locity of the particle. The momentum of the particle is already measured, and so

TRTCHAMP was written to estimate the velocity of charged particles as they pass

through the TRT.

As a private algorithm, TRTCHAMP occurred after the raw data was converted

into physical quantities, through reconstruction, and stored as ESD files. How-

ever, to deal with increasing LHC luminosities and therefore increasing amounts of

data, ATLAS has recently changed its data retention policy towards phasing out ESD

files. Unfortunately, the new output formats don’t contain all of the information

TRTCHAMP requires. To resolve this problem, TRTCHAMP needs to be integrated

into the reconstruction stage, so that it has access to all of the data that it needs.

In order to do this, the InDetLowBetaFinder package was modified to include

two additional floats per particle that passes a set of SMP selection cuts, where

the two floats represent the β estimate and the standard deviation in that estimate.

The primary algorithm in InDetLowBetaFinder, LowBetaAlg, was then linked to

TRTCHAMP through a wrapper interface. This interface was designed to mini-

mize the chance of changes to either LowBetaAlg or TRTCHAMP impacting the
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other algorithm, and performed three key duties. First off, the wrappers retrieved

a set of specialized calibration constants from the TRT conditions database, which

TRTCHAMP needs to function. Next, the wrapper obtained the inputs necessary for

the execution of TRTCHAMP through reconstruction data containers, and reformed

them in the way that TRTCHAMP expects. Finally, the wrappers call the TRTCHAMP

algorithm, and store the results in the two aforementioned floats.

Through this change, the wrappers ensure that the TRTCHAMP algorithm func-

tions as it used to, although it is now a part of reconstruction instead of being an

independent analysis algorithm. These modifications allow the TRTCHAMP algo-

rithm to continue to run, despite the changes to the ATLAS data retention policy.

Additionally, as the β estimator is now a part of reconstruction, the value is now

available for others to use in their own research, and therefore this provides benefits

to the ATLAS collaboration, rather than just our research group.

In section 4, we have shown that the algorithm accurately calculates the veloc-

ity of charged particles in the TRT. We have also shown how this can then be used

to determine the mass of the charged particle, for both monte carlo data sets and

using real data. Therefore, the TRTCHAMP algorithm remains a valuable part of

the TRT search for SMPs, and may help in the discovery or further analysis of new

particle(s).

In the future, the interaction with the calibrations database could be improved.

As mentioned in section 3.3.2, the wrapper retrieves the most recent copy of the

calibration priors from the conditions database. This works for now, but shoud be

changed in the future to include tagging. That is, sets of priors should be tagged

with a range of when they were valid, and the initialization wrapper should then

check the time stamp of the data set that reconstruction is being run upon, and

from that determine which set of priors to read from the calibrations database.

Alternatively, there may be other ways to obtain the priors. A lot of work has

been required to do anything with the calibration database, and there may be some

other system of maintaining priors that is easier to manage. Others in the lab are

currently looking into such alternate approaches[10].
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Appendix A

Code

A.1 LowBetaAlg.h (Wrappers Header)
This is the header file that contains all of the methods used in the main LowBe-

taAlg routines, as well as all of the wrapper methods. The wrapper methods are all

at the bottom of the file, under “private”.

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ / LowBetaAlg . h , ( c ) ATLAS Detector sof tware

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/∗ c lass LowBetaAlg

LowBetaAlg i s an a lgo i r thm f o r the i d e n t i f i c a t i o n o f Charged Stable

Massive P a r t i c l e s based on t r a c k i n g in fo rma t i on mainly from the TRT.

Timing in fo rma t i on and energy depos i t i on are used to i n d e n t i f y

candidate t racks and make measurement o f beta and excess i o n i z a t i o n

comparing to r e l a t i v i s t i c p a r t i c l e s .

author Chr is topher . Marino <Chr is topher . Marino@cern . ch>

∗ /

# i fndef LOWBETAALG H

#define LOWBETAALG H

#include ” AthenaBaseComps / AthAlgor i thm . h ”

#include ” TRT Condit ionsServices / ITRT CalDbSvc . h ”

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
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class At lasDetec to r ID ;

class I d e n t i f i e r ;

class TRT ID ;

class IMagFieldAthenaSvc ;

class TrtToolUBC ;

/ / Predeclare histogram classes t h a t you use .

namespace InDetDD{ class TRT DetectorManager ; }

namespace Trk {class Track ;}

namespace Rec { class TrackPar t i c l eCon ta ine r ;

class T r a c k P a r t i c l e ; }

namespace InDet

{

class LowBetaAlg : public AthAlgor i thm {
public :

LowBetaAlg ( const s td : : s t r i n g& name, ISvcLocator∗ pSvcLocator ) ;

StatusCode i n i t i a l i z e ( ) ;

StatusCode execute ( ) ;

StatusCode f i n a l i z e ( ) ;

s td : : vector<f loa t> ChargedSMPindicators ( const Trk : : Track& t rack ) ;

protected :

const TRT ID∗ m t r t I d ; / / TRT ID helper

const InDetDD : : TRT DetectorManager∗ m TRTdetMgr ; / / TRT de tec to r manager ( to get ID he lper )

unsigned i n t m minTRThits ; / / Minimum number o f TRT h i t s to g ive PID .

f l o a t m RcorrZero ; / / Inpu ts f o r R Cor rec t ion

f l o a t m RcorrOne ; / / Inpu ts f o r R Cor rec t ion

f l o a t m RcorrTwo ; / / Inpu ts f o r R Cor rec t ion

f l o a t m TimingOffset ; / / t im ing o f f s e t f o r t r a i l i n g b i t t ime
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/ / s td : : s t r i n g m tracksName ; / / ! < Name of t r ack con ta ine r i n StoreGate

std : : s t r i n g m t r a c k P a r t i c l e C o l l e c t i o n ; / / !< Name of t r ack con ta ine r i n StoreGate

std : : s t r i n g m InDetLowBetaOutputName ; / / !< Name of output con ta ine r to s to re r e s u l t s

/∗∗ t r y i n g to get ahold o f the TRT c a l i b DB: ∗ /

ServiceHandle<ITRT CalDbSvc> m trtconddbsvc ;

ServiceHandle<IMagFieldAthenaSvc> p MagFieldAthenaSvc ;

private : / / Funct ions / v a r i a b l e s f o r using TrtToolsUBC , see TrtToolsWrapper . cxx

/ / / / / / / / / /

/ / / / / / / / / / Member v a r i a b l e s needed f o r TrtToolUBC to f u n c t i o n p rope r l y

/ / / / / / / / / /

/ / The ac tua l TrtToolUBC class ins tance ( a l l the r e s t here i s the wrapper )

TrtToolUBC∗ m TrtTool ;

/ / boolean value t h a t s p e c i f i e s whether TrtToolUBC was i n i t i a l i z e d suc cess fu l l y

bool m Tr tToo l In i tSuccess ;

/ / Track r e f i t con ta ine r

std : : s t r i n g m UnslimmedTracksContainerName ;

/ / / / / / / / / /

/ / / / / / / / / / ATHENA f u n c t i o n equ iva len ts ( c a l l from corresponding f u n c t i o n )

/ / / / / / / / / /

StatusCode i n i t i a l i z e T r t T o o l U B C ( ) ;

i n t f i na l i zeTr tToo lUBC ( ) ;

/ / / / / / / / / /

/ / / / / / / / / / Cond i t ions Database i n t e r a c t i o n f u n c t i o n s

/ / / / / / / / / /

/ / Funct ion f o r updat ing the TRT cond i t i ons database e n t r i e s

/ / Adapted from TRT Dr i f tFunc t ionToo l . cxx

StatusCode update ( IOVSVC CALLBACK ARGS ) ;

/ / / / / / / / / /

/ / / / / / / / / / Wrapper f u n c t i o n s f o r c a l l i n g TrtToolUBC

/ / / / / / / / / /

/ / A wrapper in te rmed ia ry f o r the TrtToolUBC : : TRT FEbeta f u n c t i o n

/ / Meant to be c a l l e d from LowBetaAlg . cxx , v ia InDet : : LowBetaAlg : : ChargedSMPindicators

/ / Returns a vec to r o f r e s u l t s from TRT FEbeta where :

/ / vec to r [ 0 ] = L ike l ihoodBeta

/ / vec to r [ 1 ] = L i k e l i h o o d E r r o r

std : : vector<f loa t> cal lTr tToolUBC ( const Trk : : Track& t rack ) ;
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/ / Gather a l l o f the necessary data t h a t the TRT FEbeta f u n c t i o n takes as inpu ts

/ / Sets a l l o f the i npu t arguments

StatusCode parseDataForTrtToolUBC ( const Trk : : Track& t rack , s td : : vector<int>∗ TRT bi tpa t te rn ,

s td : : vector<int>∗ TRT bec , s td : : vector<int>∗ TRT strawlayer , s td : : vector<int>∗ TRT layer ,

s td : : vector<f loa t>∗ TRT t0 , s td : : vector<f loa t>∗ TRT R , s td : : vector<f loa t>∗ TRT R track ,

s td : : vector<f loa t>∗ TrackX , s td : : vector<f loa t>∗ TrackY , s td : : vector<f loa t>∗ TrackZ ,

f l o a t∗ RecPt , f l o a t∗ RecEta ) ;

} ;

} / / end of namespace

#endif / / LOWBETAALG H

A.2 TrtToolsWrapper.cxx (Wrappers Body)
This file contains all of the wrapper methods discussed in chapter 3, and is the

core part of my project. These methods are the interaction layer that allows Low-

BetaAlg, which is an Athena algorithm, and TRTCHAMP, a private algorithm, to

communicate. The file has been slightly modified to fit onto the page.

#include ” InDetLowBetaFinder / LowBetaAlg . h ”

#include ” InDetLowBetaFinder / TrtToolsUBC . h ”

/ / Athena Cont ro l and Serv ices

#include ” GaudiKernel / MsgStream . h ”

#include ” GaudiKernel / ISvcLocator . h ”

#include ” StoreGate / StoreGateSvc . h ”

/ / Track headers

#include ” TrkTrack / Track . h ”

#include ” TrkTrack / T rackCo l l ec t i on . h ”

#include ” T rkPar t i c leBase / T rackPar t i c l eBaseCo l l ec t i on . h ”

#include ” T rkPar t i c leBase / TrackPar t ic leBase . h ”

#include ” P a r t i c l e / T rackPar t i c l eCon ta ine r . h ”

#include ” P a r t i c l e / T r a c k P a r t i c l e . h ”

/ / Other headers

#include ” InDetRIO OnTrack / TRT Dr i f tC i rc leOnTrack . h ”

#include ” InDetPrepRawData / T R T D r i f t C i r c l e . h ”

#include ” I n D e t I d e n t i f i e r / TRT ID . h ”
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/ / P r i n t s the i npu t o f TRT FEbeta ( ) to f i l e ( hard−set )

/ / This i s a temporary debug method , and may be removed l a t e r

i n t pr intTr tToolUBCDebugFi le ( s td : : vector<int> TRT bi tpa t te rn ,

s td : : vector<int> TRT bec , s td : : vector<int> TRT strawlayer ,

s td : : vector<int> TRT layer , s td : : vector<f loa t> TRT t0 ,

s td : : vector<f loa t> TRT R , s td : : vector<f loa t> TRT R track ,

s td : : vector<f loa t> TrackX , s td : : vector<f loa t> TrackY ,

s td : : vector<f loa t> TrackZ , f l o a t RecPt , f l o a t RecEta ) ;

StatusCode InDet : : LowBetaAlg : : i n i t i a l i z e T r t T o o l U B C ( )

{
/ / Declare the t r ack r e f i t con ta ine r

dec la reProper ty ( ” UnslimmedTracksContainer ” ,

m UnslimmedTracksContainerName= ” CombinedInDetTracks ” ) ;

/ / Create the Tr tToo l

m TrtTool = new TrtToolUBC ( ) ;

/ / Load the d e f a u l t p r i o r values

m TrtTool−>TRT LoadDefaul tPr iors ( ) ;

/ / Reg is te r a f u n c t i o n f o r ob ta in ing p r i o r s from the TRT cond i t i ons database

const DataHandle<CondA t t r L i s tCo l l ec t i on> co l l ec t i onHand le ;

StatusCode SC = detStore()−>regFcn (& InDet : : LowBetaAlg : : update ,

this , co l lec t ionHand le , ” /TRT/ Ca l ib / MLbetaPriors ” ) ;

i f (SC. i s F a i l u r e ( ) )

ATH MSG WARNING( ” Cal lback r e g i s t r a t i o n f a i l e d f o r LowBetaAlg − p r i o r s . ” +

” Using d e f a u l t p r i o r values . ” ) ;

else
ATH MSG INFO( ” Registered ca l l back f o r updat ing LowBetaAlg − p r i o r s ” ) ;

return StatusCode : :SUCCESS;

}

i n t InDet : : LowBetaAlg : : f i na l i zeTr tToo lUBC ( )

{
/ / Done wi th the Tr tToo l

delete m TrtTool ;

return 0;

}
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/ / Funct ion f o r updat ing the TRT cond i t i ons database e n t r i e s

/ / Adapted from TRT Dr i f tFunc t ionToo l . cxx

StatusCode InDet : : LowBetaAlg : : update ( IOVSVC CALLBACK ARGS P( I , keys ) )

{
const bool doDebug = fa lse ; / / se t to t r ue to p r i n t to f i l e below

const char∗ DEBUGFILE C = ” / a fs / cern . ch / user / s / sschramm / tes ta rea / 1 6 . 0 . 2 / +

” InnerDetec to r / InDetRecAlgs / InDetLowBetaFinder / debugPriors . out ” ;

FILE∗ dF i l e = NULL ;

ATH MSG INFO( ” Updating p r i o r s for the LowBetaAlg l i k e l i h o o d beta es t ima to r ” ) ;

/ / Cal lback f u n c t i o n to update p r i o r s when condDB data changes :

f o r ( s td : : l i s t <s td : : s t r i n g > : : c o n s t i t e r a t o r key=keys . begin ( ) ;

key != keys . end ( ) ; ++key )

ATH MSG DEBUG( ”IOVCALLBACK for key ” << ∗key << ” number ” << I ) ;

/ / Read the p r i o r s

const C o n d A t t r L i s t C o l l e c t i o n∗ c o l l e c t i o n ;

StatusCode SC = detStore()−> r e t r i e v e ( c o l l e c t i o n , ” /TRT/ Ca l ib / MLbetaPriors ” ) ;

i f (SC. i s F a i l u r e ( ) | | c o l l e c t i o n == 0)

{
ATH MSG ERROR( ”A problem occurred while reading a cond i t i ons database ob jec t . ” ) ;

r e t u r n StatusCode : : FAILURE ;

}
else / / Success fu l l y r e t r i e v e d

{
/ / Ensure t h a t the c o l l e c t i o n i s the same s ize as the p r i o r s

/ / (Make sure we ’ re rep lac ing every th ing , not j u s t a p o r t i o n o f the p r i o r s )

i f ( c o l l e c t i o n−>s ize ( ) != m TrtTool−>TRT NumPriors ( ) )

ATH MSG WARNING( ” Unexpected number o f p r i o r s r e t r i e v e d from the condDB ” +

” ( got ” << c o l l e c t i o n−>s ize ( ) << ” , expected ” <<

m TrtTool−>TRT NumPriors ( ) << ” ) . Using d e f a u l t s . ” ) ;

e lse

{
/ / I f debugging , open the output f i l e and p r i n t the header

i f ( doDebug )

dF i l e = fopen (DEBUGFILE C, ”w” ) ;

i f ( dF i l e != NULL)

f p r i n t f ( dF i le , ” #####\n##### p r i o r [ etaIndex ] [ barrelOrEndcap ] ” +

” [ rad ius Index ]\n#####\n\n ” ) ;

i n t channel ;

char name [ 2 5 ] ;

double∗ b i tVa lues ;

/ / Loop over the changes

f o r ( C o n d A t t r L i s t C o l l e c t i o n : : c o n s t i t e r a t o r i t e r = c o l l e c t i o n−>begin ( ) ;
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i t e r != c o l l e c t i o n−>end ( ) ; ++ i t e r )

{
channel = abs ( i t e r−> f i r s t ) ;

/ / channel w i l l be i n one of two forms

/ / i f channel >= 100000:

/ / channel i s i n the form 1AABCC ( each one i s a s i n g l e base−10 d i g i t )

/ / AA = eta b in index (0 to 99) [ ” i ” i n TRT LoadPriors ]

/ / B = straw type , b a r r e l ( 0 ) or endcap ( 1 ) [ ” k ” i n TRT LoadPriors ]

/ / CC = rad ius b in index (0 to 99) [ ” l ” i n TRT LoadPriors ]

/ / e lse i f 0 <= channel < 100000:

/ / channel i s i n the form ABC ( each one i s a s i n g l e base−10 d i g i t )

/ / A = eta b in index (0 to 9) [ ” i ” i n TRT LoadPriors ]

/ / B = straw type , b a r r e l ( 0 ) or endcap ( 1 ) [ ” k ” i n TRT LoadPriors ]

/ / C = rad ius b in index (0 to 9) [ ” l ” i n TRT LoadPriors ]

i n t etaIndex ;

i n t barrelOrEndcap ;

i n t rad ius Index ;

i f ( channel >= 100000)

{
channel −= 100000;

etaIndex = channel /1000;

barrelOrEndcap = ( channel %1000)/100;

rad ius Index = channel%100;

}
else

{
etaIndex = channel /100 ;

barrelOrEndcap = ( channel %100)/10;

rad ius Index = channel%10;

}

i f ( ( e taIndex >= 0 && etaIndex <= TrtToolUBC : : NETABINS)

&& ( barrelOrEndcap == 0 | | barrelOrEndcap == 1)

&& ( rad ius Index >= 0 && rad ius Index <= TrtToolUBC : : NRFEBINS) )

{
const co ra l : : A t t r i b u t e L i s t & l i s t = i t e r−>second ;

b i tVa lues = ( double ∗) mal loc ( s i z e o f ( double )∗24 ) ;

f o r ( i n t i = 0 ; i < 24; i ++)

{
s p r i n t f (name, ” TRT bi t %d ” , i ) ;

b i tVa lues [ i ] = l i s t [ name ] . data<double > ( ) ;

/ / I f debug , p r i n t to f i l e

i f ( dF i l e != NULL)

f p r i n t f ( dF i le , ” p r i o r [%d][%d][%d ] [ TRT bi t %d ] = %10f\n ” , etaIndex ,

barrelOrEndcap , rad iusIndex , i , l i s t [ name ] . data<double > ( ) ) ;
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}
/ / I f debug , p r i n t a new l i n e to f i l e

i f ( dF i l e != NULL)

f p r i n t f ( dF i le , ”\n ” ) ;

m TrtTool−>TRT UpdatePriorValues ( rad iusIndex , etaIndex ,

barrelOrEndcap , b i tVa lues ) ;

f r ee ( b i tVa lues ) ;

}
else i f ( dF i l e != NULL) / / I f debug , p r i n t a warning l i n e to f i l e

f p r i n t f ( dF i le , ” Unexpected r e s u l t ! Got channel o f %d ( eta=%d , ” +

”BoE=%d , rad=%d)\n\n ” , channel , etaIndex , barrelOrEndcap , rad ius Index ) ;

/ / I f debug , c lose the f i l e , as we ’ re done now

i f ( dF i l e != NULL)

f c l o s e ( dF i l e ) ;

}
}

}

r e t u r n StatusCode : :SUCCESS;

}

/ / A wrapper in te rmed ia ry f o r the TrtToolUBC : : TRT FEbeta f u n c t i o n

/ / Meant to be c a l l e d from LowBetaAlg . cxx , v ia InDet : : LowBetaAlg : : ChargedSMPindicators

/ / Returns a vec to r o f r e s u l t s from TRT FEbeta where :

/ / vec to r [ 0 ] = L ike l ihoodBeta

/ / vec to r [ 1 ] = L i k e l i h o o d E r r o r

s td : : vector<f l o a t> InDet : : LowBetaAlg : : ca l lTr tToolUBC ( const Trk : : Track& t rack )

{
/ / Return v a r i a b l e

s td : : vector<f l o a t> L ike l ihoodValues ;

/ / Var iab les to be determined before c a l l i n g TRT FEbeta

/ / Raw b i t p a t t e r n

s td : : vector<i n t> TRT b i tpa t te rn ;

/ / Ba r re l or endcap index

std : : vector<i n t> TRT bec ;

/ / S t rawlayer index

std : : vector<i n t> TRT strawlayer ;

/ / Layer index

std : : vector<i n t> TRT layer ;

/ / t0 values

std : : vector<f l o a t> TRT t0 ;

/ / D r i f t c i r c l e rad ius

s td : : vector<f l o a t> TRT R ;

/ / Local t r ack rad ius
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std : : vector<f l o a t> TRT R track ;

/ / x p o s i t i o n o f the h i t

s td : : vector<f l o a t> TrackX ;

/ / y p o s i t i o n o f the h i t

s td : : vector<f l o a t> TrackY ;

/ / z p o s i t i o n o f the h i t

s td : : vector<f l o a t> TrackZ ;

/ / p t

f l o a t RecPt ;

/ / eta

f l o a t RecEta ;

/ / Load the p r i o r s from a f i l e ins tead of using the cond i t i ons db or the d e f a u l t s

/ / const s td : : s t r i n g f i leName = ” / a fs / cern . ch / user / s / sschramm / tes ta rea / 1 6 . 0 . 2 / ” +

/ / ” InnerDetec to r / InDetRecAlgs / InDetLowBetaFinder / ” +

/ / ” InDetLowBetaFinder / TRTpriors .MC. roo t ” ;

/ / m TrtTool−>TRT LoadPriors ( f i leName ) ;

/ / Gather / parse a l l o f the neccessary data

StatusCode SC = parseDataForTrtToolUBC ( t rack ,& TRT bi tpa t te rn ,&TRT bec ,

&TRT strawlayer ,& TRT layer ,& TRT t0 ,&TRT R,& TRT R track ,

&TrackX ,&TrackY ,& TrackZ ,&RecPt ,&RecEta ) ;

i f (SC. i s F a i l u r e ( ) )

{
L ike l ihoodValues . c l ea r ( ) ;

L ike l ihoodValues . push back (−997);

L ike l ihoodValues . push back (−997);

r e t u r n L ike l ihoodValues ;

}

/ / We now have every th ing we need

/ / Create the debug f i l e

/ / pr intTr tToolUBCDebugFi le ( TRT bi tpa t te rn , TRT bec , TRT strawlayer , TRT layer ,

/ / TRT t0 , TRT R , TRT R track , TrackX , TrackY , TrackZ , RecPt , RecEta ) ;

/ / Now c a l l the ac tua l f u n c t i o n we want

L ike l ihoodValues = m TrtTool−>TRT FEbeta ( TRT bi tpa t te rn , TRT bec ,

TRT strawlayer , TRT layer , TRT t0 , TRT R , TRT R track ,

TrackX , TrackY , TrackZ , RecPt , RecEta ) ;

r e t u r n L ike l ihoodValues ;

}
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/ / Gather a l l o f the necessary data t h a t the TRT FEbeta f u n c t i o n takes as inpu ts

/ / Sets a l l o f the i npu t arguments

StatusCode InDet : : LowBetaAlg : : parseDataForTrtToolUBC ( const Trk : : Track& t rack ,

s td : : vector<i n t>∗ TRT bi tpa t te rn , s td : : vector<i n t>∗ TRT bec ,

s td : : vector<i n t>∗ TRT strawlayer , s td : : vector<i n t>∗ TRT layer ,

s td : : vector<f l o a t >∗ TRT t0 , s td : : vector<f l o a t >∗ TRT R ,

s td : : vector<f l o a t >∗ TRT R track , s td : : vector<f l o a t >∗ TrackX ,

s td : : vector<f l o a t >∗ TrackY , s td : : vector<f l o a t >∗ TrackZ ,

f l o a t ∗ RecPt , f l o a t ∗ RecEta )

{
/ / Var iab le f o r non−r e f i t d r i f t c i r c l e s , to be used as a check

std : : vector<f l o a t> TRT R notFi t ;

/ / Clear a l l the vec to rs

TRT bi tpa t te rn−>c l ea r ( ) ;

TRT bec−>c l ea r ( ) ;

TRT strawlayer−>c l ea r ( ) ;

TRT layer−>c l ea r ( ) ;

TRT t0−>c l ea r ( ) ;

TRT R−>c l ea r ( ) ;

TRT R track−>c l ea r ( ) ;

TrackX−>c l ea r ( ) ;

TrackY−>c l ea r ( ) ;

TrackZ−>c l ea r ( ) ;

TRT R notFi t . c l ea r ( ) ;

/ / Get the non−r e f i t t r ack p a r t i c l e d r i f t c i r c l e r a d i i f o r checking

/ / our r e f i t s l a t e r

const DataVector<const Trk : : TrackStateOnSurface>∗ h i t s =

t r ack . t rackStateOnSurfaces ( ) ;

i f ( h i t s )

{

/ / Loop over the h i t s

DataVector<const Trk : : TrackStateOnSurface > : : c o n s t i t e r a t o r h i t I t e r E n d =

h i t s−>end ( ) ;

DataVector<const Trk : : TrackStateOnSurface > : : c o n s t i t e r a t o r h i t I t e r =

h i t s−>begin ( ) ;

f o r ( ; h i t I t e r != h i t I t e r E n d ; ++ h i t I t e r )

{
/ / on ly inc lude t h i s h i t i f we can c a l l a TRT d r i f t c i r c l e out o f a

/ / measurementBase ob jec t based on i t

const Trk : : MeasurementBase ∗measurement = (∗ h i t I t e r )−>measurementOnTrack ( ) ;
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i f ( measurement )

{
/ / Get d r i f t c i r c l e ( ensures t h a t h i t i s from TRT)

const InDet : : TRT Dr i f tC i rc leOnTrack ∗ d r i f t C i r c l e =

dynamic cast<const InDet : : TRT Dr i f tC i rc leOnTrack∗>(measurement ) ;

i f ( d r i f t C i r c l e )

{
/ / Check the raw data

i f ( d r i f t C i r c l e−>prepRawData ( ) )

{
f l o a t d r i f t C i r c l e R a d i u s = −999;

d r i f t C i r c l e R a d i u s = d r i f t C i r c l e−>loca lParameters ( ) [ Trk : : d r i f t R a d i u s ] ;

TRT R notFi t . push back ( d r i f t C i r c l e R a d i u s ) ;

}
}

}
}

}

/ / Determine pt , eta , ph i

/ / Perigee e x i s t s i f we got here ( checked f o r i n

/ / InDet : : LowBetaAlg : : ChargedSMPindicators )

const Trk : : TrackParameters∗ per igee = t rack . perigeeParameters ( ) ;

const HepVector& parameterVector = perigee−>parameters ( ) ;

double qOverP = parameterVector [ Trk : : qOverP ] ;

double the ta = parameterVector [ Trk : : t he ta ] ;

double phi0 = parameterVector [ Trk : : phi0 ] ;

i f ( tan ( the ta / 2 . 0 ) < 0.0001)

{
ATH MSG DEBUG( ” TrtToolUBC abor t i ng due to the ta value ( tan ( the ta / 2 ) < 0.0001 ” ) ;

r e t u r n StatusCode : : FAILURE ;

}
double eta = −l og ( tan ( the ta / 2 . 0 ) ) ;

i f ( qOverP == 0 .0 )

{
ATH MSG DEBUG( ” TrtToolUBC abor t i ng due to momentum value ( q / p == 0) ” ) ;

r e t u r n StatusCode : : FAILURE ;

}
double p t = fabs ( 1 . 0 / qOverP)∗ s in ( the ta ) ;

/ / Set p t and eta

∗RecPt = pt ;

∗RecEta = eta ;
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/ / Check i f the t r ack r e f i t con ta ine r i s i n s to rega te

i f ( ! ev tS tore()−>conta ins<TrackCo l lec t ion >(m UnslimmedTracksContainerName ) )

{
/ / Warn the user t h a t the a lgo r i t hm f a i l e d

ATH MSG WARNING( ” StoreGate does not conta in the CombinedInDetTracks con ta ine r ” ) ;

r e t u r n StatusCode : : FAILURE ;

}

/ / Get the t r ack r e f i t con ta ine r from storega te

/ / (We ’ ve a l ready checked t h a t i t ’ s there )

const T rackCo l l ec t i on∗ unslimmedTracks ( 0 ) ;

StatusCode SC = evtStore()−> r e t r i e v e ( unslimmedTracks , m UnslimmedTracksContainerName ) ;

i f (SC. i s F a i l u r e ( ) | | ! unslimmedTracks )

{
ATH MSG WARNING( ” Could not r e t r i e v e CombinedInDetTracks con ta ine r ” ) ;

r e t u r n StatusCode : : FAILURE ;

}

/ / need to loop over r e f i t con ta ine r to f i n d the r i g h t r e f i t t rack ,

/ / NOT 1:1 wi th t r ack p a r t i c l e s !

f l o a t r e f i t E t a = −999;

f l o a t r e f i t P h i = −999;

f l o a t etaphiCone = 0;

f l o a t bestCone = 9999;

T rackCo l l ec t i on : : c o n s t i t e r a t o r MATCH = unslimmedTracks−>begin ( ) ;

f o r ( T rackCo l l ec t i on : : c o n s t i t e r a t o r ITR = unslimmedTracks−>begin ( ) ;

ITR != unslimmedTracks−>end ( ) ; ++ITR )

{
const Trk : : MeasuredPerigee ∗aMeasPer =

dynamic cast<const Trk : : MeasuredPerigee∗>((∗ ITR)−>perigeeParameters ( ) ) ;

etaphiCone = s q r t (pow( −log ( tan ( aMeasPer−>parameters ( ) [ Trk : : t he ta ] / 2 ) )

− eta , 2) + pow( aMeasPer−>parameters ( ) [ Trk : : phi0 ] − phi0 , 2 ) ) ;

i f ( etaphiCone < bestCone )

{
bestCone = etaphiCone ;

r e f i t E t a = −l og ( tan ( aMeasPer−>parameters ( ) [ Trk : : t he ta ] / 2 ) ) ;

r e f i t P h i = aMeasPer−>parameters ( ) [ Trk : : phi0 ] ;

MATCH = ITR ;

}
}
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/ / Check f o r r e f i t h i t s ( aka t r ack s ta tes on surfaces , tsos )

const DataVector<const Trk : : TrackStateOnSurface>∗ r e f i t H i t s =

dynamic cast<const DataVector<const Trk : : TrackStateOnSurface>∗>
( (∗MATCH)−>t rackStateOnSurfaces ( ) ) ;

i f ( r e f i t H i t s )

{
DataVector<const Trk : : TrackStateOnSurface > : : c o n s t i t e r a t o r

h i t I t e r E n d = r e f i t H i t s−>end ( ) ;

DataVector<const Trk : : TrackStateOnSurface > : : c o n s t i t e r a t o r

h i t I t e r = r e f i t H i t s−>begin ( ) ;

/ / Loop over h i t s

f o r ( ; h i t I t e r != h i t I t e r E n d ; ++ h i t I t e r )

{
/ / on ly inc lude t h i s h i t i f we can c a l l a TRT d r i f t c i r c l e out o f a

/ / measurementBase ob jec t based on i t

const Trk : : MeasurementBase ∗measurement = (∗ h i t I t e r )−>measurementOnTrack ( ) ;

i f ( measurement )

{
/ / Get d r i f t c i r c l e ( ensures t h a t h i t i s from TRT ) :

const InDet : : TRT Dr i f tC i rc leOnTrack ∗ d r i f t C i r c l e =

dynamic cast<const InDet : : TRT Dr i f tC i rc leOnTrack∗>(measurement ) ;

i f ( d r i f t C i r c l e )

{
/ / Check the raw data

i f ( d r i f t C i r c l e−>prepRawData ( ) )

{
/ / Raw b i t pa t t e rn

TRT bi tpa t te rn−>push back ( d r i f t C i r c l e−>prepRawData()−>getWord ( ) ) ;

/ / TRT ID in fo rma t i on

I d e n t i f i e r DCoTId = d r i f t C i r c l e−>i d e n t i f y ( ) ;

i n t bec = m t r t I d−>b a r r e l e c ( DCoTId ) ;

i n t strawLayer = m t r t I d−>s t r a w l a y e r ( DCoTId ) ;

i n t l a ye r = m t r t I d−>l a ye r o r whee l ( DCoTId ) ;

TRT bec−>push back ( bec ) ;

TRT strawlayer−>push back ( strawLayer ) ;

TRT layer−>push back ( l aye r ) ;

/ / Get TRT c a l i b r a t i o n from the database , t0

I d e n t i f i e r TRTlocal = m t r t I d−>s t r a w i d ( bec ,

m t r t I d−>phi module ( DCoTId ) , layer ,

strawLayer , m t r t I d−>straw ( DCoTId ) ) ;

double t0 = m trtconddbsvc−>getT0 ( TRTlocal ) ;

TRT t0−>push back ( t0 ) ;

/ / Get d r i f t c i r l c e rad ius

f l o a t d r i f t C i r c l e R a d i u s = −999;
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d r i f t C i r c l e R a d i u s = d r i f t C i r c l e−>loca lParameters ( ) [ Trk : : d r i f t R a d i u s ] ;

TRT R−>push back ( d r i f t C i r c l e R a d i u s ) ;

/ / Get l o c a l t r ack rad ius ( t rack−anode d is tance )

const Trk : : TrackParameters∗ hitParam =((∗ h i t I t e r )−>t rackParameters ( ) ) ;

f l o a t loca lTrackRadius = −999;

i f ( hitParam )

loca lTrackRadius = hitParam−>parameters ( ) [ Trk : : d r i f t R a d i u s ] ;

TRT R track−>push back ( loca lTrackRadius ) ;

/ / Get the x , y , and z p o s i t i o n s o f the h i t

TrackX−>push back ( d r i f t C i r c l e−>g l o b a l P o s i t i o n ( ) . x ( ) ) ;

TrackY−>push back ( d r i f t C i r c l e−>g l o b a l P o s i t i o n ( ) . y ( ) ) ;

TrackZ−>push back ( d r i f t C i r c l e−>g l o b a l P o s i t i o n ( ) . z ( ) ) ;

}
}

}
}

}

/ / Compare the non−r e f i t and r e f i t d r i f t c i r c l e r a d i i

i f ( TRT R notFi t . s i ze ( ) != TRT R−>s ize ( ) )

bestCone = 9999;

e lse

f o r ( unsigned i n t i = 0 ; i < TRT R−>s ize ( ) ; i ++)

i f ( (∗TRT R ) [ i ] != TRT R notFi t [ i ] )

bestCone = 9998;

r e t u r n StatusCode : :SUCCESS;

}
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/ / P r i n t s the i npu t o f TRT FEbeta ( ) to f i l e ( hard−set )

/ / This i s a temporary debug method , and may be removed l a t e r

i n t pr intTr tToolUBCDebugFi le ( s td : : vector<i n t> TRT bi tpa t te rn ,

s td : : vector<i n t> TRT bec , s td : : vector<i n t> TRT strawlayer ,

s td : : vector<i n t> TRT layer , s td : : vector<f l o a t> TRT t0 ,

s td : : vector<f l o a t> TRT R , s td : : vector<f l o a t> TRT R track ,

s td : : vector<f l o a t> TrackX , s td : : vector<f l o a t> TrackY ,

s td : : vector<f l o a t> TrackZ , f l o a t RecPt , f l o a t RecEta )

{
s t a t i c i n t trackNum = 1;

const char∗ FILENAME C = ” / a fs / cern . ch / user / s / sschramm / tes ta rea / 1 6 . 0 . 2 / ” +

” InnerDetec to r / InDetRecAlgs / InDetLowBetaFinder / debugFi le . out ” ;

FILE∗ o u t F i l e ;

unsigned i n t i ;

i f ( trackNum == 1)

o u t F i l e = fopen (FILENAME C , ”w” ) ;

e lse

o u t F i l e = fopen (FILENAME C , ” a ” ) ;

i f ( o u t F i l e == NULL)

r e t u r n −1;

f p r i n t f ( ou tF i l e , ” #\n#Track Number %d\n#RecPt = %f , RecEta = %f\n#\n ” ,

trackNum++ ,RecPt , RecEta ) ;

f p r i n t f ( ou tF i l e , ”%%S t a r t TRT b i tpa t te rn :\n ” ) ;

f o r ( i = 0 ; i < TRT b i tpa t te rn . s ize ( ) ; i ++)

f p r i n t f ( ou tF i l e , ”\ t%d\n ” , TRT b i tpa t te rn [ i ] ) ;

f p r i n t f ( ou tF i l e , ”%%End TRT b i tpa t te rn :\n ” ) ;

f p r i n t f ( ou tF i l e , ”%%S t a r t TRT bec :\n ” ) ;

f o r ( i = 0 ; i < TRT bec . s ize ( ) ; i ++)

f p r i n t f ( ou tF i l e , ”\ t%d\n ” , TRT bec [ i ] ) ;

f p r i n t f ( ou tF i l e , ”%%End TRT bec :\n ” ) ;

f p r i n t f ( ou tF i l e , ”%%S t a r t TRT strawlayer :\n ” ) ;

f o r ( i = 0 ; i < TRT strawlayer . s i ze ( ) ; i ++)

f p r i n t f ( ou tF i l e , ”\ t%d\n ” , TRT strawlayer [ i ] ) ;

f p r i n t f ( ou tF i l e , ”%%End TRT strawlayer :\n ” ) ;

f p r i n t f ( ou tF i l e , ”%%S t a r t TRT layer :\n ” ) ;

f o r ( i = 0 ; i < TRT layer . s i ze ( ) ; i ++)

f p r i n t f ( ou tF i l e , ”\ t%d\n ” , TRT layer [ i ] ) ;

f p r i n t f ( ou tF i l e , ”%%End TRT layer :\n ” ) ;

f p r i n t f ( ou tF i l e , ”%%S t a r t TRT t0 :\n ” ) ;
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f o r ( i = 0 ; i < TRT t0 . s ize ( ) ; i ++)

f p r i n t f ( ou tF i l e , ”\ t%f\n ” , TRT t0 [ i ] ) ;

f p r i n t f ( ou tF i l e , ”%%End TRT t0 :\n ” ) ;

f p r i n t f ( ou tF i l e , ”%%S t a r t TRT R:\n ” ) ;

f o r ( i = 0 ; i < TRT R . s ize ( ) ; i ++)

f p r i n t f ( ou tF i l e , ”\ t%f\n ” ,TRT R [ i ] ) ;

f p r i n t f ( ou tF i l e , ”%%End TRT R:\n ” ) ;

f p r i n t f ( ou tF i l e , ”%%S t a r t TRT R track :\n ” ) ;

f o r ( i = 0 ; i < TRT R track . s i ze ( ) ; i ++)

f p r i n t f ( ou tF i l e , ”\ t%f\n ” , TRT R track [ i ] ) ;

f p r i n t f ( ou tF i l e , ”%%End TRT R track :\n ” ) ;

f p r i n t f ( ou tF i l e , ”%%S t a r t TrackX :\n ” ) ;

f o r ( i = 0 ; i < TrackX . s ize ( ) ; i ++)

f p r i n t f ( ou tF i l e , ”\ t%f\n ” , TrackX [ i ] ) ;

f p r i n t f ( ou tF i l e , ”%%End TrackX :\n ” ) ;

f p r i n t f ( ou tF i l e , ”%%S t a r t TrackY :\n ” ) ;

f o r ( i = 0 ; i < TrackY . s ize ( ) ; i ++)

f p r i n t f ( ou tF i l e , ”\ t%f\n ” , TrackY [ i ] ) ;

f p r i n t f ( ou tF i l e , ”%%End TrackY :\n ” ) ;

f p r i n t f ( ou tF i l e , ”%%S t a r t TrackZ :\n ” ) ;

f o r ( i = 0 ; i < TrackZ . s ize ( ) ; i ++)

f p r i n t f ( ou tF i l e , ”\ t%f\n ” , TrackZ [ i ] ) ;

f p r i n t f ( ou tF i l e , ”%%End TrackZ :\n ” ) ;

f c l o s e ( o u t F i l e ) ;

r e t u r n 0 ;

}
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