A DECISION SUPPORT SYSTEM FOR HARVEST SCHEDULING AND LOG PROCESSING AT THE MALCOLM KNAPP RESEARCH FOREST IN MAPLE RIDGE, BRITISH COLUMBIA

by

Ye Huang

B.Sc., The University of British Columbia, 2012

A GRADUATING ESSAY SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE

in

The Faculty of Forestry

FRST 497

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

April 2012

© Ye Huang, 2012

Abstract

This essay develops prototypes of linear programming-based models to project the harvesting level, lumber production, and net revenue of a harvesting plan in order to support forest operation decision-making in the Malcolm Knapp Research Forest (MFRF) in Maple Ridge, British Columbia. Field data were collected from 3 different biogeoclimatic zones within the research forest. Growth and yield of the forest was modeled by Table Interpolation Program for Stand Yields (TIPSY) which is a stand- and forest-level model developed by the British Columbia Ministry of Forest and Range. Then, the growth and yield data were imported into a forest estate linear programming model to forecast the volume of logs harvested from the forest. A sawing pattern model was used to design the sawing pattern and generate Lumber Recovery Factors by log diameter. Subsequently, a log-to-product linear programming model was used to estimate the final lumber production, mill working hours and the net profit for the forest. The results predict that the mill can earn \$3,110,141 by producing 141,229 MBF of lumber and 298,818 m³ of chips over a 60-year planning horizon. Sensitivity analysis included different sawing patterns, price fluctuations and limited mill operating hours. Some potential improvements in model structure, efficiency, availability for big diameter log, and carbon credits are also discussed. Although the forest data and the sawmill configuration used in the models are different from reality, it will not be difficult to modify the model for MKRF.

Key words: linear programming model, forest operations, Malcolm Knapp Research Forest

Table of Contents

Abstracti
List of Tablesiv
List of Figuresv
List of Acronyms and Abbreviationsvii
Acknowledgementsviii
1. Introduction
1.1 Foreword
1.2 Introduction of Malcolm Knapp Research Forest
1.3 Goals and Objectives
2. Method
2.1 Study Site
2.2 TIPSY modeling
2.3 Linear programming modelings
2.3.1 Forest Estate Model10
2.3.2 Sawing Pattern Model14
2.3.3 Log-to-product model
3. Results
3.1 Forest Estate Model
3.2 Log-to-product model
4. Discussion
4.1 2×8-oriented sawing pattern
4.2 Lumber price fluctuation
4.3 Limited mill working time
4.4 Possible Improvements of Models
4.4.1 Combine 2 LP Models
4.4.2 Improve Available Log Diameter Range of Sawing Pattern Model

	4.4.3 Introduce a Carbon Credit Section	36
5.	Conclusion	37
6.	Reference	38
7.	Appendices	41
7	7.1 Appendix A: Forest Estate Model	41
	7.1.1 Stand One	42
	7.1.2 Stand Two	43
	7.1.3 Stand Three	44
	7.1.4 Harvesting, Inventory and Result	45
7	7.2 Appendix B: Sawing Patterns for Each Type of Log	46
	7.2.1 2x10-oriented Lumber Recovery Factor	43
	7.2.2 2x8-oriented Lumber Recovery Factor	52
7	7.3 Appendix C: Log-to-product Model	54

List of Tables

Table 2-1. Site conditions for three study sites	3
Table 2-2. Volume and log DBH class by age for site one	6
Table 2-3. Volume and log DBH class by age for site two	6
Table 2-4. Volume and log DBH class by age for site three	7
Table 2-5. Volume and age classes for existing stands	11
Table 2-6. Volume and age classes for future stands	11
Table 2-7. Harvest yield (m³/ha) at harvesting for different stands	
Table 2-8. Ending inventory (m ³ /ha) of different stands	
Table 2-9. Finished thickness and width value of corresponding nominal lumber	
Table 2-10. Lumber and Chips Recovery Factor	
Table 2-11. Headsaw Productivity	
Table 2-12. Trimmer Productivity	
Table 2-13. Price of Lumber and Cost of Sawmill Operation	
Table 3-1. Harvesting area in each period for each stand	
Table 3-2. Harvesting volume in each period	
Table 3-3. Logs available and used in each period for each stand	
Table 3-4. Logs sorted by diameter in each period (m ³)	
Table 3-5. Lumber (MBF) and chips (m ³) produced in each period	
Table 4-1. Difference between 2x8 and 2x10 production, price and net revenue	
Table 4-2. Lumber price, production and net revenue for three scenarios	
Table 4-3. Net revenue comparison of 92.6% of the original price and 92.7% of	the original
price	

List of Figures

Figure 1-1. Location of UBC Malcolm Knapp Research Forest	2
Figure 2-1. Growth and yield curve for three sites	8
Figure 2-2. Flow of model analysis	9
Figure 2-3. Display portion of sawing calculator	18
Figure 2-4. Summary Portion of Sawing Calculator	19
Figure 3-1. Inventory and harvest in each period	25
Figure 3-2. Stand composition of harvesting stands	25
Figure 3-3. Log composition and volume for each period sorted by diameter	28
Figure 3-4. Final lumber production and composition	29
Figure 4-1. Production distribution of 2x8-oriented and 2x10-oritented sawing patterns	31
Figure 4-2. Quarterly lumber prices from 2007 to 2011	32
Figure 7-1 Stand One portion	42
Figure 7-2. Stand Two portion	43
Figure 7-3. Stand Three portion	44
Figure 7-4. Harvesting, inventory and result portion	45
Figure 7-5. 2x10-oriented sawing pattern and LRF for 15cm log	43
Figure 7-6. 2x10-oriented sawing pattern and LRF for 20cm log	44
Figure 7-7. 2x10-oriented sawing pattern and LRF for 25cm log	45
Figure 7-8. 2x10-oriented sawing pattern and LRF for 30cm log	46
Figure 7-9. 2x10-oriented sawing pattern and LRF for 35cm log	47
Figure 7-10. 2x10-oriented sawing pattern and LRF for 40cm log	48
Figure 7-11. 2x10-oriented sawing pattern and LRF for 45cm log	49
Figure 7-12. 2x10-oriented sawing pattern and LRF for 50cm log	50
Figure 7-13. 2x10-oriented sawing pattern and LRF for 55cm log	51
	v

Figure 7-14. 2x8-oriented sawing pattern and LRF for 35cm log	
Figure 7-15. 2x8-oriented sawing pattern and LRF for 55cm log	53

List of Acronyms and Abbreviations

BEC: Biogeoclimatic Ecosystem Classification Cw: Coastal Western redcedar **CWH: Coastal Western Hemlock** CWHdm: Coastal Western Hemlock, Dry Maritime CWHvm1: Coastal Western Hemlock, Submontane Very Wet maritime CWHvm2: Coastal Western Hemlock, Montane Very Wet maritime **CRF:** Chips Recovery Factor DBH: Diameter at Breast Height DWB: Decay, Waste and Breakage Fd: Coastal Douglas-fir Hw: Western hemlock LB: Lower Bound LP: Linear Program LRF: Lumber Recovery Factor MBF: Thousand Board Feet MKRF: Malcolm Knapp Research Forest Ha: Hectare Hr: Hour OAF: Operational Adjustment Factor Regen: regenerated **RHS: Right Hand Side** TIPSY: Table Interpolation Program for Stand Yields UBC: University of British Columbia

Acknowledgements

Here I avail myself of this opportunity to express enduring gratitude to the faculty, staff and my fellow students at the UBC, who have inspired and encouraged me to complete my undergraduate education in UBC forestry. I am greatly indebted to Dr. John Nelson for his knowledge, patience and precious supervision throughout the whole process of this essay. Without his help and guidance, this essay would never be finished. I am also greatly indebted to Dr. Guangyu Wang, who has shown much consideration for my composition and provided me many valuable suggestions.

Moreover, I would like to express my thanks to Laura Cottle, RPF, who has given me many valuable suggestions and advices, and made necessary corrections. My heartfelt thanks also go to Danielle Fleury for her instructive corrections and useful suggestions. My hearty appreciation also goes to Jun Li for his help in building the model.

Special thanks are owed to my parents, Zhijian Huang and Yiqin Wang, and relatives for their continuous support and encouragement.

1. Introduction

1.1 Foreword

Forest models are a tool for foresters and ecologists to predict and analyze the state, dynamics and productivity of forests (Clark & Clark, 1999). Models can be applied in forest management, climate change, forest dynamics and the entire biogeochemical cycle (Lischke, 2001). Moreover, forest models can be applied to different aspects of forestry on local, sub-regional, regional and global levels. For instance, forest dynamics models can be utilized in prediction of single trees and forest stands (local level), changes in tree species and age distributions of forests (sub-regional level), stages in biomass redistribution in the regional ecosystem (regional level) and the importance of forests within the global energy cycle (global level) (Vladimirov & Chudnenko, 2009). Therefore, models, which can provide better understanding of forests in the future, can support the decision-making process in long-term forest management and operations (Clark & Clark, 1999).

1.2 Introduction of Malcolm Knapp Research Forest

The 5,157 hectare Malcolm Knapp Research Forest (MKRF), is located in Maple Ridge, British Columbia, approximately 60 km east of Vancouver. Figure 1-1 shows the location of the MKRF. It was established in 1949 as an affiliated facility of the University of British Columbia (UBC) for academic research in forestry and related sciences. Besides its research function, MKRF also provides services in recreation, education and timber production (UBC Malcolm Knapp Research Forest, 2011b). MKRF holds a 250 hectare woodlot license (Woodlot W0037). It also owns a small sawmill, located in the MKRF, so that the MKRF is able to produce wood products within the forest to obtain revenues for the regular operation of the research forest (UBC Malcolm Knapp Research Forest, 2011c). Due to the economic downturn, in 2010 the harvested volume was reduced by 60% compared to 2009 and Woodlot W0037 was not harvested (UBC Malcolm Knapp Research Forest, Forest, 2009 and Woodlot W0037 was not harvested (UBC Malcolm Knapp Research Forest, South Forest, 2009 and Woodlot W0037 was not harvested (UBC Malcolm Knapp Research Forest, South W0037 was not harvested (UBC Malcolm Knapp Research Forest, South W0037 was not harvested (UBC Malcolm Knapp Research Forest, South W0037 was not harvested (UBC Malcolm Knapp Research Forest, South W0037 was not harvested (UBC Malcolm Knapp Research Forest, South W0037 was not harvested (UBC Malcolm Knapp Research Forest, South W0037 was not harvested (UBC Malcolm Knapp Research Forest, South W0037 was not harvested (UBC Malcolm Knapp Research Forest, South W0037 was not harvested (UBC Malcolm Knapp Research Forest, South W0037 was not harvested (UBC Malcolm Knapp Research Forest, South W0037 was not harvested (UBC Malcolm Knapp Research Forest, South W0037 was not harvested (UBC Malcolm Knapp Research Forest, South W0037 was not harvested (UBC Malcolm Knapp Research Forest, South W0037 was not harvested (UBC Malcolm Knapp Research Forest, South W0037 was not harvested (UBC Malcolm Knapp Research Forest, Sout

2011d). This essay is aimed at developing a decision supports system to predict the harvesting and log processing practices in the MKRF.

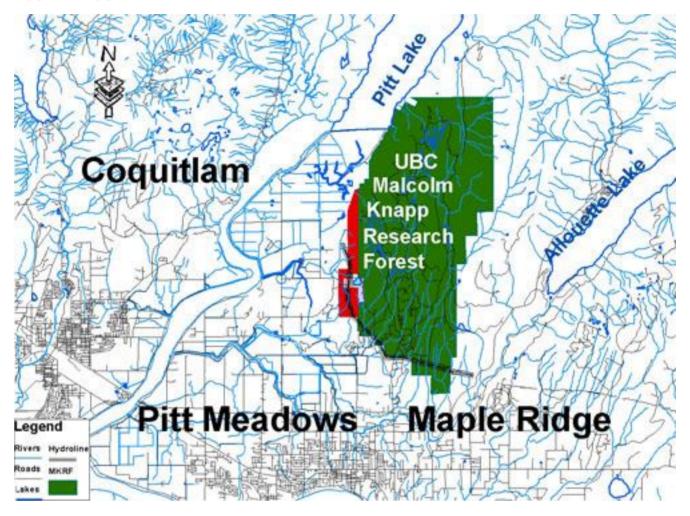


Figure 1-1. Location of UBC Malcolm Knapp Research Forest

(Source: UBC Malcolm Knapp Research Forest, 2011a)

1.3 Goals and Objectives

This essay will use a forest estate linear programming (LP) model, a sawing pattern model, and a log-to-product LP model to project and analyze the forest products production chain for the MKRF and to examine the feasibility of using an LP model in providing optimized solutions for timber harvesting and lumber production. The models will also be used to predict net revenue for the forest operations. The ecological conditions of experiment plots will be introduced and the structure of the

model will be described. The optimum result that is obtained through the model will be presented and discussed in terms of the type and volume of harvested tree and lumber to obtain maximum revenue. Then, different scenarios, including sawing pattern, lumber price and limited mill working time, will be discussed. Finally, recommendations will be made for assisting forest management and log processing in MKRF.

2. Method

2.1 Study Site

In this study, three sites were established in the MKRF and the ecological conditions and stand data were collected for the modeling growth and yield with the Table Interpolation Program for Stand Yields program (TIPSY). Table 2-1 summarizes ecological conditions for three study sites.

Sites	Species	Composition	Site Index (m)	Stock Height (cm)
Site One	Fd, Cw, Hm	40% Fd, 30% Cw, 30%Hm	18 for Fd, 18 for Cw, 15.75 for Hw	30 for Fd, 27 for Cw, 22 for Hw
Site Two	Fd, Cw, Hm	30% Fd, 40% Cw, 30%Hm	18 for Fd, 18 for Cw, 15.75 for Hw	30 for Fd, 27 for Cw, 22 for Hw
Site Three	Fd, Cw, Hm	20% Fd, 50% Cw, 30%Hm	18 for Fd, 18 for Cw, 15.75 for Hw	30 for Fd, 27 for Cw, 22 for Hw

Table 2-1. Site conditions for three study sites

There are some general ecological conditions that are common among all three sites:

• Geography: the forest region for all three sites is "coast" and the forest district is

"Chilliwack"; the biogeoclimatic zone (BEC zone) is "Coastal Western Hemlock (CWH)"; and the average slope is 10%;

- Stand establishment: the type of stand regeneration is planted; the density is 1600 stems/ha and there is no delay for regeneration; and
- Coastal Douglas-fir (Fd), Coastal Western Redcedar (Cw) and Coastal Western Hemlock (Hw) are the leading species in the three sites. Site Index for Douglas-fir and Western Redcedar is 18m; Site Index for Western Hemlock is 15.75m

Site One is within the Coastal Western Hemlock, Dry Maritime (CWHdm) zone. The CWHdm is characterized by warm-to-dry summers and mild-to-moist winters with little snow (Pojar& Stewart, 2007a). The site consists of 40% Coastal Douglas-fir, 30% Coastal Western Redcedar and 30% Coastal Western Hemlock.

Site Two is within the Coastal Western Hemlock, Submontane Very Wet Maritime (CWHvm1) zone. This BEC zone has cool summers and mild winters with very little snow (Pojar& Stewart, 2007b). The site is composed of 30% Coastal Douglas-fir, 40% Coastal Western Redcedar and 30% Coastal Western Hemlock.

Site Three is within the Coastal Western Hemlock, Montane Very Wet Maritime (CWHvm2) zone. Different from site 2 (CWHvm1), it has short, cool summers and cool winters with a large amount of snow (Pojar& Stewart, 2007c). Site 3 is 20% Coastal Douglas-fir, 50% Coastal Western Redcedar and 30% Coastal Western Hemlock.

2.2 TIPSY Modeling

The collected data were processed by TIPSY version 4.2. Growth and yield data that are related

to volume and wood products were generated by TIPSY.

Since TIPSY does not model multiple species, for each site three TIPSY runs were conducted for three different species, and the volumes of each species were summed up and multiplied by their corresponding composition in order to make adjustments for the correct volume for each site.

In the data entry process, two TIPSY parameters were applied to the ecological data:

- Operational Yield Adjustments: two default TIPSY medium examples of Operational Adjustment Factors (OAF), which are parameters to reflect the yield loss with regards to insects and disease, non-merchantable wood, stocking gaps and other factors, were applied in order to mimic real growth and yield (British Columbia Ministry of Forest and Range, 2005). In example 1, the total age was 0-300, and the factors were 0.85-0.85; in example 2, the total age was 0-300, and the factors were 1-0.95-0.85.
- Decay, Waste and Breakage losses (DWB) factors were applied as the default value in TIPSY.

After data entry and TIPSY analysis, growth and yield curves were created. There are two assumptions that were made in growth and yield tables:

- Only "merchantable volume", which refers to the volume of trees that are greater than 12.5 cm in DBH excluding non-merchantable trees, was considered as available volume.
- Based on the sawmill capacity, logs that are less than 15cm or greater 55 cm in diameter would not be shipped to the sawmill.

Based on the TIPSY projections, Western Redcedar in all three sites would have logs that are greater than 55 cm in diameter after 120 years of age, which exceeded the maximum capacity of the sawmill, so only data from 0 to 120 years old were used. The merchantable volume and composition

of different log diameter classes of each age class for the three sites are listed in Table 2-2, Table 2-3 and Table 2-4. The growth and yield curves for the three sites are shown in Figure 2-1.

A	Merchantable		Pr	oporti	on of N	Mercha	ntable	Volun	ne	
Age / yrs	volume / m ³	15	20	25	30	35	40	45	50	55
0	0	NA	NA	NA	NA	NA	NA	NA	NA	NA
10	0	NA	NA	NA	NA	NA	NA	NA	NA	NA
20	0	NA	NA	NA	NA	NA	NA	NA	NA	NA
30	11	0.95	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40	52	0.53	0.40	0.07	0.00	0.00	0.00	0.00	0.00	0.00
50	101	0.28	0.47	0.20	0.04	0.01	0.00	0.00	0.00	0.00
60	144	0.16	0.40	0.30	0.10	0.03	0.01	0.00	0.00	0.00
70	181	0.10	0.31	0.34	0.17	0.06	0.02	0.00	0.00	0.00
80	210	0.08	0.24	0.31	0.22	0.09	0.04	0.01	0.00	0.00
90	237	0.06	0.19	0.28	0.25	0.12	0.06	0.03	0.01	0.00
100	264	0.05	0.15	0.25	0.24	0.16	0.08	0.05	0.01	0.00
110	286	0.05	0.13	0.22	0.23	0.18	0.10	0.06	0.03	0.01
120	304	0.04	0.11	0.19	0.22	0.19	0.12	0.07	0.05	0.01

Table 2-2. Volume and log DBH class by age for site one

Table 2-3. Volume and log DBH class by age for site two

A	Merchantable	Merchantable Proportion of Merchantable Volume								
Age / yrs	volume /m ³	15	20	25	30	35	40	45	50	55
0	0	NA	NA	NA	NA	NA	NA	NA	NA	NA
10	0	NA	NA	NA	NA	NA	NA	NA	NA	NA
20	0	NA	NA	NA	NA	NA	NA	NA	NA	NA
30	11	0.95	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40	53	0.51	0.41	0.08	0.00	0.00	0.00	0.00	0.00	0.00
50	104	0.27	0.47	0.21	0.05	0.01	0.00	0.00	0.00	0.00
60	148	0.15	0.38	0.31	0.11	0.04	0.01	0.00	0.00	0.00
70	187	0.09	0.29	0.34	0.18	0.07	0.02	0.00	0.00	0.00
80	217	0.07	0.23	0.30	0.23	0.10	0.05	0.01	0.00	0.00
90	246	0.06	0.18	0.27	0.24	0.13	0.07	0.03	0.01	0.00
100	274	0.05	0.15	0.24	0.23	0.16	0.09	0.06	0.02	0.01
110	296	0.04	0.12	0.21	0.22	0.18	0.11	0.07	0.04	0.01

120	315	0.04	0.11	0.18	0.21	0.19	0.13	0.08	0.06	0.01	
-----	-----	------	------	------	------	------	------	------	------	------	--

	Merchantable		Proportion of Merchantable Volume									
Age / yrs	volume /m ³	15	20	25	30	35	40	45	50	55		
0	0	NA	NA	NA	NA	NA	NA	NA	NA	NA		
10	0	NA	NA	NA	NA	NA	NA	NA	NA	NA		
20	0	NA	NA	NA	NA	NA	NA	NA	NA	NA		
30	11	0.95	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
40	55	0.49	0.41	0.09	0.00	0.00	0.00	0.00	0.00	0.00		
50	107	0.25	0.46	0.22	0.06	0.01	0.00	0.00	0.00	0.00		
60	153	0.14	0.37	0.31	0.12	0.05	0.01	0.00	0.00	0.00		
70	194	0.09	0.28	0.34	0.19	0.08	0.03	0.00	0.00	0.00		
80	225	0.07	0.22	0.29	0.23	0.11	0.06	0.01	0.00	0.00		
90	254	0.05	0.17	0.26	0.24	0.14	0.08	0.04	0.01	0.00		
100	284	0.05	0.14	0.22	0.23	0.17	0.10	0.07	0.02	0.01		
110	307	0.04	0.12	0.20	0.21	0.18	0.12	0.08	0.04	0.01		
120	326	0.04	0.10	0.17	0.20	0.18	0.14	0.09	0.07	0.02		

Table 2-4. Volume and log DBH class by age for site three

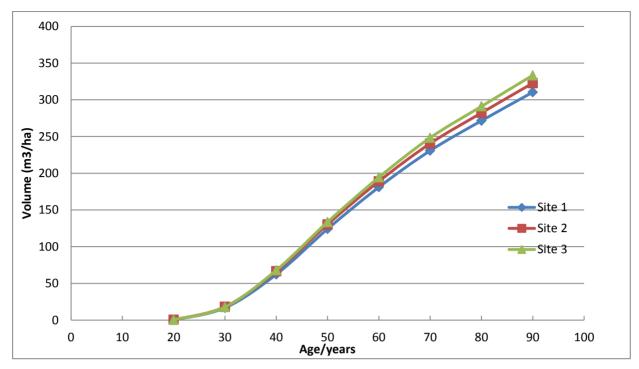


Figure 2-1. Growth and yield curve for three sites

2.3 Linear Programming Models

Linear programming models were built with Microsoft Excel for determining the optimal harvest schedule and the optimal sawmill production. The Solver analysis tool embedded in Excel was used to calculate the optimum solution. A sawing pattern model was used to determine Lumber Recovery Factors for various dimensions of lumber. Figure 2-2 shows the flow of the analysis process.

TIPSY

Growth and Yield Tables

- Provide merchantable volume by age
- Offer log diameter by age

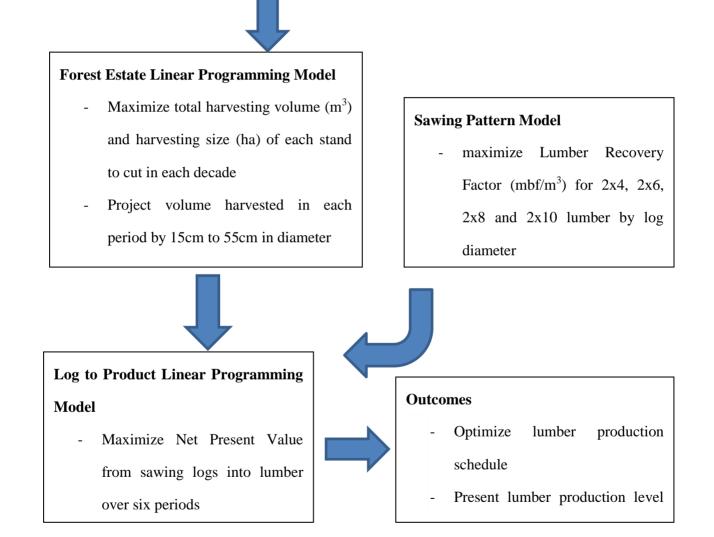


Figure 2-2. Flow of model analysis

2.3.1 Forest Estate Model

The Forest Estate model was used to optimize the harvesting schedule. The model is shown in Appendix A.

2.3.1.1 Model assumptions and data input

Some assumptions and constraints for harvesting were set up for this model:

- Area of site: because the original areas of the study sites were too small to conduct harvesting economically, the size of each site is assumed to be 1000 hectares.
- Period: each period is 10 years; the total planning horizon is 6 periods.
- Period of harvesting: due to the limited merchantable volume of wood and limited capacity of the sawmill, this model only assumes 60 years of stand growth (age 60 to age 110).
- Time of harvesting: trees at age 60 would be harvested in period 1; trees at age 70 would be harvested in period 2 etc.
- Minimum ending inventory: in order to have enough trees left to provide other services, the minimum harvesting inventory is 10,000 m³.
- Minimum ratio of ending inventory: the ending inventory must be at least equal to one-fourth of the beginning inventory.
- Minimum harvesting per period: in order to ensure harvesting occurs in every period, the minimum harvesting per period is 110,000 m³.
- Maximum changes of harvesting flow: the maximum change of harvesting level for each period is 20%, which means that the harvesting level for period 2 is between 80% and 120% of the harvesting level for period 1.
- The objective function maximizes to total harvest over the planning horizon.

• Decision variables are the size (ha) of stand _i cut in period _j.

Derived from the volume tables (Table 2-2 to Table 2-2) and the growth and yield curve (Figure 2-1), the volume and age classes data for existing stands and future stands were entered, and are shown in Table 2-5 and Table 2-6. Harvested volume of existing and future stands in different periods is shown in Table 2-7. The ending inventory of different periods is shown in Table 2-8.

Existing Stands											
	Stand 1	Stand 2	Stand 3								
Age	Volume	Volume	Volume								
60	144	148	153								
70	181	187	194								
80	210	217	225								
90	237	246	254								
100	264	274	284								
110	286	296	307								

Table 2-5. Volume and age classes for existing stands

Table 2-6. Volume and age classes for future stands

Future (Regenerated) Stands													
		Stand	11	Stand	2	Stand 3							
Periods	Stand	volume	volume	volume	volume	volume	volume						
	Age	before	cut	before	cut	before	cut						
		harvest	harvest			harvest							
0	0	0	0	0	0	0	0						
1	10	0	0	0	0	0	0						
2	20	0.4	0	0.5	0	0.6	0						
3	30	17	0	18	0	18	0						
4	40	62	0	67	0	68	0						
5	50	124	124	130	130	134	134						

Table 2-7. Harvest yield (m³/ha) at harvesting for different stands

		STAND 1						STAND 2						STAND 3						
PERIOD	1	2	3	4	5	6	Uncut	1	2	3	4	5	6	Uncut	1	2	3	4	5	6
Harvest 1	52							53							55					
Harvest 2		101							104							107				
Harvest 3			144							148							153			
Harvest 4				181							187							194		
Harvest 5					210							217							225	
Harvest 6	124					237		130					246		134					254
SUM	176	101	144	181	210	237	0	183	104	148	187	217	246	0	189	107	153	194	225	254

Note: X_{ij} refers to number of hectares of stand I first cut in period j

Table 2-8. Ending inventory (m³/ha) of different stands

Period	1	2	3	4	5	6	Uncut	1	2	3	4	5	6	Uncut	1	2	3	4	5	6	Uncut
End-Inven1	0	52	52	52	52	52	52	0	53	53	53	53	53	53	0	55	55	55	55	55	55
End-Inven2	0	0	101	101	101	101	101	0	0	104	104	104	104	104	0	0	107	107	107	107	107
End-Inven3	0.4	0	0	144	144	144	144	0.5	0	0	148	148	148	148	0.6	0	0	153	153	153	153
End-Inven4	17	0.4	0	0	181	181	181	18	0.5	0	0	187	187	187	18	0.6	0	0	194	194	194
End-Inven5	62	17	0.4	0	0	210	210	67	18	0.5	0	0	217	217	68	18	0.6	0	0	225	225
End-Inven6	0	62	17	0.4	0	0	237	0	67	18	0.5	0	0	246	0	68	18	0.6	0	0	254

2.3.1.2 Model Structure

The forest estate model follows the typical structure of an LP model. There are five series of columns (decision variables) and seven series of rows (constraints) in the model. As for columns, the model has six periods for each of the three stands, harvest of each period and beginning and ending inventory. In terms of rows, the model has yields at harvesting, ending inventory, existing volume, regenerated volume, minimum harvesting level, harvesting flow and size of each stand. The names of each variable are shown in the "Variable name" row; total harvested volume per ha for each period of each stand is shown in the "Objective" row; the areas that would be harvested are calculated by Solver and put into the "Answer" row; "Sign" and "Right Hand Side (RHS)" columns are designated for constraints; the final result, total volume of harvesting, is shown at top of the "Result" column. Other rows of the "Result" column are used to check if the answer that was obtained fits with

constraints ("Sign" and "RHS" columns) by the "sumproduct" function and the Solver.

Yields (m3/ha) at harvesting for different stands (Table 2-7) are shown in the "harvest 1" to "harvest 6" rows. Harvested volumes in each period are summed into a total volume variable. Taking period 1 as an example, the total harvested volume of period 1 consists of harvesting in 3 stands. Therefore, the total volume of wood can be calculated by Equation 1:

$$V_{ij} = \sum_{i=1}^{3} (V_{ij} \times A_i)$$
^[1]

Where i represents the harvesting period; V_{ij} represents the available volume stand I in period j (m³/ha), and A_i represents the area of the stand i.

Subsequently, Solver automatically fills the harvest volume into the "harv 1" column of the "Answer" row. This method is applied to the entire LP model.

The inventory section of the model shows the beginning inventory and ending inventory for each period of each stand and the minimum ratio of ending inventory. Beginning inventory was calculated by the sum of the products of the initial volume (volume at age 60) of each stand and its corresponding harvesting area. Ending inventory of each period is the same as Table 2-8.

The "existing-ha" and "regen-ha" rows are the constraints for Solver which state that all values in the harvesting area are positive. The "Absolute-LB-Harvest" rows are used to set constraints for the minimum harvesting level per period, which is 110,000 m³ in the model. The "LB Harvest flow" rows are used to constrain the change of harvesting level for each period. The mechanism of limiting changes is also linked to Solver by applying a limit factor. Specifically, it is assumed that the allowable change of harvesting from period 1 to period 2 is $\pm X\%$, so the limiting factor in the model is - (1-|X|). Therefore, if the change of harvesting level is within $\pm 10\%$, the harvesting level for the first period, multiplied by the limiting factor plus harvesting level for the second period, will be equal to or greater than 0. For example, assuming the harvesting level for the first period is 10,000 m³ and the harvesting level for the second period is 9,500 m³, the change in harvesting level is $\frac{9,500 \text{ m}^3 - 10,000 \text{ m}^3}{10,000 \text{ m}^3} = -5\%$, and the limiting factor is -(1 - |-0.05|) = -0.95. The harvesting level for the first period is multiplied by the limiting factor is $10,000 \times (-0.95) = -9500$. Finally, the "ha available stand" rows limit the sum of harvested area and uncut area for each stand to the total area of the stand, which is 1000 hectares.

2.3.2 Sawing Pattern Model

The Sawing Pattern Model is used for computing the Lumber Recovery Factor (LRF), which is an important component of the Log-to-product model. The sawing pattern model used in this essay is a Microsoft Excel-based model provided by Dr. Thomas Maness from Oregon State University at Corvallis, Oregon. This sawing pattern model can calculate the LRF based on diameters of logs and dimensions of lumber produced. For the detailed sawing patterns for each diameter of log, refer to Appendix B.

2.3.2.1 Model assumptions and data input

The strategy of this model is to maximize the usage of the log, producing lumber of as large dimensions as possible. Some assumptions of the input log and the designated products are applied in this study:

- Small end diameter: logs accepted range from 15 cm to 55 cm in the log small end diameter with an interval of 5cm (e.g. 15cm, 20cm, 25cm etc.);
- Length: due to the balance of log diameter and economic value, all the lumber it produces

is 8 feet in length;

- Taper: the value of taper is 1%, which means that for every 100 inches of log length, the large end diameter will be 1 inch more than the small end diameter;
- Large end diameter: it is assumed that for an 8-foot-long log, the larger end is 1 inch greater than the small end;
- Trim Allowance: 0.25 foot is set for trim allowance for the loss from end injuries or uneven cuts in processing;
- Log sweep: there is no log sweep assumed;
- Side shift and horns angle: side shift and horns angle will not be applied in the model
- Saw kerf, wane allowance, infeed mechanism, log class size and other parameters are set at default values;
- Volume of log: the volume of log is calculated by Equation 2:

$$Volume (foot^{3}) = 0.001818 \times log \, length \, (D_{s}^{2} + D_{s}D_{l} + D_{l}^{2})$$
^[2]

where 0.001818 is a constant, D_s is the log small end diameter, D_l is the log large end diameter and log length is in feet (Grosenbaugh, 1963).

• Volume of lumber: The volume of a board can be calculated by Equation 3:

$$Volume of lumber (MBF) = \frac{(length \times width \times thickness)}{144000 inch^3/mbf}$$
[3]

where the units for length, width and thickness are inches and the thickness and width of lumber used in the calculation are the finished value. The corresponding finished value of different dimensional lumber is shown in Table 2-9.

Nomir	nal	Finished					
Thickness	Width	Thickness	Width				
2	4	1.5	3.5				
2	6	1.5	5.5				
2	8	1.5	7.5				
2	10	1.5	9.5				

Table 2-9. Finished thickness and width value of corresponding nominal lumber

• LRF: the LRF can be computed by Equation 4 and the summary of LRF is demonstrated in Table 2-10:

$$LRF(MBF/M^{3}) = \frac{lumber \ volume \ in \ board \ feet}{log \ volume \ in \ m^{3}}$$
[4]

			Lumbe	er Recove	ry (MBF/r	n3)			
Lumber	15 cm	20 cm	25 cm	30 cm	35 cm	40 cm	45 cm	50 cm	55cm
2x4 - 8'	0.1305	0.1526	0.0500	0.0176	0.0262	NA	NA	NA	NA
2x6 - 8'	NA	NA	0.1570	0.1938	0.1440	0.0476	0.0379	NA	NA
2x8 - 8'	NA	NA	NA	NA	NA	0.1466	NA	NA	NA
2x10 - 8'	NA	NA	NA	NA	0.1153	0.0890	0.3541	0.3782	0.3614
sum LRF	0.1305	0.1526	0.2070	0.2114	0.2855	0.2832	0.3920	0.3782	0.3614
Chips	0.6421	0.5899	0.4615	0.4512	0.2763	0.2817	0.0250	0.0575	0.0972

• Chip Recovery Factor (CRF): chip recovery factors are shown in Table 2-10. An assumption is made that there is 5% sawdust loss in this sawmill, and anything besides lumber and sawdust loss can be converted into wood chips. The CRF can be calculated by Equation 5:

Chip Recovery Factor =
$$1 - sawdust loss - sum LRF \times 2.360 \text{ m}^3 / MBF$$
 [5]

Where the sawdust loss is 5%.

The 2.360 m³ / MBF is the conversion factor for LRF. 1 board foot has 12 inches in length, 12 inches in width and 1 inch in thickness. To convert cubic meters into MBF, use the formula $\frac{(12 inches \times 12 inches \times 1 inch) \times 2.54}{100} \times 1000 = 2.360 \text{m}^3/\text{MBF}$. The sum of LRF includes the LRF for 2x4x8, 2x6x8, 2x8x8 and 2x10x8.

2.3.2.2 Model Structure

Figure 2-3 and Figure 2-4 show the structure of the sawing pattern model. Figure 2-3 shows the display portion of the model, including log parameters mentioned above, log volume and LRF for different dimensions of lumber. Figure 2-4 shows the summary portion of the model, including the number of different dimensions of lumber produced from this log and the corresponding volume of each product.

The volumes of different dimensional lumber are already built into the model. When the log small end diameter is entered, a graph showing the cross-sectional area of the log will be generated, as can be seen in the Figure 2-3. The blue line represents the small end of the log, the red line represents the large end of the log. The dotted line is the average of the small end and the large end. Lumber of various dimensions are arranged in the circle by manually entering the type of products (e.g. 2x4, 2x6) and the length, which is all 8 feet in this case. In order to have a sufficient amount of wood to produce lumber, the dimensions of the lumber must fit the small end of the log (the blue circle). When the number of lumber boards that can be produced is maximized, the volume of lumber (board foot) will be computed by summing up all the volumes of lumber in different dimensions.

In this study, the strategy for lumber production optimization is to produce as much larger dimension lumber as possible in order to get higher profits.

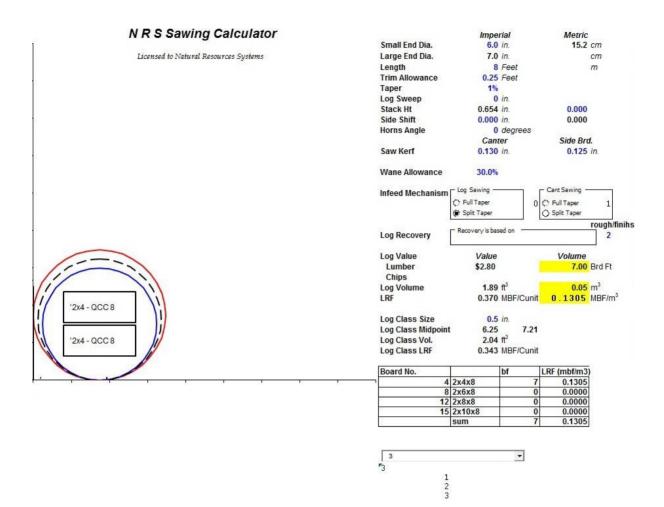


Figure 2-3. Display portion of sawing calculator

	(Nominal		Finist	ned	Targ	jet	Edge	Face		
		Label	Length	Thickness	Width	Thickness	Width	Thickness	Width	Wane	Wane	Volume	Value
Inside Right SB	039350	•			Samaran				in manager	a contraction of the	Second and	· · · · · · · · · ·	Second
Outside Right SB		•		r		· · · · · · · · · · · · · · · · · · ·							
Inside Left SB		•		r r	·							ľ	
Outside Left SB											S	ľ	
Bottom Board	4	2x4 - QCC 8'	8	2.00	4.00	1.50	3.50	1.655	3.765	0.0%	0.0%	3.50	1.4
Centre Cant 1	4	2x4 - QCC 8'	8	2.00	4.00	1.50	3.50	1.655	3.765	0.0%	0.0%	3.50	1.4
Centre Cant 2	Sec. and	1		r							· · · · · · · · · · · · · · · · · · ·	· · · · ·	(
Centre Cant 3		1		r r									
Centre Cant 4		•		r r									
Centre Cant 5				r 7									
Centre Cant 6		•		r r									·
Centre Cant 7		•		r r									·
Centre Cant 8				r r									
Centre Cant 9	Second S	1		r r									
Centre Cant 10		1		r r									
Centre Cant 11	(erores)	1		r r									
Centre Cant 12		1		r r									
Centre Cant 13		1		r						· · · · · · · · · · · · · · · · · · ·		· · · · · ·	
Centre Cant 14		1		r							Sector Sector		
Centre Cant 15		4		r r						· · · · · ·		· · · · ·	S
	2		2						3.765			7.00	2.8
		11-1-64											
0.4-14-1-0.00		Height	541.05										
Outside Left SB		5.000	FALSE										
Inside Left SB		5.000	FALSE										
Bottom Board		1.300	FALSE										
Inside Right SB		5.000	FALSE										
Outside Right SB													

Figure 2-4. Summary portion of sawing calculator

However, this model is not fully capable of handling larger logs, such as 50cm and 55cm logs, because the graph representing the cross-sectional area of the log cannot be shown appropriately. In order to adjust this situation, the half of the log that can be seen in the graph is filled in by cant lumber, and then the volume of cant lumber is doubled to calculate the total volume of lumber.

2.3.3 Log-to-product model

The log-to-product model optimizes the sawing of logs (by small end diameter) into various dimensions of lumber products. Chips are a by-product of the sawing process. The model has six time periods and the log distributions for each period were provided by the forest estate model. The model is shown in the Appendix C.

2.3.2.1 Model assumptions and data input

Assumptions that were applied to this model are:

- Cost: the stumpage cost for MKRF is \$50/ m³; haul cost is \$10 / m³. Therefore, the total cost is \$60/ m³ (data provided by Dr. John Nelson, UBC Faculty of Forestry).
- Headsaw productivity: a headsaw is a machine used to cut the log into a narrower canted log to adjust for other sawing equipment. (Jadeja, 2007). The headsaw productivity for this mill is shown in Table 2-11. Based on the capacity, the headsaw can process 1125 8-foot logs in 1 hour. The volume of log can be calculated by the Average End Method. Therefore, the productivity of headsaw (hours/m³) can be calculated by Equation 6:

Productivity of headsaw (hour/ m^3) = $\frac{1 \text{ hour}}{\log s \text{ processed in 1 hour } \times \text{volume per log}}$ [6]

	Headsa	w Productivity T	able	
Log dia (cm)	Logs/hr	Volume /log	Volume /hr	hrs/m ³
15	1125	0.0525	59.08	0.0169
20	1125	0.0896	100.79	0.0099
25	1125	0.1365	153.61	0.0065
30	1125	0.1934	217.55	0.0046
35	1125	0.2601	292.61	0.0034
40	1125	0.3367	378.80	0.0026
45	1125	0.4232	476.11	0.0021
50	1125	0.5196	584.53	0.0017
55	1125	0.6259	704.08	0.0014

Table 2-11. Headsaw productivity

•Trimmer productivity: A trimmer is the machine that cuts the lumber to form square ends (Mardikar, 2007). The trimmer productivity can be seen in Table 2-12. The trimmer can process 4617 boards per hour. Therefore, the productivity of the trimmer (hour/MBF) can be

calculated by Equation 7:

 $Productivity of trimmer (hour/MBF) = \frac{1 hour}{boards \ processed \ in \ 1 \ hour \times volume \ per \ board}$ [7]

However, the ratio of headsaw productivity to trimmer productivity is 1.69. In order to balance the productivity of both machines, adjustments are made such that all the trimmer productivities are divided by 1.32. The trimmer productivities after adjustment are used in the model.

	Trimmer Productivity										
Size	Boards / Hr	MBF/Board	MBF / Hr	Hr / MBF(before adjustments)	Hr / MBF(after						
adjustm											
2x4-8'	4617	0.0035	16.1595	0.06190	0.0469						
2x6-8'	4617	0.0055	25.3935	0.0394	0.0298						
2x8-8'	4617	0.0075	34.6275	0.0289	0.0219						
2x10-8'	4617	0.0154	71.1788	0.0140	0.0106						

Table 2-12. Trimmer productivity

• Cost and Revenue: The price of lumber in different dimensions, the cost of shipping, finishing, hourly headsaw and trimmer operations, and maximum hours for the headsaw and the trimmer are shown in Table 2-13. The 8-foot lumber price is based on the 2001-2011 average lumber prices for random length (TradingCharts, 2011). This price, which is \$273 / MBF, is used for the price of 2x4 lumber. Values for the 10-year averages for 2x6, 2x8 and 2x10 were determined using the current value relative to the price of 2x4 lumber. Based on the patterns of current lumber price (Madison's Canadian Lumber Reporter, 2011), The prices for 2x6, 2x8 and 2x10 are all higher than 2x4, 15%, 14%, and 17% respectively. For instance,

the price for 2x6 is 15% higher than the price of 2x4, so the price for 2x6 can be calculated by:

$$Price_{2\times 6} = Price_{2\times 4} \times 1.15 = \$273 \times 1.15 = \$314/MBF$$

The price of chips is the courtesy of Tony Peiffer, the general manager of fibre supply for Interfor Ltd. Other cost information is assumed based on the previous data provided by Dr. John Nelson. The sawmill is scheduled to run 4600 hours to finish the processing of these logs. When the headsaw is running, \$500 per hour will be charged for operation. If the headsaw is in the "down" status, it also incurs costs of \$250 per hour. The trimmer costs are \$422 and \$211 per hour, respectively.

F	Revenue						
Product	Price	Units	Shipping	-\$10	/ MBF Headsaw Run	\$500	/hr
2x4 - 8'	\$273	/MBF			/ MBF Headsaw Down	\$250	/hr
2x6 - 8'	\$314	/MBF					
2x8 - 8'	\$311	/MBF	Finishing	-\$35	/ MBF Trimmer Run	\$422	/hr
2x10 - 8'	\$319	/MBF			Trimmer Down	\$211	/hr
CHIPS	\$36	/ m ³					
					Maximum hours/week for Head saw &	4600	
					Trimmer		

Table 2-13. Price of Lumber and Cost of Sawmill Operation

• Minimum production level for each period: in order to have a relatively even production flow, the minimum of production is set at 100,000 m³ for each diameter of log.

2.3.2.2 Model Structure

Similar to the tree-to-log model, the log-to-product model is an LP model in Microsoft Excel. It has 5 series of columns: stand & period, logs sorted by diameter (m³), produced lumber (MBF) &

chips (m³), headsaw hours and trimmer hours, and 5 corresponding rows plus a series of maximum production levels. Specifically, since there are 6 harvesting periods, there are 18 columns and rows for the "stand & period" series (6 harvesting periods for 3 stands), 54 columns and rows for the "log sorted by diameter" series (9 categories of log diameter for 6 periods), 30 columns and rows for the "lumber & chips" series (1 chip and 4 types of lumber for 6 periods), 2 columns and rows for "headsaw" series, 2 columns and rows for "trimmer" series and 6 rows for "maximum production level" series. As in the forest estate model, the "variable name" row contains the name for each variable; the "answer" row shows the value for each variable; the "objective" row shows the cost and revenue for each variable. Constraints are checked by the "sumproduct" function and the Solver in the "result", "sign" and "RHS" columns and the final result (net revenue) will be shown in the "net revenue" cell.

3. Results

3.1 Forest Estate Model

The results of the forest estate model are shown in Table 3-1 and Table 3-2. All hectares in stand 1 and stand 2 are harvested and 206 hectares of stand 3 are not harvested. In terms of harvesting periods, 110,000 m³ of wood, which is the minimum level of harvesting, are harvested during each period, from period 1 to 5. For the final period, besides the minimum harvesting level, an additional 16,752 m³ of wood are harvested. In total, 676,752 m³ of wood are harvested out of the forest. In terms of ending inventory, from period 1 to period 6, the ending inventory decreases, reaching the lowest point in period 6, which is 111,353 m³. Figure 3-1 graphically shows the harvesting and inventory volumes for each period. The graph shows that as the time goes by, the ending inventory is decreasing. Figure 3-2 shows harvest by existing and regenerated stands. The regenerated stand is only harvested in period 6.

	Harvesting in each period (ha)											
	1	1 2 3 4 5 6 Uncut										
Stand 1	339	0	524	28	0	109	0					
Stand 2	412	588	0	0	0	0	0					
Stand 3	0	0	0	406	388	0	206					

Table 3-1. Harvesting area in each period for each stand

		Harvesting		
period	Total (m ³)	Existing (ha)	Regen (ha)	Inventory/m ³
1	110000	751	0	335410
2	110000	588	0	313051
3	110000	524	0	253529
4	110000	434	0	190251
5	110000	388	0	146396
6	126752	109	751	111353
summary	676752	2794	751	1349990

Table 3-2. Harvesting volume in each period

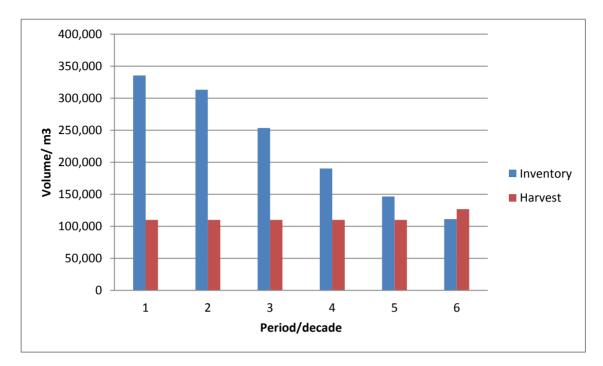


Figure 3-1. Inventory and harvest in each period

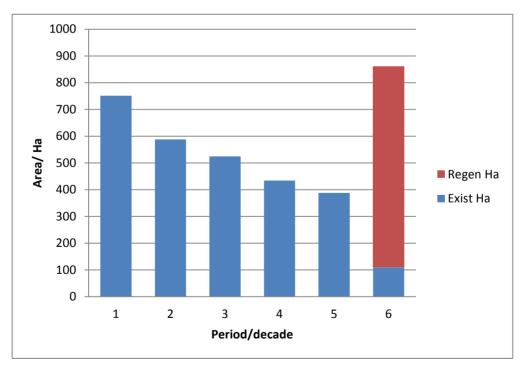


Figure 3-2. Stand composition of harvesting stands

3.2 Log-to-product model

The final result of the tree-to-log model is shown in Table 3-5. The optimal solution is for the sawmill to produce 141,229 MBF of lumber and 298,818 m³ of chips with a net revenue of \$3,110,141. The final result is derived from the data shown in Table 3-3 and Table 3-4. Table 3-3 illustrates the log volume available and used for processing. The upper part is the available log volume in each period for each stand, as derived from the forest estate model; the lower part is the log used for processing, as calculated by MS Excel Solver. Comparing the two parts, it can be seen that all the logs are processed except for 10,000 m³ of log in stand 1 for period 1. This is due to the optimization process by Solver. The logs that are subject to processing are sorted by diameter, which is shown in Table 3-4. The table indicates that logs ranging from 25cm to 30cm in diameter comprise the biggest portion of the log volume, comprising 45% of the total. From period 1 to period 6, the number of small logs declines steadily, whereas the number of bigger logs increases (Figure 3-3). Table 3-5 shows the 4 different dimensions of lumber and chips produced from the logs in each period, and it illustrates that the lumber production increases from period 1 to period 6. Moreover, it can be seen that 2x6 and 2x4 are produced in the largest volume. 2x8 is the least in production because only 40cm logs are used to produce 2x8 lumber. Figure 3-4 illustrates the lumber composition and volume and indicates that as the log diameter increases, a greater amount of larger-dimension lumber is produced.

	Logs ava	ailable in e	ach period	for each	stand (m ³)	
	1	2	3	4	5	6
Stand 1	48,786	0	110,000	6,587	0	73,153
Stand 2	61,214	110,000	0	0	0	53,599
Stand 3	0	0	0	103,413	110,000	0
	Logs use	ed in each	period for	each stan	d (m³)	
	1	2	3	4	5	6
Stand 1	38,786	0	110,000	6,587	0	73,153
Stand 2	61,214	110,000	0	0	0	53,599
Stand 3	0	0	0	103,413	110,000	0

Table 3-3. Logs available and used in each period for each stand

Perio	SED-1	SED-20	SED-25	SED-30	SED-3	SED-4	SED-4	SED-5	SED-5	sum
d	5				5	0	5	0	5	
1	15,38	38,776	30,612	10,612	3,612	1,000	0	0	0	100,00
	8									0
2	9,900	31,900	37,400	19,800	7,700	2,200	0	0	0	108,90
										0
3	8,800	26,400	34,100	24,200	9,900	4,400	1,100	0	0	108,90
										0
4	5,566	18,832	28,732	26,466	15,26	8,668	4,334	1,100	0	108,96
					8					6
5	5,500	15,400	24,200	25,300	18,70	11,00	7,700	2,200	1,100	111,10
					0	0				0
6	5,802	15,942	27,349	28,617	22,81	13,21	8,141	4,339	1,268	127,48
					5	1				3
sum	50,95	147,24	182,39	134,99	77,99	40,47	21,27	7,639	2,368	665,34
	5	9	3	5	6	9	5			9

Table 3-4. Logs sorted by diameter in each period (m³)

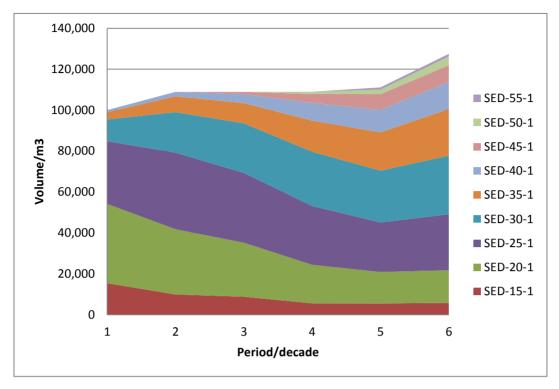


Figure 3-3. Log composition and volume for each period sorted by diameter

Period	2x4_8	2x6_8	2x8_8	2x10_8	chips	Sum lumber
1	9,737	7,430	147	505	52,950	17,820
2	8,580	10,923	323	1,084	54,116	20,909
3	7,567	11,720	645	1,923	51,882	21,855
4	5,902	12,415	1,271	4,483	46,715	24,071
5	5,213	12,211	1,613	7,091	43,891	26,128
6	5,659	14,063	1,937	8,788	49,264	30,446
Sum	42,659	68,762	5,934	23,874	298,818	141,229

Table 3-5. Lumber (MBF) and chips (m³) produced in each period

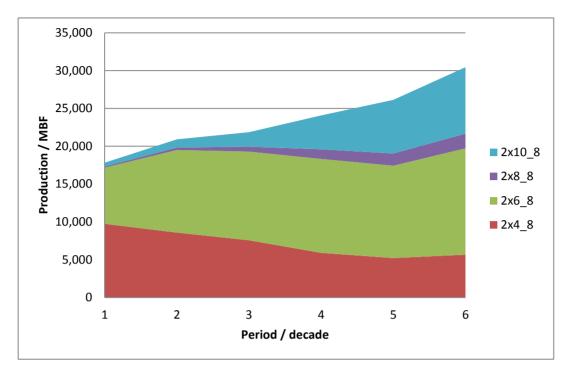


Figure 3-4. Final lumber production and composition

4. Discussion

The preceding models are appropriate tools for predicting production and net revenue of forest operations. In order to have a better understanding of the system, three scenarios, 2x8-oriented sawing pattern, lumber price fluctuation and limited mill working time, were applied to the model to evaluate its performance and assess these assumptions.

4.1 2×8-oriented sawing pattern

In the previous Sawing Pattern Model application, the strategy was to produce as much larger-dimension lumber as possible (2x10-oriented). However, if the 2x8 lumber markets improve, increasing 20% over the current price, the mill would like to use another sawing pattern (2x8-oriented) to increase its customer share in the 2x8 market. In order to begin 2x8 lumber production, the sawing pattern has to be changed to 2x8-oriented.

Since logs less than 35cm in diameter are not big enough to produce 2x8 lumber, and logs greater than 50cm are more valuable in producing 2x10 lumber, logs ranging from 35cm to 45cm are applicable for the LRF change. Table 4-1 shows the difference between the 2 LRF types in production, price and net revenue. Based on the table, in 2x10-oriented sawing type, 35cm, 40cm and 45cm logs would all be used to produce 2x10 whereas only 40cm logs would be used to produce 2x8. As the result, the final volume of lumber is different. According to the production distribution of 2x8-oriented and 2x10-oriented sawing patterns (Figure 4-1), the 2x8-oriented sawing pattern results in 4.5 times larger volume of 2x8 lumber; however, except for 2x8 lumber, the volume of other dimensions of lumber produced under the 2x8-oriented sawing pattern is less, especially 2x10 lumber; it is about 3 times less than the level of the 2x10-oriented sawing patterns. However, since the price of 2x8 lumber has increased 20%, the net revenues of the two sawing patterns are similar.

	2x	8-orient	ed	2 x	10-orient	ed	
	35 cm	cm 40 cm 45 c		35 cm	40 cm	45 cm	
2x4 - 8'	NA	NA	NA	0.0262	NA	NA	
2x6 - 8'	NA	0.0476	0.0476 NA		0.0476	0.0379	
2x8 - 8'	0.2169	0.1466	0.2165	NA	0.1466	NA	
2x10 - 8'	2x10 - 8' NA		NA	0.1153	0.089	0.3541	
sum LRF	0.2169	0.2832	0.2165	0.2855	0.2832	0.392	
Chips	0.4382	0.2817	0.4391	0.2763	0.2817	0.025	
2X8 price		\$373		\$311			
Net revenue	\$	3,108,75	3	\$3,110,141			

Table 4-1. Difference between 2x8 and 2x10 production, price and net revenue

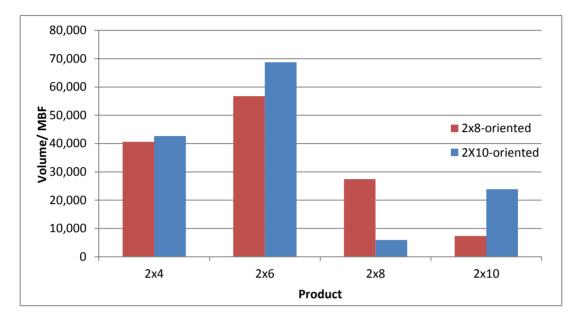
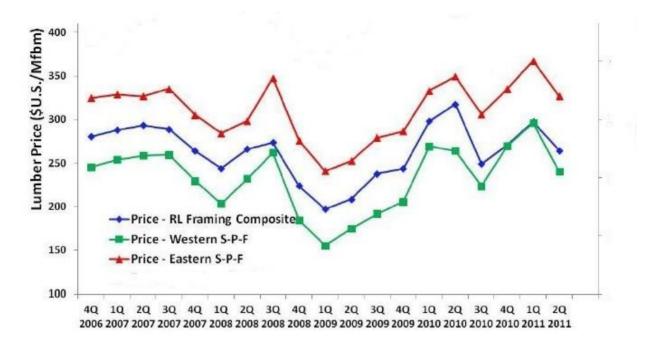



Figure 4-1. Production distribution of 2x8-oriented and 2x10-oritented sawing patterns

Based on the previous analysis, it is clear that the sawing pattern is a key factor in the mill operation and it is directly related to profitability. Mill managers should clearly identify the market direction beforehand, and then implement the corresponding sawing pattern.

4.2 Lumber price fluctuation

Price has important effects in terms of production and marketing. It is directly linked to supply and demand of commodity products (Rewoldt et al., 1973). Since lumber is a type of commodity product, price plays a pivotal role in the sawmill operational decisions. Figure 4-2 shows the lumber price from the 4th quarter of 2006 to the 2nd quarter of 2011 (Council of Forest Industries, 2012). It illustrates that, with the US housing crash in 2008, the price experienced a significant decrease. The price dropped 30%-40% in the second half of the 2008. However, the industry has shown a trend of rebounding (Cross, 2011). Ebner and Grant (2011) claimed that the recovery of the forest sector

could even contribute to Canadian exports hitting the pre-recession level in 2012.

Figure 4-2. Quarterly lumber prices from 2007 to 2011

(Source: Council of Forest Industries, 2012)

Therefore, two price fluctuation scenarios were applied to the model, assuming there is a $\pm 20\%$ change of price without any change in other parameters. -20% change represents the lumber price during the recession period; +20% change represents the price before recession and the price that can be reached in the future. Table 4-2 shows the lumber price, production and net revenue under three scenarios. Lumber production did not undergo significant change as the prices changed, but the net revenue underwent dramatic changes. In the 20% increase scenario, the sawmill can obtain an additional \$8,576,137 in net revenue by only increasing lumber production by 651 MBF. A similar situation occurs with the 20% decrease scenario. After running the model, the production only

decreased approximately 10% from the original production level, but net revenue decreased dramatically, falling 268% from the baseline.

	Baseline	20% increase	20% decrease
2x4 / MBF	\$273	\$328	\$218
2x6 / MBF	\$314	\$377	\$251
2x8 / MBF	\$311	\$373	\$249
2x10 / MBF	\$319	\$383	\$256
Net revenue	\$3,110,141	\$11,686,278	-\$5,238,221
Total lumber production /MBF	141,229	141,880	126,689

Table 4-2. Lumber price, production and net revenue for three scenarios

As these results show, price is very sensitive for commodity products, so knowing the critical point of the lumber price in terms of earning or losing money is essential for the sawmill. A sensitivity analysis was conducted to examine this critical point for lumber price in the model. The sensitivity report shows that 92.6% to 92.7% of the original price is the critical point. Table 4-3 shows the price and net revenue at 92.6% of the original price and 92.7% of the original price. The table shows that if the price drops 0.1 %, from 92.7% to the 92.6% of the original price, the mill will suffer a \$42,197.97 loss in net revenue.

Considering the importance of price and the downturn in the lumber market, the decision of the MKRF to reduced harvesting by 60% in 2010 helped the sawmill operation avoid potential loss in the lumber market (UBC Malcolm Knapp Research Forest, 2011d). However, since the US market is recovering and the Chinese market is rising, it is more likely that there is future opportunity for the mill to gain profit (British Columbia Ministry of Jobs, Tourism and Innovation, 2011). Therefore, mill managers have to be aware of the current price and its trends to adjust the mill operation.

Moreover, knowing the critical point of the lumber price is also essential for mill operation. Since the price and cost information keeps changing, the critical point of price also changes consequently. Hence, the current critical point of lumber price is important information.

92.6% of original pr	rice	92.7% of origi	nal price
2x4 - 8'	\$252.80	2x4 - 8'	\$253.07
2x6 - 8'	\$290.72	2x6 - 8'	\$291.03
2x8 - 8'	\$288.19	2x8 - 8'	\$288.50
2x10 - 8'	\$295.77	2x10 - 8'	\$296.09
Net revenue	-\$36174	Net revenue	\$6024

Table 4-3. Net revenue comparison of 92.6% of the original price and 92.7% of the original price

4.3 Limited mill working time

Mill working time is directly linked to the labour cost, which constrains lumber production and therefore is a vital factor in the profit optimization process. Canada has one of the highest labour costs in the world, which poses challenges for many Canadian companies, especially small companies (Van Liemt, 1992). The sawmill in MKRF has a small capacity, so working time has to be taken into consideration in terms of general operation and cost-saving.

In the previous analysis, the sawmill was scheduled running 4,600 hours in order to process as many logs as possible. In this limited mill working time scenario, the mill has 1 year to process those harvested logs. Generally the mill will shut down for 4 weeks within 1 year, so the mill operates about 48 weeks per year and 2 shifts per week. For 1 shift, a mill worker works 8 hours per day and 5 days per week. Therefore, the total mill working time is 8 hours \times 5 days \times 2 shifts \times 48 weeks = 3840 hours. The ratio of headsaw and trimmer productivity was re-adjusted to 1.3 because the available time for both of the machines changed.

After running the model, no feasible answer could be obtained with a mill working time of 3840 hours. In order to explore the reason, 2 sensitivity analyses were conducted. One examined the

critical point for the working time that is feasible for the LP model; the other one removed the constraint on minimum production level of each period and kept the mill working hour as 3840 hours to explore the feasible minimum production level for each period.

As for feasible mill working time, the sensitivity analysis showed that the mill can have positive net revenue only if the mill working time is greater than 4156 hours. The main reason for the model generating this number is the minimum production level constraint. In the original analysis, in order to have an even production flow, the assumption was made to produce 100,000 MBF lumber per period for the mill. Therefore, if the mill working time is less than 4156 hours, the mill will not be able to meet this requirement, so the LP model cannot provide a feasible result for the processing.

Another sensitivity analysis was conducted to test the critical point for the minimum production level. It was necessary to assume that the mill working time is 3840 hours, and there is a change in the minimum reduction level. The sensitivity analysis indicates that if the minimum production level is less than 92000 MBF per period, the mill is able to maintain its production.

The previous analyses for the mill working time illustrate that mill working time and minimum production level are linked closely. The mill manager has to determine the minimum production level carefully based on the projected mill working time, or vice versa.

4.4 Possible Improvements of Models

Throughout this research, the series of models projected the volume of harvested trees, lumber production, mill working time and net revenue. However, the model has room for improvement. These possible improvements include combining the tree-to-log and forest estate models together; increasing the upper limit of log diameter of sawing pattern model and introducing a section for carbon credit consideration into the model.

4.4.1 Combine 2 LP Models

In this study, two linear programming models, forest estate model and log-to-product model,

were built separately. However, the two models have similar structures and they both need Microsoft Excel Solver to run, so there may be a way to appropriately design an LP model that combines the two models together. There are two main reasons for this improvement. Primarily, one Excel spreadsheet is more efficient and more manageable for mill managers. Currently, the forest estate model must be run first, then the data output (available log volume for each period) has to be copied and pasted manually into the log-to-product model. There is more probability of error in this "copy-and-paste" process. If the model can incorporate the two parts together, it is more user-friendly for a mill manager. Additionally, what the Solver does now is optimize the value for each separate model. However, an optimized answer for one part is not necessarily the best answer overall. If this situation happens, the mill manager may be misled by model outcomes and therefore the mill will suffer some unnecessary losses. Hence, if models can be consolidated, it will be more beneficial for the model users.

4.4.2 Improve Available Log Diameter Range of Sawing Pattern Model

In the sawing pattern model, logs that are greater than 50cm in diameter encounter some design problems due to the inappropriate graphing of the log cross-section. The reason for this problem is the insufficient coordinates of the graph. Based on the size of the log and the product selected, some default coordinates are already embedded in the Excel spreadsheet so that the cross-section of a log and the products can be shown when the information is entered. Although an adjustment was used to generate the LRF for the study, it is expected to have some error compared to a full view design for sawing patterns. Therefore, more default coordinates are needed to be built into the model; however, currently there is a technical deficiency in this study so coordinates are not able to be set up. However, if the sawing pattern model is intended to be used by mill managers in reality, this problem should be fixed.

4.4.3 Introduce a Carbon Credit Section

With the increasing awareness of climate change issues and the establishment of formal carbon credit legislations, carbon credits are considered another important "product" from forests additional to traditional lumber production. British Columbia is leading in greenhouse gas reduction in Canada as it is the first province in Canada to establish carbon tax (Greig & Bull, 2009). Therefore, conserving forest to obtain carbon credits is a serious option for forest managers. As for the MKRF, some projects examining carbon credits for the forest are ongoing in the UBC Faculty of Forestry. Therefore, it is worth exploring some methods to incorporate a carbon section into the LP model, which will give the forest manager more choice. For example, constraints can be added to lower harvesting level, resulting in high growing stock and therefore revenue from carbon credits. However, more research is needed to be done in this field.

5. Conclusion

This study provides a prototype decision support system to project forest operations and log processing in the Malcolm Knapp Research Forest. Actual forest area and sawmill specific parameters were not used for MKRF, but the system could be modified to make it suitable for the research forest. Growth and yield data were simulated by TIPSY, based on information collected in the field. Cost and revenue data were either derived from the market or defined by reasonable assumptions. Models were developed by Microsoft Excel and model simulations were conducted by the Microsoft Excel Solver add-in. The result shows that the mill can obtain \$3,110,141 by producing 141,229 MBF of lumber and 298,818 m³ of chips. Additionally, three scenarios, 2x8-oriented sawing pattern, lumber price fluctuation and limited mill working time, were tested by changing data inputs to the model. The results indicated that market-preferred type of lumber, price trend and mill operation time are three important things of which mill managers need to know. Therefore, the mill manager must continually update and optimize the model.

6. Reference

- British Columbia Ministry of Forest and Range. (2005). OAF1 Project | Project Home Page. *Ministry of Forests Home Page*. Retrieved January 17, 2012, from http://www.for.gov.bc.ca/hfp/silviculture/OAF1/default.htm
- British Columbia Ministry of Jobs, Tourism and Innovation. (2011). B.C. sets yearly China lumber export record. *Province of British Columbia News Archive*. Retrieved March 15, 2012, from http://www2.news.gov.bc.ca/news_releases_2009-2013/2011JTI0121-001313.htm
- Clark, D., & Clark, D. (1999). Assessing the Growth of Tropical Rain Forest Trees: Issues for Forest Modeling and Management. *Ecological Applications*, 9(3), 981-997.

Council of Forest Industries. (2012). Softwood Lumber Indicators 2006 to 2010. *Council of Forest Industries*. Retrieved March 13, 2012, from www.cofi.org/wp-content/uploads/2012/01/sla indicators 2006-2010.pdf

Cross, P. (2011). Canadian Economic Observer: Section 3: Feature article. Statistics Canada: Canada's national statistical agency / StatistiqueCanada :Organismestatistique national du Canada. Retrieved March 13, 2012, from http://www.statcan.gc.ca/pub/11-010-x/2011009/part-partie3-eng.htm

Ebner, D., & Grant, T. (2011). Canadian exports forecast to hit prerecession levels in 2012. *The Global and Mail*. Retrieved March 13, 2012, from http://www.theglobeandmail.com/report-on-business/economy/canadian-exports-forecast-tohit-prerecession-levels-in-2012/article2016485/

Greig, M., & Bull, G. (2009). Carbon Management in British Columbia's Forests: Opportunities and Challenges. FORREX Series 24. Retrieved March 15, 2012, from http://www.forrex.org/publications/forrexseries/fs24.pdf

Grosenbaugh, L. (1963). Some suggestions for better sample-tree-measurement. *Society of American*. *Foresters, Proceedings*, *1*, 36-42.

 Jadeja, J. (2007). Introduction and Literature Review. A model for increasing yield in sawmills based on detection of subsurface defects in canted logs using ground penetrating radar (GPR) system (pp. 1-16). Morgantown, W. Va.: [West Virginia University Libraries].

Lischke, H. (2001). New Developments in Forest Modeling: Convergence Between Applied and Theoretical Approaches. *Natural Resource Modeling*, *14*(1), 71-102.

Madison's Canadian Lumber Reporter. (2011). The source for Canadian and U.S. lumber and panel prices. *Madison's - Canada's Leading National Lumber Publication*. Retrieved February 25,

2012, from www.madisonsreport.com/assets/mclr121611.pdf

- Mardikar, Y. (2007). Introduction. Establishing baseline electrical energy consumption in wood processing sawmills a model based on energy analysis and diagnostics (pp. 1-21).
 Morgantown, W. Va.: [West Virginia University Libraries].
- Pojar, J., & Stewart, A. (2007a). CWHdm Coast Forest Region BEC.British Columbia Ministry of Forests. Retrieved March 7, 2012, from http://www.for.gov.bc.ca/rco/research/eco/bec_web/docs/CWHdm.htm
- Pojar, J., & Stewart, A. (2007b). CWHvm1 Coast Forest Region BEC.British Columbia Ministry of Forests. Retrieved March 7, 2012, from http://www.for.gov.bc.ca/rco/research/eco/bec_web/docs/CWHvm1.htm
- Pojar, J., & Stewart, A. (2007c). CWHvm2 Coast Forest Region BEC.British Columbia Ministry of Forests. Retrieved March 7, 2012, from http://www.for.gov.bc.ca/rco/research/eco/bec_web/docs/CWHvm2.htm
- Rewoldt, S., Scott, J., &Warshaw, M. (1973).*Introduction to marketing management; text and cases* (Rev. ed.). Homewood, Ill.: R. D. Irwin.
- TradingCharts.(2011). Lumber Historical Prices.*TradingCharts*. Retrieved February 12, 2012, from http://futures.tradingcharts.com/historical/LU/2011/0/continuous.html
- UBC Malcolm Knapp Research Forest. (2011a). Location and Ecology | Malcolm Knapp Research Forest. *Home | Malcolm Knapp Research Forest*. Retrieved March 20, 2012, from http://www.mkrf.forestry.ubc.ca/about/location-and-ecology/
- UBC Malcolm Knapp Research Forest. (2011b). Malcolm Knapp Research Forest: About Us. *Malcolm Knapp Research Forest*. Retrieved March 13, 2012, from http://www.mkrf.forestry.ubc.ca/about/

- UBC Malcolm Knapp Research Forest. (2011c). Malcolm K/napp Research Forest: Operations. Malcolm Knapp Research Forest. Retrieved March 13, 2012, from http://www.mkrf.forestry.ubc.ca/operations/
- UBC Malcolm Knapp Research Forest. (2011d). 2010 Annual Report.*Malcolm Knapp Research Forest*. Retrieved March 13, 2012, from http://www.mkrf.forestry.ubc.ca/2011/11/2010/
- Van Liemt, G. (1992). Economic Globalization: Labour Options and Business Strategies in High Labour Cost Countries;.*International Labour Review*, 131(4-5), 453-470.

Vladimirov, I., & Chudnenko, A. (2009). Multilevel Modeling of the Forest Resource Dynamics. *Mathematical Modelling of Natural Phenomena*, 4(5), 72-88.

7. Appendices

7.1 Appendix A: Forest Estate Model

Appendix A (Figure 7-1 to Figure 7-4) show the structure of the forest estate model. The forest estate model is a linear-programming based model, which is used to project the volume of logs that need to be harvested for the processing in this study. The assumptions and structure of the model were described in the 2.3.1 section of this article. The numbers in the matrix are the optimized solutions for operation.

7.1.1 Stand One

(9		stand 1	2).:
1	2	3	4	5	6	Uncut
S1-P1	S1-P2	S1-P3	S1-P4	S1-P5	S1-P6	S1-uncu
339.2	0.0	524.2	27.8	0.0	108.8	0.0
267.83	180.69	209.83	237.16	263.71	285.78	0
144	0	0	0	0	0	0
0	181	0	0	0	0	0
0	0	210	0	0	0	0
0	0	0	237	0	0	0
0	0	0	0	264	0	0
124	0	0	0	0	286	0
144	144	144	144	144	144	144
0	144	144	144	144	144	144
0	0	181	181	181	181	181
0.4	0	0	210	210	210	210
17	0.4	0	0	237	237	237
62	17	0.4	0	0	264	264
0	62	17	0.4	0	0	286
0	62	17	0.4	0	0	286
1						
	1					
		1				
	1		1	10		1
	1 0		3	1		
					1	

7.1.2 Stand Two

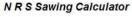
1 S2-P1 412.3 278.47 148 0 0	2 \$2-P2 587.7 187.17 0 187 0 0 0	3 \$2-P3 0.0 217.18 0 0 217	4 \$2-P4 0.0 245.8 0 0 0	5 \$2-P5 0.0 273.66 0	6 \$2-P6 0.0 296.27 0	Uncut S2-uncut 0.0 0
412.3 278.47 148 0	587.7 187.17 0 187 0	0.0 217.18 0 0	0.0 245.8 0	0.0 273.66	0.0 296.27	0.0 0
278.47 148 0	187.17 0 187 0	217.18 0 0	245.8 0	273.66	296.27	0
148 0	0 187 0	0	0			
0	187 0	0		0	0	
	0		0		0	0
0		217		0	0	0
	0		0	0	0	0
0		0	246	0	0	0
0	0	0	0	274	0	0
130	0	0	0	0	296	0
148	148	148	148	148	148	148
0.0	148	148	148	148	148	148
0.0	0	187	187	187	187	187
0.5	0	0	217	217	217	217
18	1	0	0	246	246	246
67	18	1	0	0	274	274
0	67	18	0.5	0	0	296
0	67	18	0.5	0	0	296
1				0		2
	1		<u></u>			
		1				
			1	200		5
	Ű.		5	1		6
8					1	

7.1.3 Stand Three

			stand 3	3		
1	2	3	4	5	6	Uncut
S3-P1	\$3-P2	\$3-P3	S3-P4	\$3-P5	S3-P6	S3-uncut
0.0	0.0	0.0	406.4	387.9	0.0	205.7
287.11	193.65	224.53	254.44	283.61	306.76	0
153	0	0	0	0	0	0
0	194	0	0	0	0	0
0	0	225	0	0	0	0
0	0	0	254	0	0	0
0	0	0	0	284	0	0
134	0	0	0	0	307	0
153	153	153	153	153	153	153
0	153	153	153	153	153	153
0	0	194	194	194	194	194
0.6	0	0	225	225	225	225
18	0.6	0	0	254	254	254
68	18	0.6	0	0	284	284
0	68	18	0.6	0	0	307
0	68	18	0.6	0	0	307
1						
	1					
		1				
		20	1			
	j ()		2	1		0
					1	-

7.1.4 Harvesting, Inventory and Result

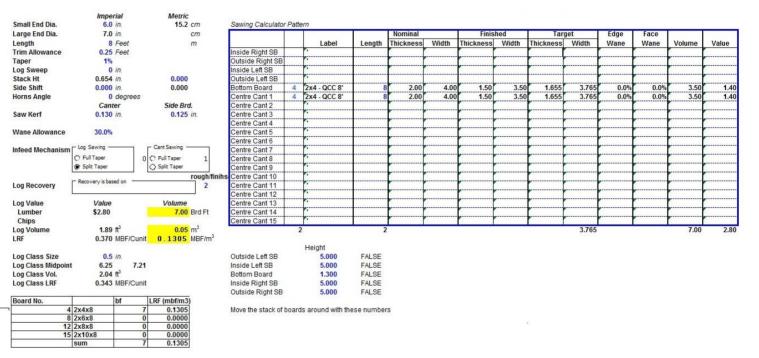
			entory	Inve	Harvesting						
			Ending_Inven	Begin_Inven	Harv6	Harv5	Harv4	Harv3	Harv2	Harv1	
		Result	111,353	445,410	126,752	110,000	110,000	110,000	110,000	110,000	
n R	Sign	676,752							· · · · · · · ·		
	=	0								-1	
	=	0							-1		
	=	0	1					-1	-		
	=	0	£				-1				
	=	0		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	-1		J	1		
	=	0			-1						
	=	0	· · · · · · · · · · · · · · · · · · ·	-1					а 		
= 10	>=	335,410									
10	>=	313,051									
= 10	>=	253,529									
10	>=	190,251									
10	>=	146,396									
10	>=	111,353									
	=	0	-1								
-	>=	0	1	-0.25					· · · · · · · · · · · · · · · · · · ·		
	>=	751	9								
-	>=	588									
	>=	524									
-	>=	434							Ч.,		
2.13	>=	200	92		5 D		1	8 3	6)		


45

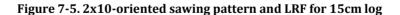
7.2 Appendix B: Sawing Patterns for Each Type of Log

Appendix B (Figure 7-5 to Figure 7-15) illustrates the different sawing patterns used in the Sawing Pattern Model, referred to in 2.3.2 section of this essay. Appendix B also contains the Lumber Recovery Factor for logs ranging from 15cm to 55cm in the 2x10-oriented pattern and different sawing patterns for 35cm log and 45cm log in the 2x8-oriented pattern. However, due to the design limitation of the sawing pattern model, logs greater than 50cm could not be shown in the cross-section appropriately. Therefore, an adjustment was used, so that only half of the cross-section was filled, in the centre cant, then the volume of that lumber was doubled and the LRF was calculated.

7.2.1 2x10-oriented Lumber Recovery Factor


7.2.1.1 15cm log

Licensed to Natural Resources Systems


'2x4 - QCC 8

'2x4 - QCC 8

-

7.2.1.2 20cm log

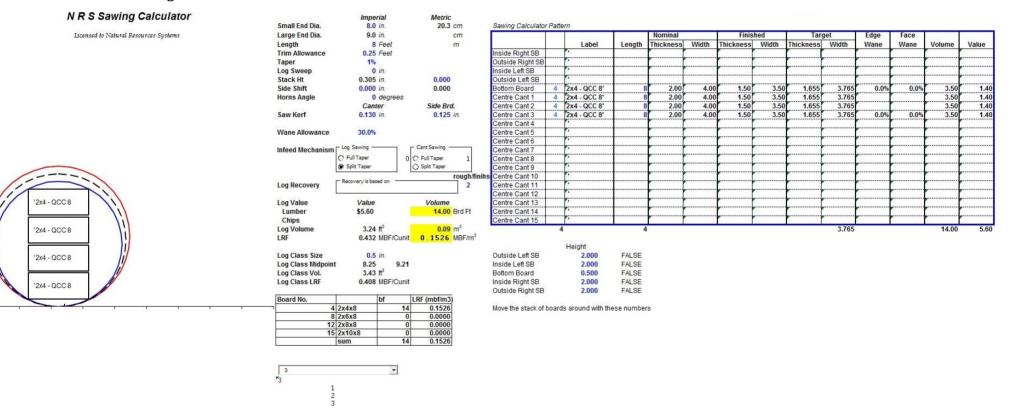


Figure 7-6. 2x10-oriented sawing pattern and LRF for 20cm log

7.2.1.3 25cm log

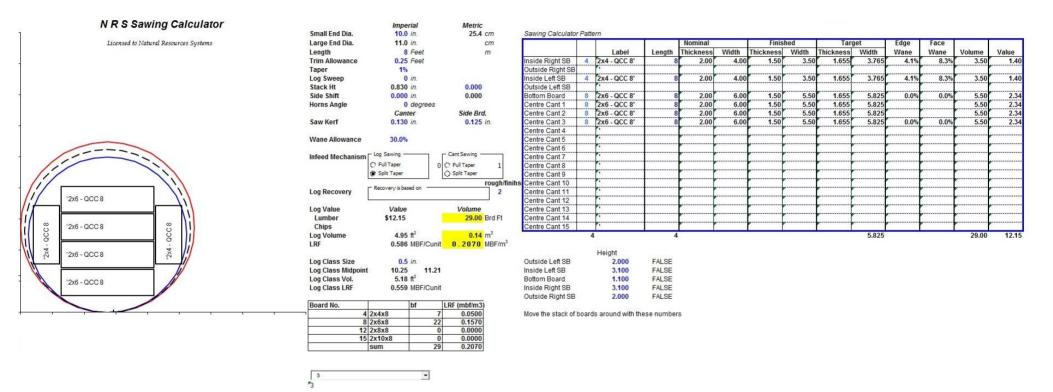
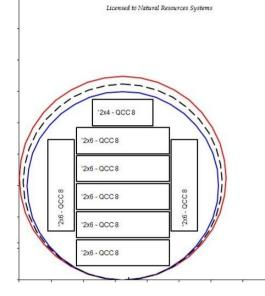
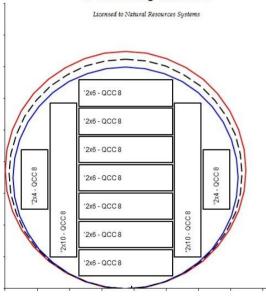



Figure 7-7. 2x10-oriented sawing pattern and LRF for 25cm log

7.2.1.4 30cm log N R S Sawing Calculator

Large fad Dia. 13.0 <i>in</i> cm Length 8 Feel m Tim Allowance 0.25 Feel m Taper 1% to build Fight SB 8 2c6 OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 0.0% 0.0% 5.50 Stack Ht 0.555 in 0.000 bill be left SB 8 2c6 OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 0.0% 0.0% 5.50 Stack Ht 0.555 in 0.000 bill be left SB 8 2c6 OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 0.0% 0.0% 5.50 Stack Ht 0.555 in 0.000 bill be left SB 8 2c6 OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 0.0% 0.0% 5.50 Stack Ht 0.010 in 0.000 bill be left SB 7 2c6 OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 0.0% 0.0% 5.50 Stack Ht 0.130 in 0.000 bill be left SB 7 2c6 OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 0.0% 0.0% 5.50 Saw Kert 0.130 in 0.125 in Carte Cart 1 8 2c6 OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.822 0.550 Carter Cart 1 8 2c6 OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.822 0.0% 0.0% 5.50 Saw Kert 0.130 in 0.125 in Carte Cart 3 8 2c6 OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.822 0.550 Carter Cart 4 8 2c6 0.0C 8 8 2.00 6.00 1.50 5.50 1.655 5.822 0.550 Carter Cart 4 8 2c6 0.0C 8 8 2.00 6.00 1.50 5.50 1.655 5.822 0.550 Carter Cart 4 8 2c6 0.0C 8 8 2.00 6.00 1.50 5.50 1.655 5.822 0.550 Carter Cart 4 8 2c6 0.0C 8 8 2.00 6.00 1.50 5.50 1.655 5.822 0.550 Carter Cart 4 8 2c6 0.0C 8 8 2.00 6.00 1.50 5.50 1.655 5.822 0.550 Carter Cart 4 8 2c6 0.0C 8 8 2.00 6.00 1.50 5.50 1.655 5.822 0.550 Carter Cart 4 8 2c6 0.0C 8 8 2.00 6.00 1.50 5.50 1.655 5.822 0.550 Carter Cart 1 4 7 Cart 5.80 8 2.00 6.00 1.50 5.50 1.655 5.822 0.550 Carter Cart 1 4 7 Cart 5.80 8 2.00 6.00 1.50 5.50 1.655 5.822 0.00 7 0.0% 3.50 Carter Cart 1 4 7 Cart 5.80 8 2.00 6.00 1.50 5.80 1.555 5.20 2.550 Carter Cart 1 5 7 Cart 5.80 8 2.00 7 7 0.550 Log Class Vie A.059 ME/Curit 0.2115 MBF/m Log Class Vie A.059	Small End Dia.	Imperial 12.0 in.	Metric 30.5 cm	Sawing Calculator	Patt	tern											
Tim Allowance 0.25 Feet Inside Right SB 2x6 - OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.822 0.0% 0.0% 5.50 Log Sweep 0 in 0.000 0.000 0.000 0.000 0.00% 5.50 1.655 5.822 0.0% 0.0% 5.50 Stack Ht 0.000 in 0.000 0.000 Botter Cart I 8 2x6 - OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.822 0.0% 0.0% 5.50 Saw Kert 0.130 in 0.0125 in 0.125 in 8 2.66-OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 0.0% 5.50 Saw Kert 0.130 in 0.125 in 0.125 in 0.125 in 0.266-OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 0.0% 5.50 Vane Allowance 3.0% 0.125 in 0.125 in 0.125 in 0.200 fc/l at	Large End Dia.	13.0 in.	cm				1	Nominal		Finist	hed	Tar	get	Edge	Face		
Tim Allowance 0.25 Feet noise Right 88 266 - OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.82 0.0% 0.0% 5.50 Log Sweep 0 in 0.000 inside Right 88 200 6.00 1.50 5.50 1.655 5.82 0.0% 0.0% 5.50 Stack Ht 0.000 in 0.000 0.000 Bottom Board 8 2x6 - OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 0.0% 0.0% 5.50 Saw Kert 0.130 in 0.0125 in 0.025 in 2x6 - OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 0.0% 5.50 Saw Kert 0.130 in 0.125 in 0.25 in 0.26 CC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 0.0% 5.50 Cantre Cantl 3 0.26 CC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 5.50 6.55 Vane Allowance 3.0% 0.0% 2.0CC 8' 8 2.	Length	8 Feet	m			Label	Length	Thickness	Width	Thickness	Width	Thickness	Width	Wane	Wane	Volume	Valu
Taper 1% Uside Fight SB 2 0		0.25 Feet		Inside Right SB	8	2x6 - QCC 8'											2
Log Sweep 0 /n. Inside Left SB 8 2.66 -OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.822 0.0% 0.0% 5.50 Side Shift 0.000 in. 0.000 0.000 in. 0.000 0.0% 5.50 1.655 5.822 0.0% 0.0% 5.50 Side Shift 0.000 in. 0.000 0.000 in. 0.000 0.0% 5.50 1.655 5.822 0.0% 0.0% 5.50 Saw Kerf 0.130 in. 0.125 in. Centre Cant1 8 2.66 -OCC 8'' 8 2.00 6.00 1.50 5.50 1.655 5.822 5.50 Wane Allowance 30.0% Centre Cant3 8 2.66 -OCC 8'' 8 2.00 6.00 1.50 5.50 1.655 5.822 5.50 Up Recovery Partape 0 Centre Cant3 8 2.66 -OCC 8'' 8 2.00 6.00 1.50 5.50 1.655 5.822 5.50 Up Sistrape 0 Centre Cant3 6 Centre Cant4 2.00 5.50 1.655	Taper	1%				P.		-		P		· · · · ·					
Stack Ht 0.555 /n. 0.000 5.50 1.655 5.222 0.0% 0.0% 0.550 1.555 5.225 0.0% 0.550 5.50 1.655 5.225 0.0% 0.550 5.50 1.655 5.225 0.0% 0.550 5.50 1.655 5.225 0.0% 0.550 1.555 5.522 5.50 1.555 5.522 5.50 1.555 5.522 5.50 1.555 5.522 5.50 1.555 5.522 5.50 1.555 5.522 5.50 1.555 5.522 1.550 1.555 5.522 1.550 1.555 5.522 1.550 1.550 1.550 1.550 1.550 1.550 1.550 1.550 <td></td> <td></td> <td></td> <td></td> <td></td> <td>2x6 - QCC 8'</td> <td></td> <td>2.00</td> <td>6.00</td> <td>1.50</td> <td>5.50</td> <td>1.655</td> <td>5.825</td> <td>0.0%</td> <td>0.0%</td> <td>5.50</td> <td>1</td>						2x6 - QCC 8'		2.00	6.00	1.50	5.50	1.655	5.825	0.0%	0.0%	5.50	1
Horns Angle 0 degrees Centre Can1 8 2x6 OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 5.50 Saw Kert 0.125 in. 0.125 in. 0.125 in. 0.126 i		0.555 in.	0.000	Outside Left SB		P.	1										
Horns Angle 0 degrees Centre Can1 8 2x6 - OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 5.50 Saw Kert 0.125 in. Centre Can1 8 2x6 - OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 5.50 Wane Allowance 30.0% Centre Can13 8 2x6 - OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 5.50 Wane Allowance 30.0% Centre Can13 8 2x6 - OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 5.50 Infeed Mechanism Centre Can14 8 2x6 - OCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 5.50 1.655 5.825 5.50 1.655 5.825 5.50 1.655 5.825 5.50 1.655 5.825 5.50 1.655 5.825 5.50 1.655 5.825 5.50 1.655 5.825 5.50 1.655 5.825 5.50 1.655 5.825	Side Shift	0.000 in.	0.000	Bottom Board	8	2x6 - QCC 8'		B 2.00	6.00	1.50	5.50	1.655	5.825	0.0%	0.0%	5.50	
Carter Side Brd. Centre Can12 8 2x00 6.00 1.50 5.50 1.655 5.825 5.50 Saw Kert 0.130 in. 0.125 in. 0.125 in. Centre Can13 8 2x6-QCC 8'' 8 2.00 6.00 1.50 5.50 1.655 5.825 5.50 Wane Allowance 30.0% Centre Can14 8 2x6-QCC 8'' 8 2.00 6.00 1.50 5.50 1.655 5.825 5.50 Under Cant 5 4 2x4-QCC 8'' 8 2.00 4.00 1.50 3.50 1.655 5.825 0.0% 0.0% 3.50 Centre Cant 1	Horns Angle	0 degree	s	Centre Cant 1	8	2x6 - QCC 8'		B 2.00	6.00		5.50	1.655	5.825			5.50	
Saw Kert 0.130 /n. 0.125 /n. Centre Cant 3 9 2x6 -QCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 5.50 Wane Allowance 30.0% Infeed Mechanism (ag Sawing (book 1 age)) 0 Centre Cant 4 8 2x6 -QCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 5.50 Infeed Mechanism (ag Sawing (book 1 age)) 0 Centre Cant 1 4 2x4 - QCC 8' 8 2.00 6.00 1.50 5.50 1.655 5.825 5.50 Centre Cant 7 Centre Cant 10 Centre Cant 10 Centre Cant 10 Centre Cant 10 Centre Cant 11 Centre Cant 11 Centre Cant 11 Centre Cant 11 Centre Cant 12 Centre Cant 13 Centre Cant 13 Centre Cant 14 Centre Cant 13 Centre Cant 14 Centre Cant 14 Centre Cant 14 Centre Cant 14 Centre Cant 13	and a second second second	Canter	Side Brd.	Centre Cant 2	8	2x6 - QCC 8'			6.00	1.50	5.50	1.655	5.825			5.50	-
Wane Allowance 30.0% Infeed Mechanism Os Saving Centre Cant 4 8 2x6 - QCC 8' 8 2.00 4.00 1.50 3.50 1.655 5.825 0.0% 3.50 Infeed Mechanism Os Saving Centre Cant 5 4 2x4 - QCC 8' 8 2.00 4.00 1.50 3.50 1.655 5.825 0.0% 3.50 Log Saving Centre Cant 6 1 Centre Cant 7 Centre Cant 8 Centre Cant 7 <	Saw Kerf	0.130 in.	0.125 in.	Centre Cant 3	8	2x6 - QCC 8'		B 2.00									
Wane Allowance 30.0% Centre Cant 5 4 2x4-QCC 8' 0 2.00 4.00 1.50 3.50 1.655 3.765 0.0% 0.0% 3.50 Infeed Mechanism Op Sawing O Cant Saw				Centre Cant 4	8	2x6 - QCC 8'		B 2.00			5.50	1.655	5.825			5.50	
Infeed Mechanism Cost Saving Cast Saving	Wane Allowance	30.0%		Centre Cant 5	4	2x4 - QCC 8'	1		4.00	1.50			3.765	0.0%	0.0%	3.50	
Image: Split Tape: Split Tape: Split Tape: Control Cant 8 Control Cant 8 Control Cant 8 Log Recovery Recovery is based on2 Control Cant 8 Control Cant 8 Log Value Value Volume Centre Cant 10 Centre Cant 11 Log Value Value Volume Centre Cant 11 Centre Cant 12 Log Value Value Volume Centre Cant 13 Centre Cant 12 Constre Cant 13 Centre Cant 14 Centre Cant 14 Centre Cant 15 Constre Cant 13 Centre Cant 14 Centre Cant 14 Centre Cant 14 Constre Cant 13 Centre Cant 14 Centre Cant 15 Centre Cant 14 Constre Cant 13 Centre Cant 14 Centre Cant 14 Centre Cant 14 Centre Cant 14 Centre Cant 15 Centre Cant 14 Centre Cant 14 Centre Cant 15 Centre Cant 15 Centre Cant 15 Centre Cant 15 Log Class Size 0.5 /n 0.20 m² Centre Cant 18 Centre Cant 18 Log Class Vol. 7.30 f² Botom Board 0.900 FALSE Log Class Vol. 0.576 MBF/Cunit Inside Left SB 2.000 FALSE <				Centre Cant 6		-]·		r		r							
Percent split Taper O Split Taper Centre Cant 10 Centre Cant 10 Log Recovery Recovery is based on 2 Centre Cant 10 Centre Cant 10 Log Value Value Value Value Centre Cant 11 Centre Cant 12 Log Value Value Value Value Centre Cant 11 Centre Cant 12 Log Value Value Value Centre Cant 13 Centre Cant 14 Centre Cant 14 Log Volume 7.01 ft ³ 0.20 m ³ 6 6 5.825 42.00 Log Class Size 0.5 in. Outside Left SB 3.100 FALSE FALSE Log Class Vol. 7.30 ft ³ Botom Board 0.900 FALSE Outside Left SB 3.100 FALSE Log Class LRF 0.576 MBF/Cunit Inside Left SB 3.100 FALSE Outside Right SB Outside R	Infeed Mechanism	Log Sawing	Cant Sawing	Centre Cant 7		- P.		r	· · · · · · · · · · · · · · · · · · ·	r							
Log Recovery Recovery is based on 2 Log Value Value Volume Lumber \$17.76 42.00 String Cantt 13 ' Centre Cantt 14 ' Centre Cantt 15 ' Cog Value \$17.76 Log Value Contre Cantt 14 Centre Cantt 14 ' Centre Cantt 15 ' Cog Value 0.20 m ³ Log Value 0.20 m ³ Log Value 0.20 m ³ Log Value 0.2115 Log Value 0.2115 Log Class Size 0.5 in. Log Class Midpoint 12.25 Log Class Nulpoint 12.25 Log Class NeF // Cunit Unside Left SB Log Class LRF 0.576 MBF//Cunit Inside Right SB Log Class Value 3.5 0.0000		C Full Taper	0 C Full Taper 1	Centre Cant 8		•				P							
Log Recovery Recovery is based on 2 Centre Cant 11 Centre Cant 12 Log Value Value Volume 517.76 42.00 Brd Ft Log Volume \$17.76 42.00 Brd Ft Centre Cant 13 Centre Cant 14 Chips Centre Cant 13 Centre Cant 14 Centre Cant 14 Centre Cant 14 Log Volume 7.01 ft ³ 0.20 m ³ 6 6 5.825 42.00 Log Class Size 0.5 /n 0.2115 MBF/m ³ Height Cutside Left SB 3.100 FALSE Log Class Vol. 7.30 ft ³ Bottom Board 0.900 FALSE Outside Left SB 3.100 FALSE Log Class Vol. 7.30 ft ³ Bottom Board 0.900 FALSE Outside Left SB 0.000 Cutside Left SB 0.000 FALSE Outside Right SB 2.000 FALSE Outside Right SB Outside Right SB <t< td=""><td></td><td>🗊 Split Taper</td><td>Split Taper</td><td>Centre Cant 9</td><td></td><td>•</td><td></td><td>r</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>r</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		🗊 Split Taper	Split Taper	Centre Cant 9		•		r	· · · · · · · · · · · · · · · · · · ·	r							
Log Recovery Value Volume Log Value Value Volume Lumber \$17.76 42.00 Brd F1 Log Volume 7.01 ft ³ 0.20 m ³ Centre Cant 12 Centre Cant 14 Log Volume 7.01 ft ³ 0.20 m ³ Centre Cant 14 Centre Cant 15 Log Class Size 0.59 MBF/Cunit 0.2115 MBF/m ³ 6 6 Log Class Size 0.5 in. Centre Cant 15 Centre Cant 15 Centre Cant 14 Log Class Size 0.5 in. Outside Left SB 2.000 FALSE Log Class IAF 0.576 MBF/Cunit Outside Left SB 3.100 FALSE Inside Left SB 3.100 FALSE Inside Right SB 0.000 Move the stack of boards around with these numbers Move the stack of boards around with these numbers Move the stack of boards around with these numbers			rough/finih	s Centre Cant 10		•		r		r		r r					
Log Value Value Volume Volume Volume Volume Value Value <td>Log Recovery</td> <td>Recovery is based on -</td> <td>2</td> <td>Centre Cant 11</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>r</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Log Recovery	Recovery is based on -	2	Centre Cant 11		•				r							
Lumber \$17.76 42.00 Brd Ft Chips Centre Cant 14 Centre Cant 15 Centre Cant 14 Centre Cant 15 Centre Cant 16 Centre Cant 16 <t< td=""><td></td><td></td><td></td><td>Centre Cant 12</td><td></td><td>•</td><td></td><td>r</td><td></td><td>r</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				Centre Cant 12		•		r		r							
Chips Centre Cant 15 Centre Cant 15 </td <td>Log Value</td> <td>Value</td> <td>Volume</td> <td>Centre Cant 13</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>r</td> <td></td> <td>r r</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Log Value	Value	Volume	Centre Cant 13						r		r r					
Log Volume 7.01 ft ³ 0.20 m ³ 6 6 5.825 42.00 LRF 0.599 MBF/Cunit 0.2115 MBF/m ³ Height 1 <	Lumber	\$17.76	42.00 Brd Ft	Centre Cant 14		(*											
LRF 0.599 MBF/Cunit 0.2115 MBF/m³ Log Class Size 0.5 in. Outside Left SB 2.000 FALSE Log Class Midpoint 12.25 13.21 Inside Left SB 3.100 FALSE Log Class Vol. 7.30 ft³ Bottom Board 0.900 FALSE Log Class LGF 0.576 MBF/Cunit Inside Right SB 3.100 FALSE Outside Left SB 2.000 FALSE Outside Right SB 2.000 FALSE Board No. bf LRF (mbf/m3) Outside Right SB 2.000 FALSE 4 2x4x8 3.5 0.0176 Move the stack of boards around with these numbers 4 2x8x8 0 0.0000 FALSE 12 2x8x8 0 0.0000 FALSE	Chips			Centre Cant 15													
Log Class Size 0.5 in. Description Log Class Midpoint 12.25 13.21 Inside Left SB 3.00 FALSE Log Class Vol. 7.30 H ² Bottom Board 0.900 FALSE Log Class Vol. 0.576 MBF/Cunit Bottom Board 0.900 FALSE Log Class Val. 0.576 MBF/Cunit Inside Right SB 3.100 FALSE Outside Val. 0.576 MBF/Cunit Inside Right SB 3.000 FALSE Outside Val. 0.00176 Outside Right SB 3.000 FALSE 0 12 ZAVAR 3.5 0.0176 Move the stack of boards around with these numbers 12 ZAVAR 0 0.0000 FALSE	Log Volume	7.01 ft ³	0.20 m ³	(· · · · · · · · · · · · · · · · · · ·	-	6		6					5.825			42.00	1
Log Class Size 0.5 in. Outside Left SB 2.00 FALSE Log Class Midpoint 12.25 13.21 Inside Left SB 3.100 FALSE Log Class Vol. 7.30 ft ³ Botom Board 0.900 FALSE Log Class LRF 0.576 MBF/Cunit Inside Right SB 3.100 FALSE Board No. bf LRF (mbf/m3) Outside Right SB 2.000 FALSE 4 2x4x8 3.5 0.0176 Move the stack of boards around with these numbers 8 2x6x8 38.5 0.1938 Ave the stack of boards around with these numbers 12 2x8x8 0 0.0000 FALSE	LRF	0.599 MBF/Cu	unit 0.2115 MBF/m ³														
Log Class Midpoint 12.25 13.21 Inside Left SB 3.100 FALSE Log Class Vol. 7.30 ft ³ Bottom Board 0.900 FALSE Log Class LRF 0.576 MBF/Cunit Inside Right SB 3.100 FALSE Board No. bf LRF (mbf/m3) Outside Right SB 2.000 FALSE 4 2x4x8 3.5 0.0176 Move the stack of boards around with these numbers 12 2x8x8 0 0.0000 0						Height											
Log Class Vol. 7.30 ft ³ Bottom Board 0.900 FALSE Log Class LRF 0.576 MBF//Cunit Inside Right SB 3.100 FALSE Board No. bf LRF (mbt/ma) Outside Right SB 2.000 FALSE 4 2x4x8 3.5 0.0176 Move the stack of boards around with these numbers 8 2x6x8 38.5 0.1938 Inside Right SB Inside Right SB 12 2x8x8 0 0.0000 Inside Right SB Inside Right SB	Log Class Size																
Log Class LRF 0.576 MBF/Cunit Inside Right SB 3.100 FALSE Board No. bf LRF (mbf/m3) Outside Right SB 2.000 FALSE 4 2x4x8 3.5 0.0176 Move the stack of boards around with these numbers 8 2x6x8 38.5 0.1938 Move the stack of boards around with these numbers 12 2x8x8 0 0.0000 Move the stack of boards around with these numbers	Log Class Midpoin		.21	Inside Left SB		3.100											
Board No. bf LRF (mbf/m3) Outside Right SB 2.000 FALSE 4 2x4x8 3.5 0.0176 Move the stack of boards around with these numbers 8 2x6x8 38.5 0.1938 Move the stack of boards around with these numbers 12 2x8x8 0 0.0000 Move the stack of boards around with these numbers				Bottom Board													
Board No. bf LRF (mbf/m3) 4 2x4x8 3.5 0.0176 8 2x6x8 38.5 0.1938 12 2x8x8 0 0.0000 15 2x10x8 0 0.0000	Log Class LRF	0.576 MBF/Cu	unit	Inside Right SB													
4 2x4x8 3.5 0.0176 8 2x6x8 38.5 0.1938 12 2x8x8 0 0.0000 15 2x10x8 0 0.0000		10 10 10 10 10 10 10 10 10 10 10 10 10 1	No. of the second se	Outside Right SB		2.000	FALSE										
8 2x6x8 38.5 0.1938 12 2x8x8 0 0.0000 15 2x10x8 0 0.0000																	
12 2x8x8 0 0.0000 15 2x10x8 0 0.0000				Move the stack of	boar	ds around with th	ese numbe	rs									
15 2x10x8 0 0.0000																	
	15																
Suit 42 0.2115		sum	42 0.2115														


Figure 7-8. 2x10-oriented sawing pattern and LRF for 30cm log

-

3 **7**3

7.2.1.5 35cm log

N R S Sawing Calculator

Small End Dia.	Imperial 14.0 in.	Metric 35.6 cm	Sawing Calculator	Patte	ern			
Large End Dia.	15.0 in	cm					Nominal	
Length	8 Feet	m			Label	Length	Thickness	Width
Trim Allowance	0.25 Feet		Inside Right SB	15	2x10 - QCC 8'	8	2.00	10.00
Taper	1%		Outside Right SB	4	2x4 - QCC 8'	8	2.00	4.00
Log Sweep	0 in.		Inside Left SB	15	2x10 - QCC 8'	8	2.00	10.00
Stack Ht	0.380 in.	0.000	Outside Left SB	4	2x4 - QCC 8'	8	2.00	4.00
Side Shift	0.000 in.	0.000	Bottom Board	8	2x6 - QCC 8'	8	2.00	6.00
Horns Angle	0 degrees		Centre Cant 1	8	2x6 - QCC 8'	8	2.00	6.00
and a second second second	Canter	Side Brd.	Centre Cant 2	8	2x6 - QCC 8'	8	2.00	6.00
Saw Kerf	0.130 in.	0.125 in.	Centre Cant 3	8	2x6 - QCC 8'	8	2.00	6.00
			Centre Cant 4	8	2x6 - QCC 8'	8	2.00	6.00
Wane Allowance	30.0%		Centre Cant 5	8	2x6 - QCC 8'	8	2.00	6.00
			Centre Cant 6	8	2x6 - QCC 8'	8	2.00	6.00
Infeed Mechanism	Log Sawing	Cant Sawing	Centre Cant 7					
	C Full Taper (C Full Taper 1	Centre Cant 8					
	i Split Taper	🔿 Split Taper	Centre Cant 9					
	-	rough/finih:	s Centre Cant 10		•			
Log Recovery	Recovery is based on	2	Centre Cant 11		•			
			Centre Cant 12					
Log Value	Value	Volume	Centre Cant 13				r r	
Lumber	\$33.04	76.33 Brd Ft	Centre Cant 14				r r	
Chips			Centre Cant 15		•			
Log Volume	9.44 ft ³	0.27 m ³	-	7		7		
LRF	0.809 MBF/Cunit	0.2855 MBF/m ³						
					Height			
Log Class Size	0.5 in.		Outside Left SB		5.000	FALSE		
Log Class Midpoint	14.25 15.21		Inside Left SB		2.000	FALSE		
Log Class Vol.	9.77 ft ³		Bottom Board		0.800	FALSE		
Log Class LRF	0.782 MBF/Cunit		Inside Right SB		2.000	FALSE		
			Outside Right SB		5.000	FALSE		
Board No.	bf	LRF (mbf/m3)						
	2x4x8 7	0.0262	Move the stack of	board	Is around with the	se number	s	
	2x6x8 38.5							
	2x8x8 0	0.0000						
15	2x10x8 30.83333							
	sum 76.33333	0.2855						

Figure 7-9. 2x10-oriented sawing pattern and LRF for 35cm log

-

3

Finished

Thickness Width

9.25

3.50

9.25

3.50

5.50 5.50 5.50

5.50

5.50

5.50

5.50

2.50

1.50

2.50

1.50

1.50

1.50

1.50

1.50

1.50 1.50

Target

9.710

3.765

9.710

3.765

5.825

5.825

5.825

5.825

5.825

5.825

5.825

5.825

Thickness Width

1.655

1.655

1.655

1.655

1.655

1.655

1.655

1.655

1.655

1.655

1.655

Edge Wane

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

Face Wane

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

Value

6.94 1.40 6.94 1.40 2.34 2.34 2.34 2.34 2.34 2.34 2.34

Volume 15.42 3.50 15.42

3.50

5.50

5.50

5.50

5.50

5.50

76.33

7.2.1.6 40cm log

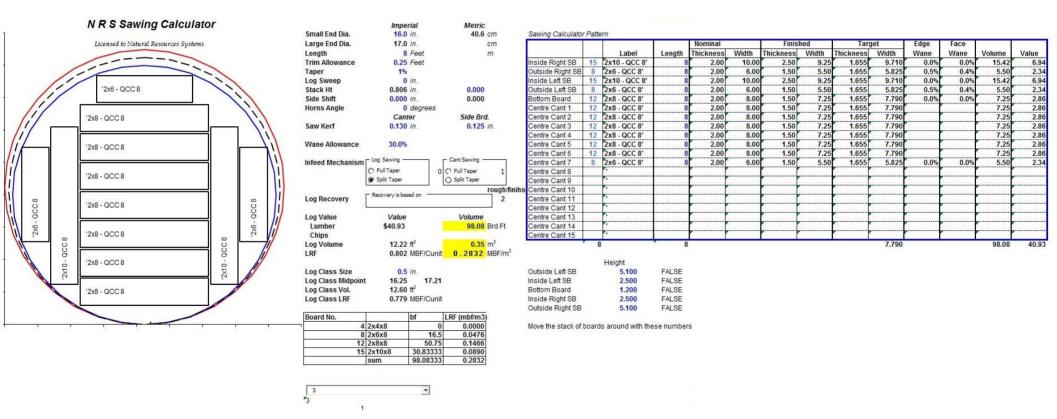


Figure 7-10. 2x10-oriented sawing pattern and LRF for 40cm log

7.2.1.7 45cm log

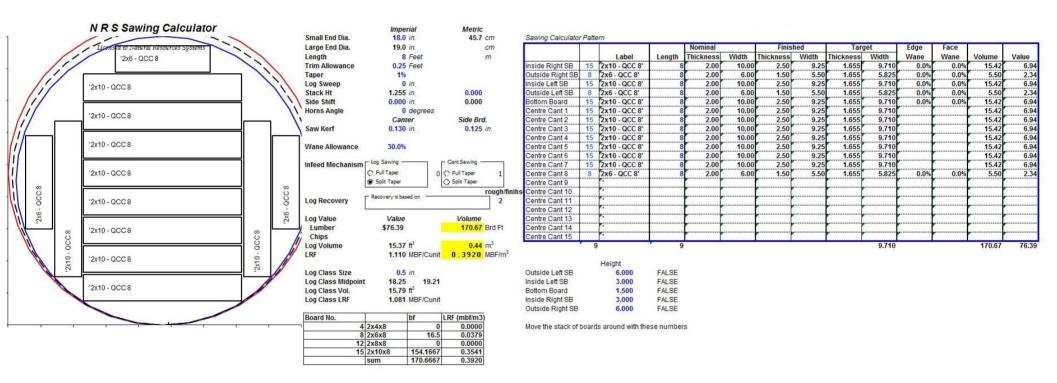


Figure 7-11. 2x10-oriented sawing pattern and LRF for 45cm log

7.2.1.8 50cm log

Adjustment: there are 5 2x10 lumber in the centre cant and 4 2x10 lumber in the side board, which is 138.75 board feet. It was tested that 4 more 2x10 can be filled into the upper part of the centre cant. Therefore, the volume of lumber from this log is $138.75 + 4 \times 15.42 = 200.43$

board feet. LRF (MBF/m³) = $\frac{value \ of \ lumber \ in \ board \ feet}{value \ of \ log \ in \ m^3} = \frac{\frac{200.43 \ board \ feet}{1000}}{0.53 \ m^3} = 0.3782$

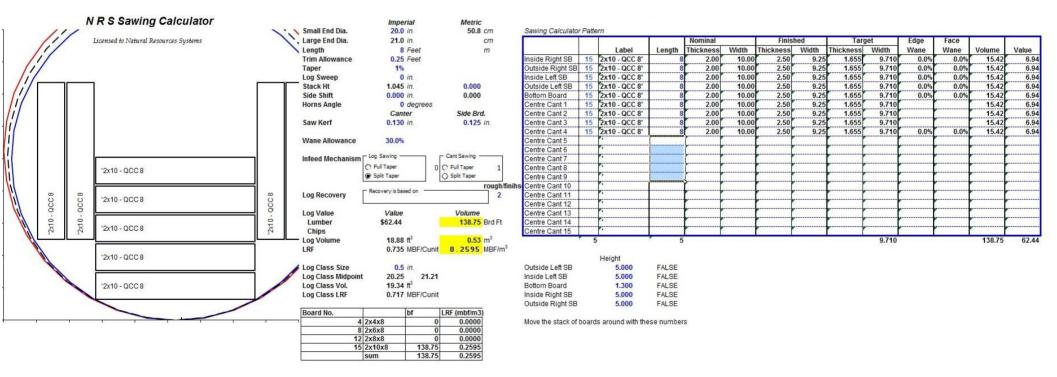


Figure 7-12. 2x10-oriented sawing pattern and LRF for 50cm log

7.2.1.9 55cm log

Adjustment: there are 6 2x10 lumber in the centre cant and 4 2x10 lumber in the side board, which is 154.17 board feet. It was tested that 5 more 2x10 can be filled into the upper part of the centre cant. Therefore, the volume of lumber from this log is $138.75+5 \times 15.42 = 231.27$

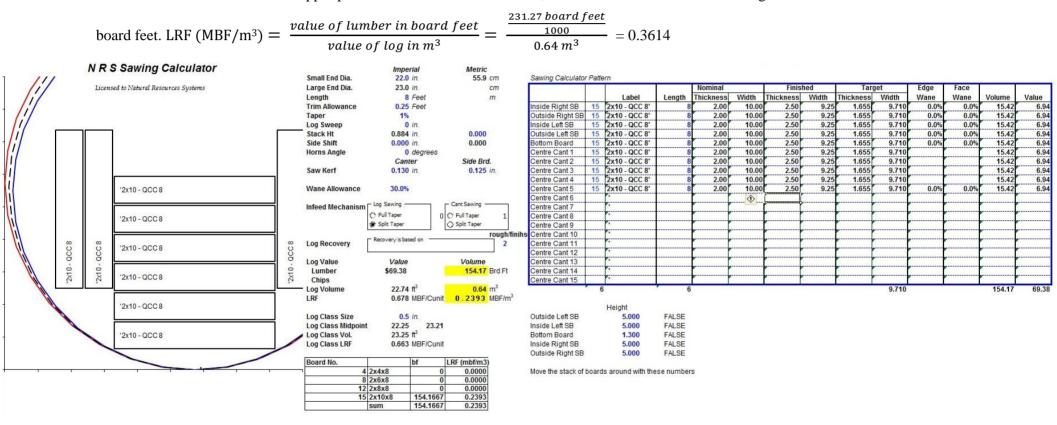


Figure 7-13. 2x10-oriented sawing pattern and LRF for 55cm log

7.2.2 2x8-oriented Lumber Recovery Factor

Since logs less than 35cm in diameter are too small to produce 2x8 lumber; logs greater than 50cm are more suitable in producing 2x10 lumber and the sawing pattern for 40cm log is well-designed; only 35cm log and 45cm log are subject to change.

7.2.2.1 35cm log

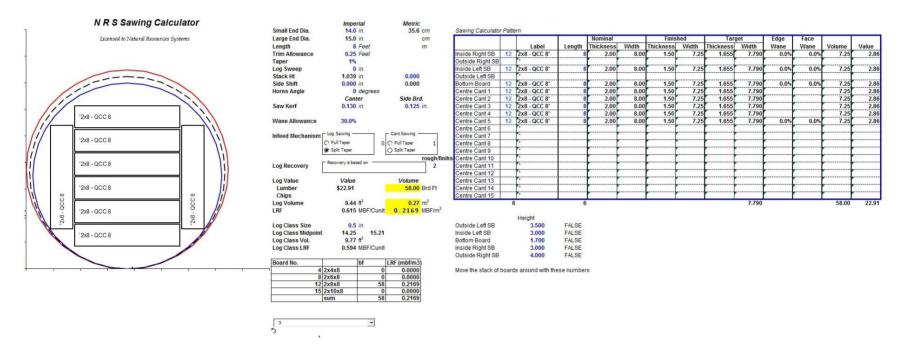
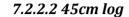



Figure 7-14. 2x8-oriented sawing pattern and LRF for 35cm log

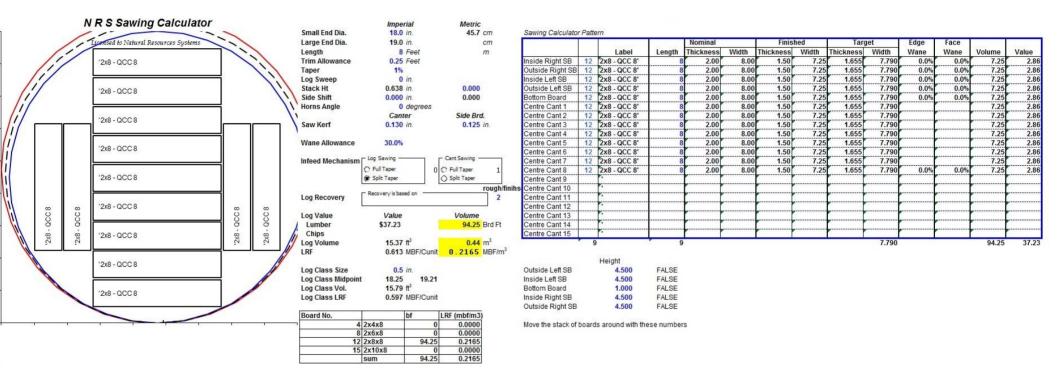


Figure 7-15. 2x8-oriented sawing pattern and LRF for 55cm log

7.3 Appendix C: Log-to-product Model

Appendix C shows the structure of the log-to-product LP model. This model is also a linear-programming based model, and is used to simulate the volume of logs that need to be used for processing, lumber production, machine working time and net revenue in this study. The assumptions and structure of the model were described in section 2.3.3 of this essay. The numbers in the ANSWER row are the optimized solution.