
2

MOTORIZED ZOOM CONTROL

Daljit Bagri

Maurizio von flotow

Project 1314

Engineering Physics 459

Engineering Physics Project Laboratory

The University of British Columbia

April 2nd 2013

3

1.0 Executive Summary

This report is a complete and in-depth look into all of the work that went into building a motorized zoom

controller for DSLR cameras. The key objectives of this project were to build a motorized zoom

controller that would be much cheaper than any commercialized product of its type, while still retaining

full functionality. As an additional objective, the design would allow for an autonomous control of zoom

or focus during time lapse photography. This was done by iteratively designing, building,and debugging

a mechanism from September 2012 to April 2013.

Each unsuccessful design gave light to a new more functional one. Upon finally assembling a sufficiently

functional design, we began shooting test footage of both time lapse and zoom control and further

improve the design. By the end of the allotted project work time, there remain a few bugs. But the

design has accomplished its main goals.

We have created a prototype device that is capable of adapting to multiple lens geometries to

somewhat smoothly control the zoom with adequate speed proportional to a rocker potentiometer. The

very same device is capable of smoothly changing the focus of a camera lens while shooting time lapse

photography, allowing for uncommon and eye-capturing time lapse footage. The smallest tested focus

steps were about 0.21°, which was nearly the exact step size proposed in our project proposal

(submitted Fall of 2012) as an adequately small step for smooth zoom or focus. This focus control is

easily adaptable to different time lapse settings using a simple Arduino code.

The project is left somewhat incomplete, with the main necessary additions being the elimination of

jerkiness in the zoom motion, a glitch in the servo control code, mounting the electronics and power

supply more portably, and some further time lapse control tests. The future of this device is bright with

relatively easy implementation of wireless control and the possibility of swapping motors to a more

suitable one.

4

Table of Contents
Letter of Transmittal ... 1

1.0 Executive Summary ... 3

2.0 Introduction .. 6

2.1 Scope and Limitations ... 9

3.0 Discussion .. 10

3.1 Methods/Testing Protocol .. 10

3.1.1 Mechanical ... 10

3.1.2 Electrical ... 17

3.1.3 Software ... 19

3.2 Results and Discussion .. 20

4.0 Conclusions ... 24

4.1 Video Zoom ... 24

4.2 Time Lapse Focus .. 24

5.0 Project Deliverables .. 25

5.1 List of Deliverables .. 25

5.2 Financial Summary .. 26

6.0 Ongoing Commitments and Recommendations ... 27

7.0 Appendices .. 29

7.1 Appendix A – Coding ... 29

7.2 Appendix B – Circuits .. 32

List of Figures
Figure 1: Chrosziel’s Fluid-Zoom drivers ... 7

Figure 2: Chrosziel’s Fluid-Zoom drivers ... 7

Figure 3: Camera Turret's "Feather Touch" motorized zoom controller. ... 8

Figure 4: Viztools' "Handizoom" motorized zoom controller, which includes an adjustable zoom speed,

programmable soft stops, iris controls, and more. .. 9

Figure 5: The First Prototype .. 11

Figure 6: Blocking of Button Functionality (first prototype) ... 12

Figure 7: Iteration 2 .. 13

Figure 8: Size of gear to large .. 14

Figure 9: Final Design .. 15

5

Figure 10: Slots for adjusting base plate and servo locations... 16

Figure 11: Mounting to different lenses ... 16

Figure 12: Video zoom control circuit diagram ... 18

Figure 13: Size Comparison between the Arduino UNO and NANO ... 19

Figure 14: Screen Shot from Time Lapse Focus Control, Test 1 .. 21

Figure 15: Sreen shot from Time Lapse Focus Control, Test 2 ... 23

file:///C:/Users/Daljit%20Bagri/Dropbox/Enph%20459/Final%20Report/Final%20Report%20(Daljit%20Bagri's%20conflicted%20copy%202013-04-02).docx%23_Toc352705758
file:///C:/Users/Daljit%20Bagri/Dropbox/Enph%20459/Final%20Report/Final%20Report%20(Daljit%20Bagri's%20conflicted%20copy%202013-04-02).docx%23_Toc352705759

6

2.0 Introduction

The motivation for this project comes from a recent surge in the popularity of DSLR cameras for
shooting video. One large draw back from DSLRs versus conventional camcorders is the lack of ability to
"smoothly" transition the field of view (or zoom) during video recording. In cinematography for large
production films, changing the field of view during a shot is uncommon, and even frowned upon. Chris
Gallagher, a film production professor at UBC, says that is not the case in documentary filming. “[For
filming a] documentary it [a zoom] is essential as things are more unexpected and one often needs to
reframe during a shot. Shooting documentary with the DSLR is difficult as one cannot execute a smooth
zoom. Often in documentary shooting one needs to zoom very slowly and smoothly hoping the viewer
will not notice the zoom and without more sophisticated control that is impossible on a DSLR.”

The major market for this design would be in sports cinematography (especially action sports, where the
object/person you are filming is radically changing positions), the news, timelapse photography, and as
Gallagher added, documentary cinematography

There are few current solutions for this problem:

i. Zoom directly with your hand on the lens

ii. "Follow-focus" style mechanism

iii. Motorized fluid-zoom control

i) Zoom directly with your hand

This is a very crude method that produces footage with shaky, non-repeatable, and variable/jerking

speed fluctuations in the field of view. All these aspects lead to unusable footage.

ii) "Follow-Focus" mechanism

Follow focuses are widely used to create precise focus transitions. They are usually mechanisms that

gear down your hand's rotational velocity to produce a more smooth transition between focus points.

Many also have marked positions to allow for repeatability of precise focus locations. These devices can

be used to actuate the zoom ring, accompanied by the following flaws:

 The change in field of view is not directly proportional to the rotation speed of the zoom

ring

 Repeatability of zoom position transitions is challenging

 "Feathered" stops and starts are challenging, or even impossible. A feathered start/stop is

when the rotational velocity of the gear ring gradually increases from 0 to the desired

speed, rather than instantaneously jumping to the full speed.

Figures 1 and 2 show examples of follow focus mechanisms adapted for zoom use.

7

Figure 1:Chrosziel’s Fluid-Zoom drivers

Figure 2:Chrosziel’s Fluid-Zoom drivers

8

iii) Motorized fluid-zoom control

This is the approach we designed for. There are very few products of this type available. The main flaws

for a motorized zoom are:

 The noise of the motor could ruin audio of the footage

 Portability

 Battery life

 Exposure changes (as you decrease the field of view, you decrease the number of photons

reaching the camera's sensor)

Figure 3 and 4 show the only two motorized zoom control mechanisms that we were able to find, both

of which are still in development, and are currently not available for purchase.

There are a few lenses currently being produced with built in motors, but they are in a much higher

price range (>$20,000).

Figure 3: Camera Turret's "Feather Touch" motorized zoom controller.

9

Figure 4: Viztools' "Handizoom" motorized zoom controller, which includes an adjustable zoom speed, programmable soft
stops, iris controls, and more.

2.1 Scope and Limitations

The scope of this report is to fully examine the construction of a motorized zoom controller for a DSLR

camera. This report will cover all of the iterations taken in order to reach our final model, and will also

cover all of the issues encountered during construction of all of the models created.We will discuss the

Arduino microprocessor that we have used, as well as the servo mechanism and the rocker

potentiometer used in conjunction with it. We will also be discussing the code used to: drive our servo

proportional to speed rather than position, slow down the rotation for smoother zoom, and for the

implementation of time lapse photography.

This report does not cover the linearity of the focus or zoom of a DSLR lens as a function of its

corresponding control ring's rotation. In other words, we do not explore whether 2 degrees of rotation

at the beginning of the focus/zoom travel changing the focus/zoom more or less than 2 degrees at the

end of travel. As well, this report does not cover any audio muffling of the motorized zoom mechanism.

Both of these items are only discussed briefly in the recommendations section.

10

 3.0 Discussion

In this section of the report we will discuss the evidence and arguments for: our methods and testing

protocol for the mechanical, electrical and software portions of the project, and a discussion of our

results.

3.1 Methods/Testing Protocol

The following sections outline in detail the mechanical, electrical, and software portions of the project.

They also explain the troubles we came across, what we did to fix them, and what we went with for final

designs of each of these areas.

3.1.1 Mechanical

At the beginning of the project very simple methods were used to test technical requirements such as

torque required to rotate the camera lens. This was done by wrapping a zip tie around the lens of the

camera attached to a fish scale to roughly measure the force needed to turn the lens. The Forces (~2lbs)

was then multiplied by the radius of the camera lens (1.5in) to get the required torque to turn the

lens.We concluded that the motor torque required for our design would be 3lbs-in. As well, we visited

multiple camera shops around the area to examine different zoom lenses. We noticed most lenses had a

zoom ring diameter between 2.5in and 3.5in, and all zoom lenses we evaluated required at most 90° of

travel for a full zoom.

Along with final design decisions, these tests helped us choose a servo motor that would meet

requirements for torque and rotation so that we would not be limited by the gear ratio. We decided on

5 different servos. From here our decision was made based on online reviews and price comparisons.

i) Iteration 1

After these initial tests we moved forward with fabrication of our first prototype; we figured building

and debugging early is the best way to proceed. We put together a Solidworks model of our first

prototype (as seen in Figure 5 below), and quickly ran into problems. The main idea behind this iteration

was to mount a servo directly onto an adjustable rack that would mount to a stationary part of the

camera lens itself. The idea to mount the device to the lens itself came from a suggestion made by

Professor Gallagher of the UBC Film Production Department.

11

Figure 5: The First Prototype

The two main problems that we came across in this model were:

1. The material choice was too brittle and fractured during fabrication

2. Mounting the device to the non-rotating part of the lens was impossible without blocking

crucial buttons (see figure 6 below for an example).

12

Figure 6: Blocking of Button Functionality (first prototype)

ii) Iteration 2

After encountering these problems a quick decision was made to redesign and use aluminum cut by a

water jet rather than Durand cut by the laser cutter. The redesigned model called for a new mounting

location and it was decided that the rotating part of the lens would be this location. The main feature of

this design was a servo enclosed between two rails,both able to rotate with the lens, while the servo

itself was constrained from movement (model shown in Figure 7 below).

13

Figure 7: Iteration 2

Once again this prototype came along with its problems. The main problem was the instability and extra

play in the servo mount. It caused extremely jerky zoom motions and jamming of the assembly. Another

fairly detrimental problem was that even though the gear we were using had enough force to smoothly

rotate the lens, the size of the gear was too large to be able to zoom at the desired slow speeds (large

gear seen in Figure 8).The jerky and extremely fast zoom motions of Iteration 2 were documented in the

following video: https://vimeo.com/63221297.

As you can see from the video above, the zoom motions that resulted from Iteration 2 were both jerky

and extremely quick. These problems were worked on to no avail until the third and final iteration.

https://vimeo.com/63221297

14

Figure 8: Size of gear to large

iii) Iteration 3

The final iteration of our design incorporated a complete redesign of our product. After the unusable

gear ratios of the previous iterations, we decided our servo would have to me much closer to the lens.

To solve the problem of instability, we used a new mounting plate that attached to ¼-20 screw hole in

the bottom of the camera (this is where the tripod mount usually attaches, Figure 9 below shows this

final design).

15

Figure 9: Final Design

This new design reduced our pinion gear from 53 teeth to 31 teeth, a more than 40% reduction. This

reduction is clearly seen if Figures 8 and 9 are compared, and helped to increase the rotational

resolution of the lens. The base plate is a multipurpose design: besides the obvious stability it provides

for the servo bracket, the camera is mounted to it using a slot in the bottom such that the servo can be

easily moved along the lens to actuate both the focus and zoom rings of many lenses (not all lenses have

the same axial positioning of their zoom/focus rings). The servo is also mounted to the base plate using

slots to account for different diameter lenses (Figures 10 and 11, below). The device was tested using

multiple different lenses to ensure this functionality was correct (Figure 11).

Throughout the iteration process, we recorded multiple video tests to check our zoom actuation. Some

of these tests are discussed in section 3.2 of this report.

16

Figure 10: Slots for adjusting base plate and servo locations

Figure 11: Mounting to different lenses

17

3.1.2 Electrical

The electrical portion of this project was much less time consuming compared to the mechanical

portion, yet still very important. The components involve a sail winch servo, a rocker potentiometer, an

Arduino microprocessor, an external power supply, and a small circuit used to connect all of these

components based on which functionality was needed.

We began by building the circuit with an Arduino UNO and a joy stick rocker potentiometer that we had

taken from a RC plane controller. This joy stick rocker POT was meant to be a temporary measure before

the traditional rocker POT we had ordered came in, but it turned out we were unable solder the

traditional POT into our circuit and thus had to continue using the joy stick rocker POT for the rest of our

testing.

During testing we ran into two main problems that we believed were due to our electrical set up.

i) Shunt Resistor Clutch

The first was the fact that even after the zoom ring had turned a total of 90°, the servo could still run

and potentially damage a component of our system or the camera lens. We tried to correct this by

implementing a clutch in the form of a soft stop. The soft stop was created using a 1 Ohm current

sensingShunt Resistor. The Arduino read the voltage drop across the Shunt Resistor from the servo’s

ground to common ground, as shown in Figure 12.From this voltage drop, and by knowing the size of the

Shunt Resistor, we were able to detect current spikes sent to the servo. The idea was that when the

servo reached the end of the lens’ travel, it would stall and draw a spike of current. We would detect

this current spike and disable the servo’s power.

However the current sent to the servo was not consistent enough for us to smoothly implement this

clutch. With a little more time, it is believed we could get these soft stops working with some more

sophisticated coding, but they have been disabled for now.

ii) Servo Glitch Moves

The next issue we had was a glitch in the servo functionality;we noticed that anytime we ran the servo in

a particular direction and let go of the joy stick allowing it to snap back to its neutral position, the servo

would run at full speed in the opposite direction we had just been driving it. We tried to correct this by

placing a capacitor in our circuit between the variable resistor and the Arduino to eliminate resistance

spikes in the POT values (This circuit can be shown in figure 12 below, the capacitor is shown in green

and the Shunt resistor is shown in red). This modification did little to no help in this glitch, and we thus

concluded it must have been coding problem we were unable to detect.

18

Figure 12: Video zoom control circuit diagram

After getting all of the electronics to work in conjunction with each other, we decided to switch from the

Arduino UNO to the smaller NANO. This Arduino is much smaller and if we had time to create our own

printed circuit board, the overall size would be greatly decreased (the sizes are compared below in

Figure 13).

19

Figure 13: Size Comparison between the Arduino UNO and NANO

3.1.3 Software

Video Zoom Control – VarSpeedServo Library

Initially, we were worried about the feasibility of controlling the speed of a servo with a potentiometer.

However, thanks to the Arduino forums, we found this was already a much solved problem. Some kind

soul had provided an entire Arduino library, called “VarSpeedServo”, that allows you to give a servo

speed commands instead of position commands.

What this library does (i.e. the work this library saved us) is it maps your given speed command (from 0

to 28) into a pulse width. The domain that this pulse width is mapped into is varied based on your

specific servo’s maximum and minimum pulse widths (these pulse widths you tell the code in the form

of Arduino sketch constants).

Our Implementation

From here, we simply used the Arduino to read a POT value within a loop and varied the speed

command based on this constantly updating value. To account for any imperfections in the POT’s

neutral position value, we added an appropriately sized buffer resistance into the code close to the

POT’s neutral position resistance.

Time Lapse Focus Control – Servo Library

The time lapse focus control code was much more basic to write. It is essentially a servo sweep (moving

from one end of travel to the other in incremental steps, with a delay between each step), taken from

the stock Arduino example sketches, with a larger delay and smaller steps. This delay was turned into a

20

constant that corresponds to the picture interval time. As well, the step size of each step of the sweep

had to be varied. More on this procedure is described in the following section 3.2

Both of these Arduino sketches can be found in Appendix B.

3.2 Results and Discussion
a) Video Zoom Control:

The primary function we hoped to accomplish with this project was a smooth zoom control using a

rocker POT. After the multiple iterations described above, we produced a semi-functional prototype.

i) Adaptable to Multiple Lenses

The flexible ring gear used to actuate the lens rotation can be fit to virtually any diameter lens. As well,

the slots described in section 3.1.1 allow for the servo’s pinion gear to mate with variable axially

located zoom and focus rings as well as lens diameters.

ii) Zoom Speed Proportional to POT Position

Using the code described in 3.1.3 and located in Appendix A, we were able to vary the speed of the

servo proportionally with the value of the POT. The desired “feathered” starts and stops were perfectly

executed. Multiple field tests were performed to test the functionality of the zoom control, and a few

were collaborated here:https://vimeo.com/63221298

As you can see in Slow Zoom Test 2, the zoom control can be fully actuated at both low and high

speeds with the joystick rocker POT. However it is also apparent that the device still has some issues in

its smooth actuation.

iii) Glitches and Jerky Motion

Due most probably to flex, play, and/or misalignment in the design, the servo actuates the zoom ring

in jerky motions. If this problem persists, it completely destroys the smooth zoom functionality of the

device as it eliminates any smooth zooming. The jerkiness was first thought to be misalignment of the

pinion gear on the servo shaft. However the jerks occurred more frequently than once per revolution

and thus could not be due to this. The jerky motion was recorded and can be seen in the Slow Zoom

Test 2 video above as well as here: https://vimeo.com/63115341.

As seen most clearly in the full screen image of the video linked above, the jerky motion causes

unpleasant and mostly unusable footage. What the last two video do show, however, is that the speed

of the zoom transitions can be performed at adequately slow and fast rates using this design.

The servo glitch issue was described in section 3.1.2, along with our attempts to fix it. With careful

driving of the device, it is possible to avoid this glitch. Discussion on the future efforts to fix this glitch

can be found in section 6.0 of this report.

https://vimeo.com/63221298
https://vimeo.com/63115341

21

b) Time Lapse Focus Control:

Initially we thought we could distinguish our design from other available solutions by offering zoom

control during time lapse photography. While this is possible with our design, we decided to pursue a

more desirable time lapse control feature. After email discussion with Gunther Wegner, a professional

time lapse photographer, we were advised that focus control during time lapses is more sought after

than zoom control. Our design was then driven to include this feature.

i) Larger Step Size

Initially, we were disappointed with the resolution of our servo motor for focus control. At its smallest

step size, the servo would actuate the focus ring through its entire travel in 45 steps (about 0.5° steps).

This means if we wanted to shoot a time lapse with a picture taken every second and perfectly smooth

focus transitions throughout, we would only be able to take 45 pictures before the end of focus travel.

This translates to 1.5 seconds of video footage after compiling the pictures into a 30 frame per second

sequence.

To compensate, we hypothesized that we did not need to step the focus between every shot but

rather we could take a step every, say, 8 pictures. So we tried that in a focus control test time lapse:

https://vimeo.com/63115342

Time Lapse Focus Control, Test 1:

Time Lapse Control:
 -1 picture very 1 second

-Time lapse duration ≈ 6min
Servo Control:

-Step size ≈ 0.5°
-Servo steps once per 8
pictures taken (otherwise
focus ring reaches end of
travel too quickly)
-Results in jerky focus
transitions

 Figure 14: Screen Shot from Time Lapse Focus Control, Test 1

https://vimeo.com/63115342

22

As you can see in the first test video of the time lapse focus control, actuating the focus ring 0.5° every

8 pictures resulted in unsatisfactory and jerky focus transitions throughout the video sequence. This

shows that for a pleasantly smooth transition in focus throughout a time lapse, there must be focus

ring rotations more frequently than every 8 pictures.

But exactly frequent is frequent enough to create a smooth transition? To avoid this question, we tried

to get a step size small enough to be able to actuate the focus ring between every picture taken.

ii) Smaller Step Size

To obtain a smaller step size, we began by examining the library that Arduino provides to control

servos (we are using this Servo Library to control our servo in the time lapse control). Initially, the for-

loop in the Arduino sketch responsible for stepping the servo looked like this:

for(pos = 1; pos< 180; pos += StepSize) // goes from 1 degrees to 180 degrees in steps of

"StepSize" degrees

{

myservo.write(pos); // tell servo to go to position in variable 'pos'

delay(PicInterval*1000); // waits (PicInterval) seconds for the next picture

 }

In the Servo Library, the function write(value) first assumes value to be an integer between 0 and 180,

then maps that value into a domain between SERVO_MIN and SERVO_MAX (the minimum and

maximum pulse widths for the servo). It then uses a function called writeMicroseconds(value) to assign

a pulse width to the servo based on value. Thewrite(value) function is as follows:

void Servo::write(int value)
{

 …
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX()); //Re-maps “value”
this->writeMicroseconds(value); //Calls the pulse width commanding

function
}

Because value had to be an integer, it was at first impossible to move the servo at any step size smaller

than 0.5°. However, we only had to change the mapping command to map value into a larger domain

than 0 to 180, such that each step we command is seen as a smaller step to the function

writeMicroseconds(value). We tried different orders of magnitude, and found that a map from 0 to

18000 resulted in adequately small step sizes. The updated Arduino Servo library now looks as follows:

void Servo::write(int value)
{

 …
value = map(value, 0, 18000, SERVO_MIN(), SERVO_MAX()); //Re-maps “value”

23

this->writeMicroseconds(value); //Calls the pulse width commanding
function

}
This small change in code allowed for a much finer resolution of focus control. With this specific

mapping of value, it takes about 420 steps to traverse the entire focus ring travel, or a step size of about

0.21°. A discussion of how small we could command these steps can be found in Section 6.0. We

performed a time lapse focus control test with these finer resolution steps and were pleased with the

outcome: https://vimeo.com/63141684.

Notice the smooth transition in focus throughout the initial time lapse duration. As well, once the focus

ring had been actuated to the desired location (such that the background was in focus), we were able to

easily deactivate the servo and continue shooting the time lapse until the sun had set without disrupting

the shots; a very handy feature.

In our initial project proposal submitted in the Fall of 2012, we proposed the adequately small step

necessary for smooth zoom or focus control was 0.2°. This value came from a crude test where we

judged the changes in zoom and focus after small rotations of their control rings, then estimated that

angle. After obtaining a step size of 0.21°, this portion of the project is considered a success.

Further testing will be applied in the following months to determine how fine of resolution can be

obtained by increasing the domain mapping of our position value.

Figure 15: Screen shot from Time Lapse Focus Control, Test 2

Time Lapse Focus Control, Test 2:

Time Lapse Control:
 -1 picture very 1 second

-Time lapse duration ≈ 7min
of focus control

Servo Control:
-Step size ≈ 0.21°
-Servo steps once per picture
taken
-Results in smooth focus
transitions
-Servo unplugged when end
of travel reached to allow
time lapse to finish (sun to
set), did not disrupt shooting

https://vimeo.com/63141684

24

4.0 Conclusions

There were two main sections of this project: time lapse focus control and video zoom control. This

section of the report will summarize the conclusions made from each.

4.1 Video Zoom

The video zoom control was semi-successful. We produced a design that was compact, usable on

multiple lenses and camera bodies, but only semi-functional. At its seemingly slowest speed, the servo

actuated the zoom ring of a Sigma 17-50mm (mid-range zoom lens) through its full range of motion in

about 10 seconds. This translates into what seems to be an adequately slow zoom motion, while the

fastest zoom motion was faster than necessary for quick zoom transitions.

The dysfunctional part of the zoom control is the jerky motion produced. Caused, we believe, by

flexibility and play in the design; the servo periodically speeds up and slows down. This pattern repeats

itself 5-10 times throughout an entire zoom motion. With this jerky motion, the zoom control becomes

somewhat useless. As well, there is a repeatable glitch in our software/circuit somewhere that makes

our servo drive to its start position at full speed. This glitch is triggered when the joystick POT “snaps

back” to its home position. We will work to address these issues in the coming weeks. Video tests have

been provided in section 3.2 Results showing this video zoom control.

4.2 Time Lapse Focus

The time lapse focus control was a complete success. We were able to step our focus ring about 0.21° at

the smallest tested interval. This minimum step size could theoretically be made even smaller with a

quick modification of the Arduino Servo library, but as is meets the proposed adequately small step size

for smooth motion introduced in the Fall of 2012 project proposal. Instead of using a GUI, we created a

simple Arduino sketch with easy to replace constants that control the servo’s movements. This sketch

controls the interval between movements, total angle of rotation, actuation duration, and the size of

each step taken by the servo. Video tests have been provided in section 3.2 Results showing this time

lapse focus control.

25

5.0 Project Deliverables

The deliverables for this project are organized below in primarily as a list of deliverables and then a short

financial summary as well.

5.1 List of Deliverables

Our initial list of deliverables from the project proposal was fairly optimistic, but we were able to

complete all deliverables in some form. The list of deliverables ended up as follows:

a) Prototype device:

 Our final prototype is functional in the time lapse setting, but still provides a jerky zoom

motion. As well, the rocker potentiometer is functional but not ideal for portability (see

videos in section 3.2 Results).

b) GUI that can determine the step size and frequency necessary for specific time lapses:

We did create a GUI for this purpose, but decided it would be more convenient to have this

in the form of an Arduino sketch with constants we can vary (See Appendix A)

c) Solidworks drawings of complete design:

Complete, along with Solidworks drawings for each iteration.

d) Circuit diagrams of every circuit:

Complete, See Appendix B.

e) Complete list of components and pricing:

Complete, see section 5.2 Financial Summary.

f) Multiple field tests for various configurations, iterations, and stepper motor settings:

Complete, and recorded in the form of video and time lapse tests (obviously using a servo,

not stepper motor). Some of these videos have been uploaded to the web, and can be found

in section 3.2 Results.

26

5.2 Financial Summary
Description Quantity

Purchased
Quantity

Destroyed
Vendor Cost per

unit
Purchased

by

1 Rocker POT 2 1 uscamera.com $23.71 PL (Jon)

2 Arduino UNO 1 0 Lee’s
Electronics

~$30 Maurizio

3 ArduinoNAN
O

1 0 ? ~$10 PL

4 Joystick
Rocker POT

1 (taken
from

retired RC
controller)

0 -- -- --

5 Sail Winch
Servo

3 1 pololu.com $19.95 PL (Jon)

6 Waterjetted
parts

~20
minutes

-- -- ~$1/min PL

7 Flexible Ring
Gear

1 0 F&V USA $19 Maurizio

27

6.0 Ongoing Commitments and Recommendations

Current Design Fixes

As a self-sponsored project, we will continue to work on this project for our own benefit. Maurizio hopes

to use this device in his videography work, in both time lapse focus control and video zoom control.

Although the focus control is working well, the zoom functionality is performing poorly. Specifically, the

concerns we wish to address are:

-Eliminate the jerky zoom motion by reducing the flex and play in the design. The first

improvement we’ll implement is putting a brace in the 90° bend of the servo mount.

-Replace the joystick rocker POT with a traditional rocker POT with variable mounting positions.

We’ll first need to acquire a functional traditional rocker POT.

-For portability, mount the Arduino MINI to the base plate of the device and power the Arduino

with a battery instead of a computer's USB port.

-Use a function for the change in step size for focus control, such that we may remain focused on

an object for some time before continuing with the focus-to-infinity.

-Test the limit of how small we can make the servo step size. The larger the domain of the

mapping of our position value, the smaller the step each position increment will create. The

lower limit for this should be related to the minimum pulse width our servo can accept.

These concerns will bring our design to the functionality we initially planned and will be the main focus

of our future work. They will be addressed by the end of May so the device can be used for videography

projects throughout the summer. In addition to these concerns, we see fit other future design

extensions.

Future Additions

Wireless Control

Eventually (hopefully by the end of the summer), we would like to introduce wireless control to the

zoom functionality. One fast growing practice where this could be helpful is in multi-copter

videography. Many of these UAVs are flying DSLR cameras with interchangeable lenses, as they are

much lighter than traditional camcorders. Currently it is impractical and unusual to vary focus or

zoom during flight. This could, however, cause a complication in needing yet another operator. Any

multi-copter that flies a camera on a gimbal requires one operator for the UAV and one for gimbal

driving. If we wish to make a design useful for these flights, it will be necessary to integrate our

controls with those of the gimbal to eliminate the need for a third operator.

Motor Replacement

Although the servo we have chosen is working well for the time lapse control we have tested, there is

much room to improve. The time lapse durations we tested our design with were relatively short;

many people shoot time lapses that are hours, days, or even months in duration. To produce smooth

28

focus transitions in these time lapses, we would need a much higher precision motor. Since our servo

seemed to have more than enough torque, it could be feasible to replace our servo with a higher-

precision lower-torque one. Alternatively, strictly for time lapse control, we could revert to our

original idea of using a stepper motor with either very small steps and/or implement micro-stepping.

Focus/Zoom Linearity

One test that was discussed multiple times throughout this project but never tested was the linearity

of the zoom and focus throughout their corresponding control ring's rotation. A worthwhile test for

future work would be to test this linearity. If, in fact, it is found that the focus and/or zoom do not

change linearly with the rotation of their control rings, it would be necessary to implement code to

change the rotation of these rings such that the focus and/or zoom respond linearly to the POT

commands.

Audio Muffling

Especially with the physical placement of the servo motor with respect to the on-camera microphone

of most DSLR cameras, muffling the audio of this servo will be a very important addition to this

design in future iterations. Without doing this, an external audio source will be necessary for many

applications.

29

7.0 Appendices

The following is additional information on the coding and electrical aspects of the motorized zoom

controller.

7.1 Appendix A – Coding
Time Lapse Focus Control

#include <Servo.h>

constintServoPin = 9; //Servo Pin
constintFocusRingRotation = 70; //Total desired rotation of the focus ring, in degrees
constintPicInterval = 1; //Picture every __ seconds (ie take a ep every __ seconds)
constintTLDuration = 5; //Desired time lapse shooting duration, in minutes

Servo myservo; // create servo object to control a servo

intStepSize = FocusRingRotation*PicInterval/(60*TLDuration); //Equation for calculating the step size.

//This will eventually be replaced by a
//function for variable step sizes.

intpos = 0; //Variable to store the servo position

void setup()
{
myservo.attach(ServoPin); // attaches the servo on pin 9 to the servo object
}

void loop()
{
for(pos = 10; pos< 1800; pos += StepSize) // goes from 0 degrees to 180 degrees in steps of "StepSize"
degrees
 {
myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(PicInterval*1000); // waits (PicInterval)ms for the servo to reach the position
 }
for(pos = 1800; pos>=1; pos-=StepSize) // goes from 180 degrees to 0 degrees
 {
myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(PicInterval*1000); // waits (PicInterval)ms for the servo to reach the position
 }
}

30

Video Zoom Control

#include <VarSpeedServo.h>

constintpotPin = 0; // the number of the potentiometer pin (Analog 0)
constintmainPin = 9; // Main servo control line
constintServoMin = 900; // Minimum pulse width for servos in ms.
constintServoMax = 2100; // Maximum pulse width for servos in ms.
constintPotiMin = 107; // Minimum value read from potentiometer
constintPotiMax = 790; // Maximum value read from potentiometer
constintPotiCenter = 445; //Center POT value
constintPotiBuffer = 20; //A buffer for the center value so the servo doesn't "creep"
constintSpeedScaler = 12; //The upper level for the POT to speed map
constint RESISTANCE = 1; //Resistance value of the current sensor resistor (in Ohms)
constintCurrentSensorPin = 5; //Shunt resistor pin
intcurrenttargetvalue = 0 ; //Current target value

VarSpeedServomyServo; // Servo

void setup() {
 // Initialize Servos
myServo.attach (mainPin, ServoMin, ServoMax);

 // Initialize Serial communication
Serial.begin (9600);
}

void loop() {

intpotRead = analogRead (potPin); //Read POT
doublevoltageDrop = analogRead(CurrentSensorPin); //Read voltage drop across current

//sensorresistor

 //If max/min POT values are above possible values, assign them to defined max/min vals
if (potRead<PotiMin)
potRead = PotiMin;
if (potRead>PotiMax)
potRead = PotiMax;

int speed = map (potRead, PotiMin, PotiMax, 1, SpeedScaler) & 0xff;

//Check stall current – this portion of the code was disabled as it was dysfunctional.
 /*
if(voltageDrop>= 5)
 {
currenttargetvalue = myServo.read(); //I don't believe this value matters, as the speed will be

//0 anyway.

31

speed = map (PotiCenter, PotiMin, PotiMax, 1, SpeedScaler) & 0xff;
myServo.slowmove(currenttargetvalue, speed);
 }
 */

 //Move backward
if(potRead<PotiCenter - PotiBuffer)
 {
 //Set target value to 0
currenttargetvalue = 0 ;
 //Map POT vals from PotiCenter-PotMin to speed ranges
int speed = map (analogRead(potPin), PotiCenter, PotiMin, 1, SpeedScaler) & 0xff;

myServo.slowmove(currenttargetvalue, speed);
 }

//Move Forward
else if(potRead>PotiCenter + PotiBuffer)
 {
 //Set target value to 180
currenttargetvalue = 180;
 //Map POT vals from PotiCenter-PotMax to speed ranges
int speed = map (analogRead(potPin), PotiCenter, PotiMax, 1, SpeedScaler) & 0xff;

myServo.slowmove(currenttargetvalue, speed);
 }

 //POT at 0 +/- buffer, don't move
else
 {
intcurrenttargetvalue = myServo.read();
speed = 14; //oddly, the center value for speed is 14 (not 0)
myServo.slowmove(currenttargetvalue, speed);
 }

}

32

7.2 Appendix B – Circuits

Video Zoom Control Circuit

33

Time Lapse Focus Control Circuit

