
A 400MHz
Direct Digital Synthesizer

with the AD9912

Daniel Da Costa Brendan Mulholland

Project Sponser:
Dr. Kirk W. Madison

Project 1160
Engineering Physics 479

The University of British Columbia

January 26, 2012

Part II

Testing of the Prototype Device

i

Contents

Contents ii

List of Figures iii

1 Summary 1

2 Testing 2
2.1 Digital Interface . 2

2.1.1 Breadboard Control of the UTBus . 2
2.1.2 NI-DAQ Control of the UTBus . 7

2.2 RF Output . 11

3 Conclusions 13

4 Recommendations 14
4.1 Further Testing . 14
4.2 AD9912 Programming . 14
4.3 DDS Board Programming . 15
4.4 Population . 15
4.5 Installation . 15

A UTBus Python Code 16

ii

List of Figures

1.1 Photo of prototype AD9912 DDS device with components installed. 1

2.1 1MHz 16-bit Data Transfer; Data Series 1 . 4
2.2 1MHz 16-bit Data Transfer; Data Series 2 . 5
2.3 1MHz 8-bit Data Transfer . 6
2.4 5MHz 16-bit Data Transfer . 8
2.5 5MHz 8-bit Data Transfer . 9
2.6 Internal Parallel-to-Serial Converter Signals . 10
2.7 Filtered DAC Output . 12

iii

1

Summary

The DDS prototype board has been assembled and is pictured in Figure 1.1. Testing of a prototype
AD9912 DDS device was performed and is documented here.

The digital interface was confirmed to work as expected and was found to be compatible with the
Quantum Degenerate Gasses (QDG) Laboratory’s UTBus system. Programming the AD9912 chip
used on the DDS device was attempted but not accomplished; recommendations and suggestions
for ongoing testing and debugging are presented. Nonetheless, sinusoidal RF output at a range of
frequencies were observed due to default startup functionality of the AD9912. These RF outputs
confirmed the basic functionality of the majority of the DDS device’s functions.

Figure 1.1: Photo of prototype AD9912 DDS device with components installed. Note that the
comparator is missing from the photo (U1, the 20-pin IC in the top left) but has since been installed.

1

2

Testing

Functionality of the digital interface was tested and confirmed to work as expected. The startup
mode of the AD9912 was configured to set the AD9912 to output one of a set of pre-programmed
frequencies. These frequencies were successfully monitored on the DDS board RF output.

2.1 Digital Interface
The digital interface testing was broken up into two stages. Initially, testing used switches on a
breadboard to generate static signals on the device’s 50-pin parallel connector. This was tedious
and meant a relatively long delay between commands. In the second stage, the prototype DDS
device was hooked up to the QDG laboratory’s UTBus system. Programming of the AD9912 was
attempted but no evidence of successful register writing was found.

2.1.1 Breadboard Control of the UTBus
Initial prototype board testing was performed with a 5V power supply, two function generators
- one each for SCLK and SYSCLK - an oscilloscope to monitor signals and a breadboard used
to generate digital signals. This setup allowed for testing of the parallel-to-serial converter and
supported attempts to program the AD9912.

Due to an issue with the ordering process, initial testing was performed without the address byte
comparator. Instead, a wire was soldered to the PCB in place of the comparator output (parallel-
to-serial converter enable, or EN). EN was controlled via a switch on a breadboard. The desired
behaviour was observed; when EN=0 the circuit is enabled and, on the rising edge of the strobe bit,
the output appears on CSB and SIO. This behaviour is shown in Figures 2.1 to 2.3. When EN=1,
the circuit is disabled; SIO and CSB will remain 0 and 1, respectively. Also shown is the SH/LD
bit; this controls the loading of the shift registers used to generate SIO and CSB. When low, the
shift registers load the data in; they subsequently clock out the data one bit at a time.

As only a 2-channel oscilloscope was available, the data shown in Figures 2.1 to 2.3 was not
collected simultaneously. In particular, the same data is used for SCLK and SH/LD for each figure.
Note that, for this reason, in some cases the noise on CSB does not match up with changes in
SIO. Further, for ease of testing, the UTBus was controlled manually using a bank of switches on
a breadboard. Since the comparator was not installed, this did not include UTBus pins A1 to A7
(A0, or SZ, is needed as it controls the length of data transfers).

A function generator was used to drive SCLK. Although only 1MHz testing is shown, further
testing at 5MHz was performed and no issues were found. Testing at frequencies above 5MHz was
not performed but there were no indications that 5MHz is an upper limitation. As such, SCLK
frequencies of tends of MHz may well be possible. However, timing issues may be present and
detailed testing of higher frequencies would be required to confirm full functionality.

Compare these plots with the breadboard test results shown in Figure 2.19 of Part I of this
report. As expected, the first bit of data is no longer held on the CSB or SIO output during the

2

2. TESTING 3

loading state of the shift registers. Thus the first bit of data is only held for one clock cycle, as
designed.

Using the same setup, a series of commands that should enable the Serial Data Output (SDO)
pin were sent. This command was followed by a command to read a register on this SDO pin.
No data output was observed. Next, a command to change the Frequency Tuning Word (FTW),
which should change the RF output frequency, was sent. After execution of this command, the
chip’s IO_UPDATE pin was manually triggered, which should have caused the output to change
frequency. No such change was observed. It was speculated that a cause could be due to the long
time (order of seconds) between commands sent to the AD9912; this was partial motivation for the
testing described by Section 2.1.2.

2. TESTING 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−2

0

2

4

6
SCLK (Clock)

Time (clock periods)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−2

0

2

4

6

SH/LD (Shift/Load)

Time (clock periods)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−2

0

2

4

6

SIO (Serial Data)

Time (clock periods)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−2

0

2

4

6

CSB (Chip Select Bit)

Time (clock periods)

V
ol

ta
ge

 (
V

)

Figure 2.1: 16-bit data transfer (SZ=0). Data on SIO is 0000 1000 0001 00002. Parallel input signals
were generated with a breadboard setup and an external SCLK was supplied at 1MHz. The top plot
shows the serial clock, which is used to time the rest of the signals. Below SCLK, the SH/LD plot
shows the signal that loads the SIO data into the parallel-to-serial converter. Once SH/LD returns
high, data is clocked onto the SIO pin, shown second from the bottom. This data consists of one bit
per clock cycle, as shown with dotted vertical lines. The bottom plot shows the CSB, which is held
low during the entire 16-bit data transfer. Note that this figure uses the CSB data from Figure 2.2
and, as such, the noise on CSB caused by changes in the SIO line do not line up.

2. TESTING 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−2

0

2

4

6
SCLK (Clock)

Time (clock periods)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−2

0

2

4

6

SH/LD (Shift/Load)

Time (clock periods)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−2

0

2

4

6

SIO (Serial Data)

Time (clock periods)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−2

0

2

4

6

CSB (Chip Select Bit)

Time (clock periods)

V
ol

ta
ge

 (
V

)

Figure 2.2: 16-bit data transfer (SZ=0). Data on SIO is 0010 1101 0010 11112. Parallel input signals
were generated with a breadboard setup and an external SCLK was supplied at 1MHz. The top plot
shows the serial clock, which is used to time the rest of the signals. Below SCLK, the SH/LD plot
shows the signal that loads the SIO data into the parallel-to-serial converter. Once SH/LD returns
high, data is clocked onto the SIO pin, shown second from the bottom. This data consists of one
bit per clock cycle, as shown with dotted vertical lines. The bottom plot shows the CSB, which is
held low during the entire 16-bit data transfer.

2. TESTING 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−2

0

2

4

6
SCLK (Clock)

Time (clock periods)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−2

0

2

4

6

SH/LD (Shift/Load)

Time (clock periods)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−2

0

2

4

6

SIO (Serial Data)

Time (clock periods)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−2

0

2

4

6

CSB (Chip Select Bit)

Time (clock periods)

V
ol

ta
ge

 (
V

)

Figure 2.3: 8-bit data transfer (SZ=1). Data on SIO is 0010 11012. Parallel input signals were
generated with a breadboard setup and an external SCLK was supplied at 1MHz. The top plot
shows the serial clock, which is used to time the rest of the signals. Below SCLK, the SH/LD plot
shows the signal that loads the SIO data into the parallel-to-serial converter. Once SH/LD returns
high, data is clocked onto the SIO pin, shown second from the bottom. This data consists of one
bit per clock cycle, as shown with dotted vertical lines. The bottom plot shows the CSB, which is
held low during the 8-bit data transfer; CSB returns high for the final 8 bits of data.

2. TESTING 7

2.1.2 NI-DAQ Control of the UTBus
To decrease the time between commands, the DDS was hooked up to the QDG laboratory’s existing
UTBus installation. This was used to confirm expected operation of the DDS device’s digital inter-
face and to attempt to program the DDS. Although the data and address bits were supplied from
the lab system, function generators were used to drive the SCLK and SYSCLK at 5MHz and 25Mhz,
respectively. As the PLL multiplier is set to 40x, this SYSCLK value provided a 1GHz internal clock
to the AD9912.

This round of tests was performed with the address comparator placed. Figures 2.4 and 2.5 show
the results. Note that the SCLK frequency has increased to 5MHz. This higher clock speed was
used to allow the board to communicate with the existing lab setup. That is, the board was hooked
up to the UTBus it was designed to support. This was accomplished by connecting the DDS device
alongside previous generation DDS boards in a real lab setup. Through investigation of the software
used to control the UTBus, a python program was created to write a file with the data to send
to our DDS board. The python program may be seen in Appendix A. This data was passed to a
NI-DAQ driver program, which takes byte-level data commands and outputs them on the UTBus.

Therefore these figures demonstrate that the parallel-to-serial converter supports the lab’s UTBus
setup. To further demonstrate functionality, the strobe bit was included in Figures 2.4 and 2.5. The
UTBus provides this strobe bit, which, if enabled, triggers the parallel-to-serial converter. Note that
the strobe is not a nice square signal and instead has some ringing and a slow upwards slope. This
is due to the high capacitance in the lines used by the QDG lab.In particular, many of the UTBus
lines are upwards of a meter in length.

To confirm the internal workings and timings of the parallel-to-serial converter, signals used
internally were checked for timing and functionality. These are shown in Figure 2.6. The top plot
of this figure shows the serial clock, which is used to time the rest of the signals and is generated
from an off-board function generator. Below SCLK, the address comparator output, from the byte
comparator in the digital interface, shows the time during which the address pins of the UTBus
match the DDS device address. This comparator output must be low in order to enable the parallel-
to-serial converter. If this comparator output is low, the UTBus strobe bit will then trigger a signal
pulse on the board that loads the digital data from the UTBus into the digital interface. This signal
is shown second from the bottom as the SH/LD bit. Finally the CSB, from 2 of the shift registers,
should be held low for 16 clock cycles immediately after the SH/LD bit returns high; this enables
the serial input of the AD9912 while data is clocked in at the rate of one bit per clock period.

As expected, the address comparator outputs a low signal, as the address on the UTBus matches,
some time before and after the strobe bit goes high. Once the strobe bit goes high, the parallel-
to-serial converter is triggered and, after two clock cycles (required by the circuit), the SH/LD bit
goes low for exactly one clock period. Finally, as expected, the CSB is held low for 16 clock cycles.

The full process of a parallel-to-serial conversion is defined as the time from the first rising edge
of SCLK while the strobe bit is high until the CSB goes high. In Figure 2.6, this process begins at
1.6µs and ends at 3.4µs for a total time of 1.8µs at a SCLK frequency of 5MHz.

Although the UTBus sent data to the AD9912 with a reasonable time between commands,
programming of the AD9912 was still unsuccessful. In particular, attempts to write to a register
that would change the output of the AD9912 failed; these expected changes were not observed. For
a discussion of why this might be, see Section 3.

2. TESTING 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

3.3

SCLK (Clock)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

3.3

Strobe

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

3.3

SH/LD (Shift/Load)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

3.3

CSB (Chip Select Bit)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

3.3

SIO (Serial Data)

Time (clock periods)

V
ol

ta
ge

 (
V

)

Figure 2.4: 16-bit data transfer (SZ=0). Data on SIO is 0010 0001 1010 10112. Parallel input signals
were generated from the QDG lab’s UTBus system and an external SCLK was supplied at 5MHz.
The top plot shows the serial clock, which is used to time the rest of the signals. Below SCLK,
the strobe demonstrates the timing of the UTBus strobe pin, which triggers the parallel-to-serial
conversion. The SH/LD plot shows the signal that loads the SIO data into the parallel-to-serial
converter. Once SH/LD returns high, data is clocked onto the SIO pin, shown second from the
bottom. This data consists of one bit per clock cycle, as shown with dotted vertical lines. The
bottom plot shows the CSB, which is held low during the entire 16-bit data transfer.

2. TESTING 9

0 1 2 3 4 5 6 7 8

0

3.3

SCLK (Clock)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8

0

3.3

Strobe

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8

0

3.3

SH/LD (Shift/Load)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8

0

3.3

CSB (Chip Select Bit)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8

0

3.3

SIO (Serial Data)

Time (clock periods)

V
ol

ta
ge

 (
V

)

Figure 2.5: 8-bit data transfer (SZ=1). Data on SIO is 1011 00102. Parallel input signals were
generated from the QDG lab’s UTBus system and an external SCLK was supplied at 5MHz. The
top plot shows the serial clock, which is used to time the rest of the signals. Below SCLK, the
SH/LD plot shows the signal that loads the SIO data into the parallel-to-serial converter. Once
SH/LD returns high, data is clocked onto the SIO pin, shown second from the bottom. This data
consists of one bit per clock cycle, as shown with dotted vertical lines. The bottom plot shows the
CSB, which is held low during the 8-bit data transfer; CSB returns high for the final 8 bits of data.

.

2. TESTING 10

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8

0

3.3

SCLK (Clock)

V
ol

ta
ge

 (
V

)

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8

0

3.3

Address Comparator Output (active low)

V
ol

ta
ge

 (
V

)

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8

0

3.3

Strobe

V
ol

ta
ge

 (
V

)

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8

0

3.3

SH/LD (Shift/Load)

V
ol

ta
ge

 (
V

)

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8

0

3.3

CSB (Chip Select Bit)

Time (µs)

V
ol

ta
ge

 (
V

)

Figure 2.6: Timing of the Internal Parallel-to-Serial Converter Signals. Parallel input signals were
generated from the QDG lab’s UTBus system and an external SCLK was supplied at 5MHz. The
top plot shows the serial clock, which is used to time the rest of the signals. Below SCLK, the
address comparator output is an indicator of the time during which the address pins of the UTBus
match the DDS device address. The strobe bit tells the DDS device that the serial data is ready
to be read and starts the conversion. Second from the bottom, if the UTBus address matches the
board address, the SH/LD bit is low for one clock cycle immediately after the strobe bit goes high.
Finally, the CSB is held low for 16 clock cycles immediately after the SH/LD bit returns high.

2. TESTING 11

2.2 RF Output
As it was not possible to program arbitrary frequencies, testing was performed only on the preset
frequency outputs of the AD9912. These presets are chosen with the use of startup pins on the
AD9912. This allowed seven discrete output frequencies, ranging from 38.9MHz to 155.5MHz, on
the DDS board’s RF output. The results are shown in Figure 2.7.

From the AD9912 datasheet, the possible startup frequencies are: 38.9MHz, 51.8MHz, 61.4MHz,
77.8MHz, 92.1MHz, 122.9MHz and 155.5MHz. By toggling the startup pins, each of these modes
was selected and the output was monitored with a 1GS/s oscilloscope. With a AD9912 SYSCLK of
1GHz (clock input from a function generator at 25MHz and PLL multiplier of 40), these frequencies
were successfully viewed on the DDS board RF output, post-filter, and are shown in Figure 2.7.

That changing frequencies were visible on the RF output verified the correct functionality of
a number of parts on the board. For the DDS to output a signal at all, power regulators and
supply for the DDS must be working. To output at the correct frequency, the DDS has to have
a working SYSCLK and a functional PLL circuit for the correct multiplier. For all the signals to
be connected and correct, the PCB fabrication would have to be correct. Finally, the transformer
and reconstruction filter on the DAC output would have to be operational and working as designed.
That the expected frequencies of the RF output were observed, all of these areas of the board have
been confirmed as correct.

These RF outputs correspond to the frequencies expected but also change in amplitude. As can
be seen in Figure 2.7, the signal amplitude decreases with increasing frequency. The cause of this
has not been verified. However, it should be noted that the optional resistors R1 and R2 were not
placed, which means that the RF output was not driving a significant load1. Due to their placement
on the differential DDS DAC output pins, however, it is possible that these resistors will stabilize
the output. Jumper resistor W8 was also not placed.

1The oscilloscope load is on the order of 1MOhm

2. TESTING 12

−2

0

2
AD9912 DAC Output

38.9 MHz

−2

0

2

51.8 MHz

−2

0

2

61.4 MHz

−2

0

2

V
ol

ta
ge

 (
V

)

77.8 MHz

−2

0

2

92.1 MHz

−2

0

2

122.9 MHz

0 10 20 30 40 50 60 70 80 90
−2

0

2

Time (ns)

155.5 MHz

Figure 2.7: Filtered DAC output. Measured with a 60MHz, 1GS/s oscilloscope. The frequency
levels were set with the AD9912 startup pins and are preset to one of 7 frequencies as defined in the
AD9912 datasheet.

3

Conclusions

Three main areas were tested: the digital interface, programming the AD9912 and the RF output.
For the basic functionality tests, both the digital interface and RF output performed as designed.
However, programming the device was not achieved.

The digital interface was found to work as expected. Although frequency limits were not tested, it
was confirmed that the parallel-to-serial conversion process is performing as designed when used with
the QDG lab’s UTBus system. Despite this, attempts to program the AD9912 were not successful.
Determining the cause of this failure will need to be investigated in the future.

Despite a lack of software control of the AD9912, RF output from the DDS was successfully gen-
erated. Frequencies ranging from 38.9MHz to 155.5MHz were tested, with only a slight attenuation
at higher frequencies. That this range of output was successfully generated and observed confirms
that, once AD9912 programming is successful, the AD9912 DDS device will accomplish the stated
project requirements.

13

4

Recommendations

This section describes the recommendations for future work on the AD9912 DDS board. Suggestions
for future testing, board population for a production run, board installation in the lab and device
programming are discussed.

4.1 Further Testing
It is desirable to determine the upper (stable) rate of the SCLK, as this allows for a faster UTBus
frequency. This can be performed by using the external SCLK input and a function generator, then
increasing the SCLK frequency until a maximum is found where the parallel-to-serial converter no
longer works.

The CMOS output should also be tested. This can be accomplished by programming the AD9912
to use this mode and enabling the feedback jumper W8.

The reconstruction filter can be tested by using BNC connector J2 as a filter input. See Section
2.4.3.6 of Part I of this report for information on how to enable this mode. This setup would allow
the use of a spectrum analyser to determine the transfer function. A similar setup can be used to
determine the magnitude of high frequency spurs from the DDS DAC output at high frequencies.

Finally, performance testing of these high performance devices should be performed. In partic-
ular, the noise levels, Q-factor of the signal and accuracy of the frequency should be investigated.
Additionally, it should be confirmed that the power output of the DDS board is always above the
-17dBm required by the pre-amplifiers used in the QDG laboratory.

4.2 AD9912 Programming
The ability to control the AD9912 chipset is a crucial part of the DDS board. Prototype testing
was unable to find any evidence of successful writing to an AD9912 register. Although there is
no conclusive evidence regarding the reason why programming was unsuccessful, there are a few
educated guesses. To prove or disprove these possibilities, there are many different techniques
available to debug the serial control port, ranging from analysis of the evaluation board to directly
controlling the serial ports.

There are two educated guesses of why the AD9912 chip does not appear to receive register write
commands. Firstly, it is possible that the AD9912 chip used on the prototype board is broken; the
group has heard of a similar issue with an Analog Devices DDS chip. In this case, switching the
chip would be a quick fix. However, the chips are not cheap and the procedure required to remove
and replace the DDS chip is both difficult and includes a possibility of breaking other components
on the board. For this reason, it is suggested that this hypothesis be proved using other methods
before attempting a chip replacement.

A second, and perhaps more likely, possibility for why programming has not worked is that the
timing of the digital interface circuitry does not meet the timing requirements of the AD9912’s serial

14

4. RECOMMENDATIONS 15

control port. The AD9912’s datasheet is a useful reference here.
Perhaps the most revealing analysis technique will be to set up the AD9912 evaluation board,

which was purchased for this type of testing. The evaluation board allows for USB control of the
AD9912. It would be particularly instructive to monitor input signals to the serial control port
of the AD9912 on the evaluation board and compare with those produced by our digital interface
circuitry. It might also be possible to connect the serial control signals from the evaluation board
directly to those on our prototype board. The two boards might then be started in the same state
and programmed at the same time using the the evaluation board’s USB interface circuitry and
software.

Another possible analysis technique is to directly control the serial ports without use of the
digital interface. This is perhaps easiest with an Arduino or similar microcontroller, which could be
programmed to directly control the serial port.

If either the evaluation board or an external microchip board is used to generate an off-board
serial control, the external signal input will need to be connected directly to the SCLK, CSB and SIO
input pins of the AD9912. This connectivity may easily be obtained by soldering wires to a grouping
of vias near the AD9912. However, as the digital interface chips are always powered on when the
entire DDS board has an external power source, as required to power the AD9912, an external input
will cause fighting on the serial input pins. As no jumpers were placed to disconnect the serial pins
from the digital interface, it is necessary to either remove the shift registers or manually cut the
traces. Both are viable options, although cutting the traces is likely both faster to perform and
easier to repair.

4.3 DDS Board Programming
The AD9912 uses a different programming scheme and register addresses than the previous gener-
ation board. To compensate for this, the QDG lab will need to modify the existing UTBus control
programs to facilitate programming of the AD9912 registers. Detailed information on what is re-
quired to program the AD9912 using the DDS board can be found in Section 2.1.6 of Part I of this
report. A low-level python program was used to program the DDS device during testing; this code
is in Appendix A.

4.4 Population
Although one board has been built and assembled, the QDG lab has requested at least eight fully
assembled devices. Parts and PCBs are available for at least ten. Once additional testing has been
completed, it will be necessary to populate the remainder of the boards. While the PHAS electronics
shop was willing to populate one board, they requested that volumes higher than five be performed
off site.

No research has been done in determining a suitable company for this work. It is recommended
that the PHAS electronics shop be contacted for suggestions.

4.5 Installation
To be used in the lab, the DDS board will need to be rack mounted. This is accomplished with a
metal rack-mounting front panel, to which the DDS enclosures are screwed, a platform and a 5V
power supply. The front panel and power supply have been acquired but the parts will need to be
assembled.

Appendix A

UTBus Python Code

This code uses existing libraries written by the QDG lab
to convert a series of data commands into a binary
series of commands. These commands are read by a NI DAQ
driver program, which is executed using the following command:
C:\UTBUS\V1\BusDriver\bin\Release\bus_driver_v1.exe 1 20 0\
C:\Documents and Settings\QDG Admin\Desktop\AD9912.utb
This command reads the AD9912.utb binary file, written by this
python program, and outputs the commands (set in the list "datas")
to the UTBus
##
Author: Brendan Mulholland

import os.path
import struct

def _get_bytecode_info():
bytecode_info_fname = os.path.join("C:\\UTBUS\\V1\\UTBus1\\bytecode.info")
NS = {}
execfile(bytecode_info_fname,NS)
return NS["bytecode_map"],NS["bytecode_signature"],NS["max_comment_size"]

(bytecode_command,bytecode_signature,max_comment_size) = _get_bytecode_info()

sig_size = len(bytecode_signature)
bcode = struct.pack("=B",sig_size)
bcode += struct.pack("=%dB" % sig_size,*(ord(c) for c in bytecode_signature))

Test command
datas = [[0, "0101010101010101"]]

Read a register from SDO pin
datas = [[0, ’0000000000000000’], # Write (0) 1 byte (00) to register 0x0000
[1, ’0000000010000001’], # Byte to write = 10000001
[0, ’0000000000000001’], # Read (1) 1 byte (00) from register 0x0000
[1, ’0000000000000000’] # Pull CSB low for 8 bits while the DDS outputs
]

Set FTW
datas = [[0, ’1101010110000100’]

16

APPENDIX A. UTBUS PYTHON CODE 17

, [0, ’0110000000000001’]
, [0, ’1010000000000000’]
, [0, ’0001000001001101’]
]

for SZ, data in datas:
address = int(’01110100’,2)+(2*SZ)
bcode += struct.pack("=BBH", bytecode_command["COMMAND"], address, int(data,

2))
bcode += struct.pack("=BQ", bytecode_command["WAIT"], 10)

bcode += struct.pack("=B",bytecode_command["STOP"])

f = open("C:\\Documents and Settings\\QDG Admin\\Desktop\\AD9912.utb", "wb")
f.write(bcode)
f.close()

	Contents
	List of Figures
	Summary
	Testing
	Digital Interface
	Breadboard Control of the UTBus
	NI-DAQ Control of the UTBus

	RF Output

	Conclusions
	Recommendations
	Further Testing
	AD9912 Programming
	DDS Board Programming
	Population
	Installation

	UTBus Python Code

