Real-Time Image Processing in Mechatronics Systems — (RIMS)

Saman Keshmiri Amir Issaei Robert Willems

Project Sponsor:
Mr. Andrew Rushmere
Field Academic Coordinator
UBC Farm

Project 1152
Applied Science 479
Engineering Physics Project Laboratory
The University of British Columbia
January 9", 2012

EXECUTIVE SUMMARY

Rodents have become a problem in a older greenhouse at the UBC Farm. They
find the warm atmosphere of the greenhouse and the harvest and seedlings stored in
the greenhouse a welcoming home. The rodents damage the hard work of the UBC
Farm staff. Conventional rodent control mechanism have proven ineffective such as
sonic traps which use high frequency ultrasound; snap traps require a great deal of
attention and attract birds into the greenhouse when rodents are caught; resealing the
greenhouse is far too costly; thus, the our team has designed an active device to track
rodent movement within the bounds of the greenhouse and follow the rodents with the
ability to trigger an external device for frightening the rodents. The external devices is
out of the scope of our engineering team’s knowledge and is left up to professionals in
the field to implement. We present a real-time image-processing mechatronic system.

Using an infrared camera, to eliminate the distinction between daylight and
night time, to capture images of the greenhouse and using image processing on the
computer track rodents. The device installed in the greenhouse includes a housing
mechanism for the camera with motors to control the position of the camera and
consequently any external triggering device attached to it.

The tracking system is tested in the laboratory and has proven effective at
tacking small objects in both regular light and low light conditions. There is a ~1.5s delay
in motion present in front of the camera and reaction of the tracker; however, in the
time frame present our team was not able to eliminate this delay completely but
reduced it down from 2.8s to 1.5s using sophisticated probabilistic models for
immediate future motion tracking.

The system has 5 components, 3 of which are coded on a computer using
MATLAB computation software while the other 2 components are an Arduino
microcontroller and the infrared camera. The computer and microcontroller
communicate via a serial connection while information from the camera is read into the
computer via Ethernet.

Accurate and precise motion detection allows the system to detect the smallest
of changes in the environment it is monitoring thus making the system ideal for small
rodents.

ii

TABLE OF CONTENTS

Title Page
Executive Summary
Table of Contents
List of Figures
List of Tables
Introduction
Background and Significance
Project Objectives
Scope and Limitations
Organization
Discussion
Theory
Methods / Prototype
Flow Diagrams / Algorithm
Alternative Designs Considered
Results and Discussion of Results
Conclusions
Project Deliverables
Recommendations
Appendix A

AU, P WNNPRPPR

[S S O S = N Y
U b WOWN L O

iii

LIST OF FIGURES

Figure 1

Assembled prototype with servos, camera, and mount.
Figure 2

Algorithm.
Figure 3

System Components.
Figure 4

Image Processing Algorithm.
Figure 5

No motion image subtraction.
Figure 6

Slight motion detection.
Figure 7

Boundary detected for motion and region of interest outlined in white.

LIST OF TABLES

Table 1
Advantages and disadvantages of different motion detection technologies.

iv

INTRODUCTION

This report is written to provide a complete and detailed description of the RIMS
(Real-time Image-processing Mechatronics System) project for any team of engineers to
replicate the prototype, modify, and make improvements to the system with great ease.
RIMS is a rodent deterring system that uses image processing to track rodents in real-
time in order to trigger an external rodent deterring device.

Background and Significance

RIMS is designed and prototyped for the UBC Farm for use in one of their
greenhouses. During the fall and winter seasons the harvest is stored in the
greenhouse while during the spring and summer seasons seedlings replace the
harvest; both the harvest and seedlings are an ideal source of food for rodents
when their natural food source outside the greenhouse depletes during the cold
months of the year. The greenhouse is more than 20 years old; thus, the
building’s seals have started to deteriorate leaving convenient entry and exit
routes for rodents. After a discussion with our project sponsor Andrew
Rushmere, we are convinced our solution is a reasonable one to be discussed
further in the Methods section of the report. The UBC Farm team has tested
conventional rodent control methods, which have proven ineffective for this
greenhouse. As well, perhaps the most obvious solution — cats — has proven
ineffective, as coyotes in the area have been attacking the cats.

Conventional rodent control systems tested by the UBC Farm include
snap traps and sonic traps. Sonic traps, which use high frequency ultrasound to
irritate rodents and keep them out of the space, have proven ineffective as the
rodents appear to become accustomed to the frequency after several days. Snap
traps capture 2-3 rodents a week but they require constant maintenance as the
traps can go off accidentally and must be replaced when a rodent is caught.
Further, dead rodents caught in traps attract birds into the greenhouse, which
introduces one more animal that finds the content of the greenhouse appetizing.

Other options, which have been considered but not tested, are light traps
and complete resealing of the building. Light traps use a strobe light to frighten
rodents from entering a space. Conventionally, they are placed near rodent
nests; however, they are irritating to humans working in the greenhouse and
they do not work during daylight hours. Moreover, they have not been tested
but it could prove that rodents will get accustomed to these light traps as with
the sonic traps. As well, their cost range is $60 - $200 each, which can be pricey
since several are required to cover all entry points for the rodents. Finally,
professional cost estimates for resealing the building are in the tens of
thousands of dollars, too large of an investment for such an old building.
Chemical rodent control methods cannot be used in this space due to their
toxicity in an environment where food is handled. The chemicals can kill
seedlings, and are harmful to humans if breathed in when humidity is high. Also,
they are not sustainable and should not be washed down the drain as the case

when the greenhouse is flooded to water the seedlings. Thus, chemical pest
control is not an option.

Our solution attempts to be a cost effective alternative to the industry
available rodent control systems that requires minimal attention and can be left
to work indefinitely.

Project Objectives

The ultimate goal is to keep rodents from eating the harvest and
seedlings stored in the greenhouse. RIMS is a programmable device to track
rodents within the bounds of the greenhouse at all times and trigger an external
device aimed at the rodent to frighten the rodent away from the harvest. One
major goal of the system is for it to be robust and easily modifiable by any team
of engineers to allow interchangeable rodent frightening systems as discussed in
detail in the future development section of this report.

Scope and Limitations

The scope of this project is to engineer the RIMS device to detect and
track rodent movement in the greenhouse. It is not in the scope of this project to
determine an effective rodent frightening technology and research rodent
behavior. Industry leading rodent control systems such as ultrasound and strobe
lights are the source of the ideas for this project. We have selected a spotlight
for frightening rodents as the best external device to test compared with the
alternative ultrasound technology, which has proven ineffective from experience
by the UBC Farm and is expensive to purchase high frequency sound generating
circuits.

RIMS is designed with versatility in mind. The rodent detection system is
robust and effective; the rodent deterring system is left for future
implementation with long term field-testing. This is discussed later in the
recommendation section of this report.

Several factors limit the variety of methods that can be implemented to
achieve the goal of frightening rodents. The biggest challenge is the
environmental conditions in the greenhouse; namely, temperatures as high as
50°C, extreme humidity and moisture year around, and water sprinkling from the
ceiling to water plants. The device must be able to survive in such an
environment. Further, human activity is high in the greenhouse — several hours a
day with 2-4 people working in the greenhouse — thus the system must not
irritate humans, pose a threat such as electric shock, and interfere with human
activities. Finally, it must require minimal maintenance and attention; one of the
major reasons the farm would like to stop using snap traps is the huge
maintenance burden.

Organization
The remainder of this report explains the methods implemented in RIMS

as part of the Discussion section as well as make recommendations for future
development of the system and improvement. An important aspect of this
project is the report to be used for future improvements of the project. The
deterring system is not implemented due to the fact that budget constraints,
time constraints, and uncertainty of rodent behavior persuaded our team that a
tracking system free to have any deterring system attached is the best option to
complete for this project. Details of software code, design CAD drawings,
circuitry, and testing result calculations can be found in the appendices at the
end of the report.

DISCUSSION

The discussion section of this report aims to inform the reader of the engineering
process taken by our team in developing RIMS. The theory section attempts to
communicate the reasons behind the methods used in RIMS. The methods/Test
Protocol section provides details of the workings of RIMS.

Theory
This section of the report attempts to give the reader perspective for our

decision to design a rodent tracking system leaving the deterring component to
professionals of rodent behavior and habit. With the objective to deter rodents
from eating the harvest in the greenhouse in question, our team initially thought
of several mechanisms that could achieve this goal such as mechanical
restrictions to stop rodents from accessing the food. After several discussions
with out project sponsor, it became clear that an active device should be used;
one which only reacts to rodents near it to eliminate the risk of rodents
becoming accustomed to it. This design idea escalated to a mechatronics system
which fires small objects at detected rodents. It is clear that all active devices
require a detection system to operate. This is what inspired us to design the
rodent tracking system — RIMS.

Research into the subject of rodent detection resulted in several
technologies being considered with our final decision being an infrared camera
and image processing. Other alternatives considered are infrared sensors, sonic
sensors, and thermal imaging cameras. Each one of these methods have their
own advantages and disadvantages as outlined in Table 1.

Table 1 Advantage Disadvantage
Infrared -Cost effective -Very short range ~20-30cm
Sensors -Simple: when object is in -Long range sensors become
range sensor sends signal to expensive (>530 each) and still no
processing unit more than 1m range
-No information of distance and
direction
Sonic Sensors = -Information of distance and -Costly ~S15 per sensor
position of object -Short range ~1m

-Sensitive to humidity and
environment

Thermal -Does not require motion — -Very costly (>$500)

Imaging can detect rodent from body
Camera heat
-Easily distinguish human from
rodent

RIMS uses a thermal camera for night surveillance as its vision. A camera
eliminates the need to have multiple sensors as it can view the entire space in
the greenhouse. Further, the camera can be place on the ceiling of the
greenhouse eliminating the need for sealed water resistant robotics at ground
level. Further, the infrared allows the computer to view the space with any
amount of light as the camera has infrared LEDs to light up the room during low
light hours. The camera is a Vansview infrared camera.

Methods / Prototype

RIMS is a mechatronic system consisting of in infrared camera, 3 servo
motors, an Arduino microcontroller, and steel casing to house the components
and provide 2 axis of freedom for rotation. Figure 1 is a picture of the assembled
mechanical design.

Figure 1 - Assembled prototype with servos, camei‘a, and mount.

As seen in Figure 1 the mechanism is cut from 1.6mm steel. Steel is
not the ideal material of choice for the environment of our greenhouse;
however, due to time constraints this was the only material available to us.
Future prototypes, should there be further development, can take advantage
of material better suited for hot and humid environments such as aluminum.

There is a piece of foam on top of the mounting structure. This is
because the servo motor responsible for rotating the structure oscillates

when rotating the device due to the large mass of the camera causing an over
shoot of the desired angle. The foam acts as a damper in slowing down
rotational movement and preventing the servo from over rotating due to
inertia.

There is one servo which provides 360° rotation around a vertical axis,
as well as two servomotors that provide the tilt ability of the device. With 2
axis of freedom, the camera field of view can capture the entire greenhouse
from the center of the ceiling.

Flow Diagram / Algorithm

The following Figure 2 displays the algorithm of the entire detection
system. Captured images from the camera are used as the input to the system of
the location we would like the system to point — namely towards the direction of
detected motion where a rodent maybe. The images are also used as a feedback
system for the device to determine how close it is to its desired location.

Camera software records video from
camera on to computer

N

MATLAB simultaneously reads recorded
video file to grabs 6 consecutive frames

N

d 0CcC d
information from 2 consecutive images
for all 6 images

N/

Vlotion detected between any
consecutive images is recorded. Thus, 5
potential motion positions are found

N\

positions 4 potential velociti

are calculated

A ab ode e e
future motion direction based on current
motion position and rate of change

Figure 2 - Algorithm

As seen in Figure 2 the algorithm takes 6 consecutive images from the
stream, detecting motion between any 2 consecutive images. A center of motion
is calculated and between any two consecutive movements a velocity of motion

is determined. This is used in the probabilistic model to predict future motion
positions and rotate the camera in that direction.

The concept is similar to a simple PID control system with the exception
that the desired location is a continuous function of time constantly moving and
a simple PID control system creates a large lag in movement. The predictive
nature of the control system allows for rodent tracking with high latency camera
outputs such as our camera. Detailed explanations of each of the 5 components
of the system are described in detail with Figure 3.

The camera manufacturer has provided a CD with software that allows
for recording of video to file form the camera. This software is the best
mechanism to access images from the camera as it has the least latency of ~2.8s.
The camera is equipped with an Ethernet output where the video stream can be
read through RTSP — real-time streaming protocol. This particular camera
outputs a stream that MATLAB cannot read using the RTSP protocol. Thus our
only option is to record video to disk and read it into MATLAB. Nevertheless,
MATLAB has the ability to read a video file as the file is being written; thus, there
is no delay in recording while reading the file into MATLAB.

AN 000 MATLAB Device as seen in
Image Figure 2
Processing

Control

System

Figure 3 - System Components

The 5 components of the system are: Image processing, Control
system, client, server, and the camera. The first 3 are written in MATLAB on a
computer with the latter 2 as the device to be deployed in the field. Currently
the connection between the two sides is through a virtual serial port using a
USB cable.

subtracted from each
other and the result is
converted to a black and
white image

Sharpening filter is applied
and the variance is Boundary of sudden colour
calculated to detect changes is determined

suddent changes in colour

Coordiantes of the region
of interest are passed to
the control system

The centroid of the region
of interest is calculate

Figure 4 - Image Processing Algorithm

The Image processing component’s algorithm is visualized in Figure 4.
For any 2 consecutive images, the difference is found and converted into a
black and white image. The conversion into black and white merges a 3 layer
image into 1 layer thus processing performance is improved at least 2x. This
difference image is put through a filter that sharpens abrupt colour changes
and fed to a function that determines boundaries within an image. A
boundary is defined as any place where sudden colour changes in adjacent
pixels are found using the variance of the image. These boundaries are the
regions of interest to us; namely, the area of motion. From the pictures below
it can be seen that if no motion is present and two consecutive images are
subtracted, the result is a blank image and nothing is done by the algorithm.

Figure 5 - No motion image subtraction

However, in the case that there is a motion detected the results are
show in the images below.

Figure 6 - Slight motion detection

It is clear that the subtraction of two consecutive images is very
precise as hardly a difference to the human eye in the two above pictures is
well established by the computer. Finally, the filters applied to the subtracted
image and boundaries detected results in the following image:

Figure 7 - Boundary detected for motion and region of interest outlined in white

10

Once the region of interest is detected, the centroid is calculated and
the coordinates are passed to the control system.

The control system records 5 coordinates of the centroid for 5
separate regions of interest of 6 consecutive images. Then calculates the
velocity of motion from the 5 centroids. Using this information predicts the
immediate future’s most probabilistic direction and begins a movement in
that direction. The desired position of the camera is mapped to servo angles
and this information is passed to the client in MATLAB to transmit this
information to the server - the Arduino microcontroller.

The client-server relationship of MATLAB and Arduino
microcontroller is though a USB connection acting as a virtual serial port. The
server software on the Arduino microcontroller listens for serial requests
and has built in function that can be called through MATLAB. The code on
both sides of the system can be found in Appendix A.

Alternative Designs Considered

A great deal of time was devoted to brainstorming ideas for rodent
deterring solutions before it was decided to design a tracking mechanism. This
section expresses these ideas, which maybe useful for future groups working on
this project.

The simplest designs considerations were given to stationary devices: a
device called the ball-n-chain. It consists of a attachment ring for a table leg and
they would be installed on every table leg. The device has a mass attached to the
ring with a metal wire. Using a simple infrared motion sensor, the mass is begins
spinning around the table leg when a rodent is detected trying to climb up the
table. There are several major limitations with this design. First, many must be
produced to solve the problem as there are many tables in the greenhouse
where the harvest is stored on. The circuitry for the device must be hidden and
protected from pouring water. As well, power delivery to the devices is a major
issue. Wiring them through out the room is not practical and battery power
requires management and replacement. A passive device to stop rodent from
climbing up a table leg was considered as well but decided that rodents would
get around it; thus, an active device must be engineered.

Another design was for a sweeping robotic arm installed on the tables.
This robotic arm would sweep the tables at a desired elevation above the table
when no humans are present in the greenhouse. The limitation for this idea was
that, the device must be turned on and off by staff when they enter and exit the
greenhouse. Also, setting the height above the tables would be problematic as
seedlings could be damaged.

The most prominent idea and the runner up was the shooting robot. A
device mobile on the greenhouse floor, roaming around and shooting a small
arrow at a rodent when one is detected while it chases the rodent. This design
went through several brainstorming sessions before it was abandoned. Power
management was a major limitation. Battery power would require far too much

11

management. It was proposed to use an magnetic induction charging technology
where the robot would guide itself to a home base when it required a recharge.
A second limitation was differentiating human feet from rodents and eliminating
human contact. To engineer around both these limitations, the robot would be
placed on rails installed on the greenhouse floor. The rails would serve to limit
the robots movement around the room for human interference, and provide
power. Our project sponsor informed us that the tables in the greenhouse are
non-stationary and the rails can be problematic. Also, the material limitation of
the rails is an issue as they must withstand constant water, mud and dirt, as well
as people stepping on them all while providing adequate contact for power
delivery.

It was from these ideas that we decided to only design and build a
tracking mechanism, as all the above ideas require rodent tracking.

Results and Discussion of Results

The results of in lab testing of the device have revealed a great deal. The
images gathered from the camera are 1280x720 pixels each. Each image is
approximately 300 kb in size and there does not appear to be a limitation to the data
transfer rates between the camera and the computer. The camera has onboard circuitry
to decide when enough light is present to use regular frequency images and when to
turn on its night mode and capture images in infrared. The device operates at 30 frames
per second but only 6 consecutive frames are used at a time and this is due to the 2.8s
latency present in the camera to deliver an image via Ethernet or component cables.
This delay is due to the conversion and encoding of the images to a .sja formatted
stream onboard the camera. This 2.8s lag in information transfer from the camera to the
computer presented a major issue at first that required immediate attention. It is critical
for the system to have minimal lag to detect rodents and point to them before they are
gone. Our algorithm attempts to minimize this latency by using a probabilistic model to
predict movement. This has allowed the lag of the system to decrease to ~1.5s even
though information is still 2.8s delayed; however, every few seconds the system pauses
for an instance to skip queued frames to the latest information available.

12

CONCLUSION

In conclusion, RIMS is fully operational and tested. It is able to track movement
using the infrared camera with a ~1.5s delay. This delay is reduced to 1.5s from 2.8s;
however, it is clearly present when testing the device. Infield testing may prove that this
delay is adequate for the purpose of deterring rodents or that improvements must be
made.

Within the time frame of our project, the rodent tracking system is must use the
camera’s manufacturer software to record video which is read by MATLAB
simultaneously as it is recorded. Using the camera’s software, a recording schedule of 1
hour intervals was setup so that there is no disruption to the stream of video into the
processing software and as well disk space is reused as each previous recorded file is
deleted.

It remains that the system be installed in the greenhouse for infield testing and
an appropriate external triggering device such as a laser or strobe light be installed on
the device to frighten rodents away.

The detail of motion detection is adequate in both daylight and low light
conditions and the precision of the software can detect the smallest of changes as seen
in Figure 6. The software easily detects motion between two consecutive images that
cannot be seen by the human eye. Infact, the smaller the object in moving the better it
is detected because the algorithm can find abrupt changes in the difference image much
nicer when they are only a small section of the image and not covering the entire image.

13

PROIJECT DELIVERABLES

We are presenting to our project sponsor and the Engineering Physics Project
Laboratory the assembled mechanical design of our rodent tracking system as seen in
Figure 1. The Arduino microcontroller is configured with the server site software require
to communicate with MATLAB. Moreover, the MATLAB code is also included for the
device to be operation. Setup of the device in the greenhouse is to be complete still but
will be done by our team if requested by our project sponsor although a spare computer
must be placed in the greenhouse as well to make the device operational. This report is
also included to the project sponsor for passing down to future engineering teams to
modify RIMS.

The camera used is owned by the Engineering Physics Project Laboratory and
maybe requested to be returned by the lab. In this case, from this report the sponsor
can purchase a camera as a permanent replacement.

14

RECOMMENDATIONS

RIMS is complete but since rodent behavior is highly unpredictable — to our
project team at least — this project has great potential to be modified and expanded
upon with great ease. The tracking system detects rodents and points the system at the
rodent with ability to follow a moving rodent. The system can be modified to have a
spotlight/strobe light, pressurized water gun, heat laser, or air pressure fire at the
detected rodent. This way, after long term infield experimentation which ever method
works best can be implemented.

Further, in order for the system to better track rodents, it uses a probabilistic
model to predict and detected a rodent’s next motion when following it. Future
development of the project can be focused on improving this feature to better track
rodents perhaps at higher speeds. The purpose of this feature is to reduce the latency
present in the camera from when the image is captured to when the computer analyzes
the images. With a better camera where latency is not an issue, this feature can be
expanded upon to create a faster tracking mechanism for rodents moving at high speeds.

The setup of the entire system requires a computer running MATLAB to operate.
Future development can be focused on using the Arduino Ethernet Shield along with the
camera’s Ethernet capabilities to completely separate the processing done on a remote
computer and the device itself. The exact same server-client communication we are
using over a virtual serial port with a USB connection can be replaced with a network
using Ethernet. Some work on this was attempted during the design process; however,
due to time restriction was not implemented.

APPENDIX A

MATLAB Code:

Camera Controller
classdef CameraController < handle
properties(SetAccess = private, GetAccess = public)
comPort = 'COM4'; %com port
ard; %arduino connection object
%pan motor constants
pMotorPin = 2;
pMotorCal = 0.015;
pMotorPos = 55;
pMaxAngle = 180;
pMinAngle = 0;
%tilt motor constants
tMotorPin = 1;
tMotorCal = 0.015;
tMotorPos = 25;
tMaxAngle = 180;
tMinAngle = 0;
end
methods
function obj = CameraController()
obj.ard = arduino(obj.comPort);
setup(obj);
end %constructor
function setup(a)
a.ard.servoAttach(a.pMotorPin);
a.ard.servoAttach(a.tMotorPin);
servoWrite(a, a.pMotorPin, a.pMotorPos);
servoWrite(a, a.tMotorPin, a.tMotorPos);
end %setup
function servoWrite(a, pin, angle)
a.ard.servoWrite(pin, angle);
end
function moveCamera(a, X, y)
display(sprintf('Rotate Servos - x = %d, y = %d',x, y));
moveCameraX(a,x);
moveCameraY(a,y);
end %moveCamera
function moveCameraX(a, x)
if ~isnan(x)
%change tilt motor position by y and write that to the motor

16

a.pMotorPos = floor(a.pMotorPos + x*a.pMotorCal);
if a.pMotorPos < a.pMinAngle
a.pMotorPos = a.pMinAngle;
elseif a.pMotorPos > a.pMaxAngle
a.pMotorPos = a.pMaxAngle;
end
servoWrite(a, a.pMotorPin, a.pMotorPos);
end
end %moveCameraX
function moveCameraY(a, y)
if ~isnan(y)
%change tilt motor position by y and write that to the motor
a.tMotorPos = floor(a.tMotorPos - y*a.tMotorCal);
if a.tMotorPos < a.tMinAngle
a.tMotorPos = a.tMinAngle;
elseif a.tMotorPos > a.tMaxAngle
a.tMotorPos = a.tMaxAngle;
end
servoWrite(a, a.tMotorPin, a.tMotorPos);
end
end %moveCameraY
%called before an object of the class is destroyed
function delete(a)
clear a.ard);
end %delete
end %methods
end %class

Tracking
classdef Tracking < handle
properties(SetAccess = private, GetAccess = public)
cameraController; %camera pan and tilt controller
directory = 'C:\Users\Rob Willems\Documents\Record\IPCamera\';
videoAccessDuration = 0.2;
currentFileName; %current complete video file name being accessed
currentFileRecordStartTime;
currentFrameStartTime;
newRecordingStarted = false;
end %properties
methods
function o = Tracking()
o.cameraController = CameraController();
o.currentFileName = getNewestFileName(o);

display('Waiting for new recording...");

while ~o.newRecordingStarted
%wait until recording starts to process videos
checkFileName(o);

end

o.newRecordingStarted = false;

while true
o.currentFrameStartTime = toc(o.currentFileRecordStartTime);
loadedFrames = loadFrames(o);
processFrames(o, loadedFrames);
clear loadedFrames;
display(");
display(");

end

end %Tracking() Constructor

function processFrames(o, loadedFrames)
if loadedFrames.nFrames > 1
=1
display(sprintf('%d Frames loaded : mmReadLoadTime=%f, timecode=%f,
recordingtime=%f', loadedFrames.nFrames,
loadedFrames.loadTime,loadedFrames.video.times(1,1), o.currentFrameStartTime));
for k=1 : loadedFrames.nFrames-1
a=loadedFrames.video.frames(1,k).cdata-
loadedFrames.video.frames(1,k+1).cdata;
BW=im2bw(a,0.05);
[B,L] = bwboundaries(BW,'noholes');
STATS = regionprops(BW, 'centroid’);
s=size(STATS);
x1=0;
y1=0;
count =s(1,1);
for i=1:count
xy=STATS(i,1).Centroid;
x1=xy(1,1)+x1;
yl=xy(1,2)+y1;
end
if(x1>0)
x1=x1/count;
end
if(y1>0)
yl=yl/count;
end
% BW=medfilt2(BW);

17

BW=medfilt2(BW);

v=var(BW);

vw=BW';

X_variance=v;

v=var(wv);

%keyboard;

y_variance=v;

s_x=find(x_variance>0.008);

s_y=find(y_variance>0.008);

size_s_x=size(s_x);

size_s_y=size(s_y);

if(size_s_x(1,2)>10 && size_s_y(1,2)>10)
x=floor(mean(s_x));
y=floor(mean(s_y));

if(size(find(x_variance),2)>20 && size(find(y_variance),2)>20)

coords(1, j) = x;
coords(2,j) =v;
if j ==
coords(3,j) = 0;
else
coords(3, j) = loadedFrames.video.times(1,k) -
loadedFrames.video.times(1, j-1);
end
coords(4, j) = k;
j=i+L
end
end
end
ifj>1
m=j-1;

ifi>1
vX = VX + (coords(1, i) - coords(1, i-1))/coords(3, i);

vy = vy + (coords(2, i) - coords(2, i-1))/coords(3, i);

end
x = coords(1, i) + x;
y = coords(2, i) +v;
end
X =x/m;
y=y/m;

18

19

VX = vx/m;
vy = vy/m;
X3 =x-vx*0.1;
y3=y-vw*0.1;
%x = coords(1, m) + coords(5, m)*0.2;
%y = coords(2, m) + coords(6, m)*0.2;
x2 = x3 - loadedFrames.video.width/2;
y2 =y3 - loadedFrames.video.height/2;
o.cameraController.moveCamera(x2, y2);
display(sprintf('x = %d, y = %d',x3, y3));
display(sprintf('Average x = %d, y = %d',x, y));
display(sprintf('Average vx = %d, vy = %d',vx, vy));
end
end
end

function video = loadFrames(o)
frameEndTime = o.currentFrameStartTime + o.videoAccessDuration;
a = tic;
n=0;
display(sprintf('Start Access Time Frame (%f - %f)', o.currentFrameStartTime,
frameEndTime));
while true
fileNameChanged = checkFileName(o);
if fileNameChanged
frameEndTime = o.currentFrameStartTime + o.videoAccessDuration;
display(sprintf('Start Access Time Frame (%f - %f)', o.currentFrameStartTime,
frameEndTime));
end
video = VideoFrames(o.currentFileName, o.currentFrameStartTime,
frameEndTime);
if video.nFrames ==
%nFrames is zero try to access frames again for the
%same time
n=n+l;
else
break;
end
end
time = toc(a);
display(sprintf('Finish Access Time Frame (%f - %f), FailedAttempts=%d
TotalAccessTime=%f nFrames=%d', o.currentFrameStartTime, frameEndTime, n, time,
video.nFrames));
end

function fileNameChanged = checkFileName(o)
%check to see if a new recording has started
fileNameChanged = false;
fileName = getNewestFileName(o);
if ~strcmp(fileName, o.currentFileName)
%there is a new file recording, reset the filename and
%start the recording time again
o.newRecordingStarted = true;
o.currentFileName = fileName;
o.currentFileRecordStartTime = tic;
o.currentFrameStartTime = 0;
display(strcat('New recording found at: ', fileName));
fileNameChanged = true;
end
end

function filename = getNewestFileName(o)

n=0;
d=0;
while n ==

D = dir(o.directory);
fori=1:size(D, 1)
name = D(i,1).name;
t = findstr('asf', name);
if size(t) >0
temp_d = str2double(name(2:9));
if temp_d>=d
if temp_d>d
n=0;
d=temp_d;
end
temp_n = str2double(name(11:16));
if temp_n>n
n =temp_n;
end
end
end
end %getNewestFileName
filename = strcat(o.directory, name);
end
end
end %methods
end %Tracking

Video Frame Grab
classdef VideoFrames < handle
properties(SetAccess = private, GetAccess = public)
nFrames;
loadTime;
video;
end %properties
methods
function o = VideoFrames(filename, startTime, endTime)
t =tic;
o.video = mmread(filename, [], [startTime, endTime], false, true);
o.loadTime = toc(t);

try

o.nFrames = size(o.video.frames, 2);
catch

o.nFrames = 0;
end

end %constructor
function delete(o)
clear o.video;
end
end %methods
end %VideoFrames

Arduino Server Code:

/* Analog and Digital Input and Output Server for MATLAB */
/* Giampiero Campa, Copyright 2009 The MathWorks, Inc ~ */

/* This file is meant to be used with the MATLAB arduino 10
package, however, it can be used from the IDE environment
(or any other serial terminal) by typing commands like:

0e0 : assigns digital pin #4 (e) as input
0f1 : assigns digital pin #5 (f) as output
Onl : assigns digital pin #13 (n) as output

1c :reads digital pin #2 (c)

le :reads digital pin #4 (e)

2n0 : sets digital pin #13 (n) low
2nl : sets digital pin #13 (n) high
2f1 :sets digital pin #5 (f) high

2f0
4j2
4jz
3a
3f

5a
5b
6al
8az
7a
6a0

Alz
A4A
B1f
B4b
Blr

C12
C2z

22

: sets digital pin #5 (f) low

: sets digital pin #9 (j) to 50=ascii(2) over 255
: sets digital pin #9 (j) to 122=ascii(z) over 255
: reads analog pin #0 (a)
: reads analog pin #5 (f)

: reads status (attached/detached) of servo #1
: reads status (attached/detached) of servo #2
: attaches servo #1
: moves servo #1 of 122 degrees (122=ascii(z))
: reads servo #1 angle
: detaches servo #1

: sets speed of motor #1 to 122 over 255 (122=ascii(z))

: sets speed of motor #4 to 65 over 255 (65=ascii(A))

: runs motor #1 forward (f=forward)

: runs motor #1 backward (b=backward)

: releases motor #1 (r=release)

: sets speed of stepper motor #1 to 50 rpm (50=ascii(2))
: sets speed of stepper motor #2 to 90 rpm (90=ascii(Z))

D1fsz : does 122 steps on motor #1 forward in single (s) mode

D1biA : does 65 steps on motor #1 backward in interleave (i) mode
D2fdz : does 122 steps on motor #1 forward in double (d) mode
D2bmA : does 65 steps on motor #2 backward in microstep (m) mode

D1r
D2r

RO
R1
R2

99

: releases motor #1 (r=release)
: releases motor #2 (r=release)

: sets analog reference to DEFAULT
: sets analog reference to INTERNAL
: sets analog reference to EXTERNAL

: returns script type (1 basic, 2 motor, 3 general) */

#include <AFMotor.h>
#include <Servo.h>

/* define internal for the MEGA as 1.1V (as as for the 328) */
#if defined(__AVR_ATmegal280) || defined(__AVR_ATmega2560)
#tdefine INTERNAL INTERNAL1V1

ttendif

/* create and initialize servos */
Servo servol;

Servo servo2;

/* create and initialize motors */

AF_Stepper stm1(200, 1);

AF_Stepper stm2(200, 2);

AF_DCMotor dcm1(1, MOTOR12_64KHZ); // create motor #1, 64KHz pwm
AF_DCMotor dcm2(2, MOTOR12_64KHZ); // create motor #2, 64KHz pwm
AF_DCMotor dcm3(3, MOTOR12_64KHZ); // create motor #3, 64KHz pwm
AF_DCMotor dcm4(4, MOTOR12_64KHZ); // create motor #4, 64KHz pwm

void setup() {

/* initialize serial */
Serial.begin(115200);

}

void loop() {
/* variables declaration and initialization */
staticint s =-1; /* state */
staticint pin=13; /* generic pin number */
staticint srv= 2; /* generic servo number */

staticint dem = 4; /* generic dc motor number */

staticint stm= 2; /* generic stepper motor number */

staticint dir= 0; /* direction (stepper) */
staticint sty= 0; /* style (stepper) */

int val= 0; /* generic value read from serial */
int agv= 0; /* generic analog value */
int dgv= 0; /* generic digital value */

/* The following instruction constantly checks if anything
is available on the serial port. Nothing gets executed in
the loop if nothing is available to be read, but as soon
as anything becomes available, then the part coded after
the if statement (that is the real stuff) gets executed */

if (Serial.available() >0) {

/* whatever is available from the serial is read here */
val = Serial.read();

23

/* This part basically implements a state machine that
reads the serial port and makes just one transition
to a new state, depending on both the previous state
and the command that is read from the serial port.
Some commands need additional inputs from the serial
port, so they need 2 or 3 state transitions (each one
happening as soon as anything new is available from
the serial port) to be fully executed. After a command
is fully executed the state returns to its initial
value s=-1 */

switch (s) {

/* s=-1 means NOTHING RECEIVED YET *##¥ ks xkaxkaxskorxskrx x /

case -1:

/* calculate next state when s=-1 */
if (val>47 && val<90) {
/* the first received value indicates the mode
49 is ascii for 1, ... 90 is ascii for Z
s=0 is change-pin mode
s=10is DI; s=20is DO; s=30is Al; s=40is AO;
s=50 is servo status; s=60 is aervo attach/detach;
s=70is servo read; s=80 is servo write
s=90 is query script type (1 basic, 2 motor)
s=170 is dc motor set speed
s=180 is dc motor run/release
s=190 is stepper motor set speed
s=200 is stepper motor run/release
s=340 is change analog reference
*/
s=10*(val-48);
}

/* the following statements are needed to handle
unexpected first values coming from the serial (if
the value is unrecognized then it defaults to s=-1) */

if ((s>90 && s<170) || (s>200 && s!=340)) {
s=-1;

}

/* the break statements gets out of the switch-case, so
/* we go back to line 97 and wait for new serial data */

24

25

break; /* s=-1 (initial state) taken care of */

/* s=0 or 1 means CHANGE PIN MODE */

case O:
/* the second received value indicates the pin

from abs('c')=99, pin 2, to abs('t')=116, pin 19 */
if (val>98 && val<117) {

pin=val-97; /* calculate pin */
s=1; /* next we will need to get 0 or 1 from serial */
}
else {
s=-1; /* if value is not a pin then returnto -1 */
}
break; /* s=0 taken care of */
case 1:

/* the third received value indicates the value 0 or 1 */
if (val>47 && val<50) {
/* set pin mode */
if (val==48) {
pinMode(pin,INPUT);
}
else {
pinMode(pin,OUTPUT);
}

}
s=-1; /* we are done with CHANGE PINsogoto-1 */

break; /* s=1 taken care of */

/* S=10 means DIGITAL INPUT >k 3k 3k 3k 3k 3k 3k 3k 3k %k %k %k %k %k %k %k %k %k %k >k >k >k >k %k %k k */

case 10:
/* the second received value indicates the pin
from abs('c')=99, pin 2, to abs('t')=116, pin 19 */
if (val>98 && val<117) {
pin=val-97; /* calculate pin */
dgv=digitalRead(pin); /* perform Digital Input */
Serial.printin(dgv); /* send value via serial */

}

s=-1; /* we are done with DI so next stateis-1 */

break; /* s=10 taken care of */

/* s=20 or 21 means DIGITAL QUTPUT ****¥kxkaxskorxskorxskx * /

case 20:
/* the second received value indicates the pin

from abs('c')=99, pin 2, to abs('t')=116, pin 19 */
if (val>98 && val<117) {

pin=val-97; /* calculate pin */
s=21; /* next we will need to get 0 or 1 from serial */
}
else {
s=-1; /* if value is not a pin then returnto -1 */
}
break; /* s=20 taken care of */
case 21:

/* the third received value indicates the value O or 1 */
if (val>47 && val<50) {
dgv=val-48; /* calculate value */
digitalWrite(pin,dgv); /* perform Digital Output */

}
s=-1; /* we are done with DO so next stateis-1 */
break; /* s=21 taken care of */

/* S=3O means ANALOG INPUT >k 3k 3k 3k 3k 3k 3k 3k %k %k %k %k %k %k %k %k %k %k %k %k %k >k >k >k %k %k k */

case 30:

/* the second received value indicates the pin
from abs('a')=97, pin 0, to abs('f')=102, pin 6,
note that these are the digital pins from 14 to 19
located in the lower right part of the board */

if (val>96 && val<103) {
pin=val-97; /* calculate pin */
agv=analogRead(pin); /* perform Analog Input */

Serial.printin(agv); /* send value via serial */

}
s=-1; /* we are done with Al so next stateis-1 */
break; /* s=30 taken care of */

/* s=40 or 41 means ANALOG QUTPUT *¥#kxksxkaxkoxskorxskrx x/

case 40:
/* the second received value indicates the pin

from abs('c')=99, pin 2, to abs('t')=116, pin 19 */
if (val>98 && val<117) {

pin=val-97; /* calculate pin */
s=41; /* next we will need to get value from serial */
}
else {
s=-1; /* if value is not a pin then returnto -1 */
}
break; /* s=40 taken care of */
case 41:

/* the third received value indicates the analog value */
analogWrite(pin,val); /* perform Analog Output */
s=-1; /* we are done with AO so next stateis-1 */
break; /* s=41 taken care of */

/* s=50 means SERVO STATUS (ATTACHED/DETACHED) ***#*%* /

case 50:
/* the second received value indicates the servo number
from abs('a')=97, servol, on top, uses digital pin 10
to abs('b')=98, servo2, bottom, uses digital pin9 */
if (val>96 && val<99) {
srv=val-96; /* calculate srv */
if (srv==1) dgv=servol.attached(); /* read status */
if (srv==2) dgv=servo2.attached();
Serial.printin(dgv); /* send value via serial */

}
s=-1; /* we are done with servo status so return to -1*/
break; /* s=50 taken care of */

/* s=60 or 61 means SERVO ATTACH/DETAGCH *** ¥k k¥ xkskkkk * /

case 60:

/* the second received value indicates the servo number
from abs('a')=97, servol, on top, uses digital pin 10
to abs('b')=98, servo2, bottom, uses digital pin9 */

if (val>96 && val<99) {

27

srv=val-96; /* calculate srv */
s=61; /* next we will need to get 0 or 1 from serial */
}
else {
s=-1; /* if value is not a servo then returnto -1 */
}
break; /* s=60 taken care of */
case 61:
/* the third received value indicates the value O or 1
0 for detach and 1 for attach */
if (val>47 && val<50) {
dgv=val-48; /* calculate value */
if (srv==1){
if (dgv) servol.attach(10); /* attach servo 1 */
else servol.detach(); /* detach servo 1 */
}
if (srv==2){
if (dgv) servo2.attach(9); /* attach servo 2 */
else servo2.detach(); /* detach servo 2 */
}
}
s=-1; /* we are done with servo attach/detach so-1 */
break; /* s=61 taken care of */

/* S=7O means SERVO READ 3k 3k 3k 3k 3k 3k 3k 3k %k %k %k %k %k %k %k %k %k >k >k >k %k %k 3k 3k % % %k *k *k */

case 70:
/* the second received value indicates the servo number
from abs('a')=97, servol, on top, uses digital pin 10
to abs('b')=98, servo2, bottom, uses digital pin9 */
if (val>96 && val<99) {
srv=val-96; /* calculate servo number */
if (srv==1) agv=servol.read(); /* read value */
if (srv==2) agv=servo2.read();
Serial.printin(agv); /* send value via serial */

}
s=-1; /* we are done with servo read so go to -1 next */
break; /* s=70 taken care of */

/* =80 or 81 means SERVO WRITE **#kkkkkkkk ki /

28

case 80:
/* the second received value indicates the servo number
from abs('a')=97, servol, on top, uses digital pin 10
to abs('b')=98, servo2, bottom, uses digital pin9 */
if (val>96 && val<99) {
srv=val-96; /* calculate servo number */
s=81; /* next we will need to get value from serial */

}

else {
s=-1; /* if value is not a servo then returnto -1 */
}
break; /* s=80 taken care of */
case 81:
/* the third received value indicates the servo angle */
if (srv==1) servol.write(val); /* write value */

if (srv==2) servo2.write(val);
s=-1; /* we are done with servo write so go to -1 next*/
break; /* s=81 taken care of */

/* s=90 means Query Script Type (1 basic, 2 motor) */
case 90:
if (val==57) {
/* if string sent is 99 send script type via serial */
Serial.printin(2);

}
s=-1; /* we are done with this so next stateis-1 */
break; /* s=90 taken care of */

/* s=170 or 171 means DC MOTOR SET SPEED ******kkkxxk x/

case 170:

/* the second received value indicates the motor number
from abs('1')=49, motorl, to abs('4')=52, motor4 */

if (val>48 && val<53) {
dcm=val-48; /* calculate motor number */
s=171; /* next we will need to get value from serial */

}

30

else {
s=-1; /* if value is not a motor then returnto -1 */
}
break; /* s=170 taken care of */
case 171:

/* the third received value indicates the motor speed */
if (dcm==1) dcm1.setSpeed(val);

if (dcm==2) dcm2.setSpeed(val);

if (dcm==3) dcm3.setSpeed(val);

if (dcm==4) dcm4.setSpeed(val);

s=-1; /* we are done with servo write so go to -1 next*/
break; /* s=171 taken care of */

/* s=180 or 181 means DC MOTOR RUN/RELEASE ***** ¥k % % /
case 180:
/* the second received value indicates the motor number
from abs('1')=49, motorl, to abs('4')=52, motor4 */
if (val>48 && val<53) {
dcm=val-48; /* calculate motor number */
s=181; /* next we will need to get value from serial */
}
else {
s=-1; /* if value is not a motor then returnto -1 */

}
break; /* s=180 taken care of */

case 181:

/* the third received value indicates forward, backward,
release, with characters 'f', 'b', 'r', respectively,
that have ascii codes 102, 98 and 114 */

if (dem==1) {
if (val==102) dcm1.run(FORWARD);
if (val==98) dcm1.run(BACKWARD);
if (val==114) dcm1.run(RELEASE);

}

if (dem==2) {
if (val==102) dcm2.run(FORWARD);
if (val==98) dcm2.run(BACKWARD);
if (val==114) dcm2.run(RELEASE);

}

if (dem==3) {
if (val==102) dcm3.run(FORWARD);
if (val==98) dcm3.run(BACKWARD);
if (val==114) dcm3.run(RELEASE);

}

if (dcm==4) {
if (val==102) dcm4.run(FORWARD);
if (val==98) dcm4.run(BACKWARD);
if (val==114) dcm4.run(RELEASE);

}
s=-1; /* we are done with motor run so go to -1 next */
break; /* s=181 taken care of */

/* s=190 or 191 means STEPPER MOTOR SET SPEED ******* * /

case 190:

/* the second received value indicates the motor number
from abs('1')=49, motorl, to abs('2')=50, motor4 */

if (val>48 && val<51) {
stm=val-48; /* calculate motor number */
s=191; /* next we will need to get value from serial */

}

else {
s=-1; /* if value is not a stepper then return to -1 */

}
break; /* s=190 taken care of */

case 191:

/* the third received value indicates the speed in rpm */
if (stm==1) stm1.setSpeed(val);

if (stm==2) stm2.setSpeed(val);

s=-1; /* we are done with set speed so go to -1 next */
break; /* s=191 taken care of */

/* s=200 or 201 means STEPPER MOTOR STEP/RELEASE **** */

case 200:
/* the second received value indicates the motor number

31

32

from abs('1')=49, motorl, to abs('2')=50, motor4 */
if (val>48 && val<51) {
stm=val-48; /* calculate motor number */
s=201; /* we still need stuff from serial */
}
else {
s=-1; /* if value is not a motor then returnto -1 */

}
break; /* s=200 taken care of */

case 201:
/* the third received value indicates forward, backward,
release, with characters 'f', 'b’, 'r', respectively,
that have ascii codes 102, 98 and 114 */
switch (val) {

case 102:
//dir=FORWARD;
$s=202;

break;

case 98:
//dir=BACKWARD;
$s=202;

break;

case 114: /* release and return to -1 here */
if (stm==1) stm1.release();

if (stm==2) stm2.release();

s=-1;

break;

default:
s=-1; /* unrecognized character, goto -1 */
break;

}
break; /* s=201 taken care of */

case 202:

/* the third received value indicates the style, single,
double, interleave, microstep, 's', 'd’, 'i', 'm'
that have ascii codes 115,100,105 and 109 */

switch (val) {

case 115:
sty=SINGLE;

s=203;

break;

case 100:

// sty=DOUBLE;
s=203;

break;

case 105:
//sty=INTERLEAVE;
s=203;

break;

case 109:

// sty=MICROSTEP;
s=203;

break;

default:
s=-1; /* unrecognized character, goto -1 */
break;

}
break; /* s=201 taken care of */

case 203:

/* the last received value indicates the number of
steps, */

//if (stm==1) stm1.step(val,dir,sty); /* do the steps */

//if (stm==2) stm2.step(val,dir,sty);

s=-1; /* we are done with step so go to -1 next */

break; /* s=203 taken care of */

/* s=340 or 341 means ANALOG REFERENCE ***#*#xxxkksokxx %/

case 340:
/* the second received value indicates the reference,
which is encoded as is 0,1,2 for DEFAULT, INTERNAL

33

and EXTERNAL, respectively */

switch (val) {

case 48:
analogReference(DEFAULT);
break;
case 49:
analogReference(INTERNAL);
break;
case 50:
analogReference(EXTERNAL);
break;
default: /* unrecognized, no action */
break;
}
s=-1; /* we are done with this so next stateis-1 */
break; /* s=341 taken care of */

[* ¥¥EFxFEX UNRECOGNIZED STATE, go back to s=-1 *¥*****x */
default:
/* we should never get here but if we do it means we
are in an unexpected state so whatever is the second
received value we get out of here and back to s=-1 */
s=-1; /* go back to the initial state, break unneeded */
} /* end switch on state s */

} /* end if serial available */

}/* end loop statement */

