

LUZinda: A SMART LIGHTING SYSTEM FOR THE
HOME

Megan Cramb
Keara Marshall
Sofia Moreno

Project Sponsor:
Dr. Cyril Leung

Engineering Physics 459
Engineering Physics

The University of British Columbia
April 2, 2012

Project Number 1211

ii

Executive Summary

Tasked with designing a system to conserve energy in the home, a smart and
autonomous lighting system known as LUZinda (luz is the Spanish word for light)
was developed. The design for LUZinda incorporates motion sensors and
ambient light sensors that communicate wirelessly via XBee with an Arduino.
This Arduino analyzes the information received from these sensors and signals to
adjust the lighting environment. The Arduino communicates with the artificial
lighting sources in the room through the X10 protocol. This is achieved by using
an X10 two-way interface that communicates with other X10 modules attached to
all of the artificial lighting sources. Commands sent from the Arduino to the X10
modules via the two-way interface are able to dim, brighten, turn on, and turn off
the lights independently.

A simple user interface was also designed. This interface allows the user to tell
LUZinda when they are satisfied with the lighting environment in the space.
LUZinda is then able to “learn” and predict the user’s lighting preference, so it
can adjust the lighting output automatically to ensure that the user is always
satisfied with their environment.

After testing, it was found that the LUZinda system adds between 3 and 3.5-
Watts to the overall lighting load. However, given a room with two or more lights,
this extra load is generally accounted for with the energy savings through
dimming. The more artificial lighting sources there are in a room, the more
energy savings LUZinda provides.

Several recommendations have been made to further the flexibility and utility of
LUZinda: the incorporation of zoning, the ability to distinguish between users and
their varied tasks, creating a portable user interface for ease of use, designing
and implementing an aesthetically appealing housing for sensor circuits and user
interface, and improving the accuracy of motion detection.

iii

TABLE OF CONTENTS

Executive Summary ……………………………………..……………..ii

List of Figures ………………………………………..………….iv

List of Tables ………………………………...………………….v

Introduction …………………………………...……………….1

Discussion ……………………………………………………3

 Methods and Theory ……………………………………………………3

 System Flow Diagram …………………………………………………..10

 Testing and Results …………………………………………………..11

 Discussion of Results …………………………………………………..12

Conclusions …………………………………………………..14

Project Deliverables …………………………………………………..15

 Deliverables

 Financial Summary

 Ongoing Commitments by

Team Members

…………………………………………………..15

…………………………………………………..15

…………………………………………………..16

Recommendations …………………………………………………..17

References …………………………………………………..20

Appendices

 LUZinda Code

 Photosensor Datasheet

 Motion Sensor Datasheet

 System Design Sketches

…………………………………………………..21

………………………………………………..…21

………………………………………………..…32

…………………………………………………..33

…………………………………………………..42

iv

List of Figures

Figure 1: Description of X10 Signal

Communication Using
Existing Electrical Wiring

Figure 2: XBee Device

Figure 3: User Interface Flow

Diagram During Learning
Operation

Figure 4: User Interface Flow

Diagram During Standard
Operation

Figure 5: LUZinda System Flow

Diagram

Figure 6: Power Used VS Dim Level
of a Standard Desk Lamp
Taken Using LUZinda

………………………………………..6

………………………………………..7

………………………………………..8

………………………………………..9

……………………………………….10

……………………………………….11

iii

List of Tables

Table 1: PIR and Ultrasound Detection Comparison ……………………………...4

Table 2: Power Used by LUZinda Components …………………………….12

Table 3: LUZinda Financial Summary …………………………….14

1

Introduction

Energy conservation has been recognized as a major factor contributing to our
impact on the environment. As our global population surged to 7 billion in 2011,
our planet’s natural resources are at the greatest risk of peril ever experienced.
With the increasing number of people the earth needs to sustain, our draw on its
dwindling natural resources is climbing. This is forcing us to use riskier and
riskier technologies, those that require greater damage to the surrounding
environment, to meet our energy demand.

By using less energy to complete tasks that once consumed an excess of
energy, there is potential to reduce the population’s environmental footprint. An
area where there is considerable potential for this to be achieved is in the home.
More than one-third of the energy consumed in the United States is in buildings,
and nearly two-thirds is in the form of electricity [3]. Furthermore, it has recently
been shown that large energy savings, up to 40 percent, can be made with
smarter lighting solutions [3]; whether it is an increase in the use of day lighting,
load shedding or simply smart scheduling, there are numerous options for
increased energy efficiency.

Lights are often left on in a room after the occupant leaves or are turned on
during bright, sunny days when ample light is already available. In addition,
oftentimes lights are turned on because, while there may be a significant amount
of natural light in a room, there is not quite enough light for a certain application,
and a lot of energy may be wasted when a light could be turned on at a very dim
setting rather than at full power. By creating a smart lighting system called
LUZinda (luz is the Spanish word for light) that can sense occupancy, current
ambient light levels (natural and artificial), and perhaps even learn and predict
movement and lighting needs, the potential for energy savings is significant. It
could also create a more efficient lifestyle where one wouldn’t have to worry
about lighting levels.

Lighting efficiency is a well-known and studied problem. There are many
attempted solutions already in existence, however these tend to focus more on
large-scale industrial and commercial settings rather than smaller-scale
residential applications. LUZinda has combined several lighting control methods
and technologies currently used in these industrial/commercial settings—such as
occupancy sensors and ambient light sensors—into one simple module intended
for the home. This module consists of a wireless sensor network that

2

communicates with a central control unit connected to the existing power lines of
a house. LUZinda is a smart, easy-to-install system and it aims to maintain user-
specified lighting levels for occupant satisfaction.

Dr. Cyril Leung of the Electrical and Computer Engineering Department at the
University of British Columbia has sponsored the project. The aim of this project
is to reduce the energy consumption in the home by focusing on lighting
management. This has been attempted by creating a smart lighting network
consisting of several fixtures that can cooperate to achieve the desired lighting
conditions while maintaining lighting quality and efficiency. It will be designed
with the user in mind, ensuring that it is easy to install and use. It will also follow
the rules and guidelines of the Canadian Electrical Code.

The following assumptions have been made in order to achieve a complete
system that has the main functions of the original, ideal system:

1. The analog output signal of the light sensor can be wirelessly transmitted
2. Product design completed
3. Central control unit wirelessly commands interface to the power lines

This report describes the design and technical background of LUZinda, and the
conclusions drawn from testing. The deliverables will be summarized, and
recommendations will be made for future work and improvements to the system.

3

Discussion

METHODS AND THEORY

The main objectives and guiding factors in the design of LUZinda were as
follows:

1. Design a system able to determine and predict a user’s lighting
environment preference

2. Design a system able to adjust to a user’s preferred lighting environment
autonomously

3. Provide an easy-to-install lighting system
4. Provide an easy-to-use lighting system
5. Reduce overall energy consumption of lighting by adjusting lighting output

to suit a user’s needs

Several technologies available on the market were altered and adapted to
achieve these parameters.

For the purposes of the system, it is essential to be able to detect the amount of
ambient light in a space. This allows LUZinda to know the current state of the
lighting environment at all times, and provides the opportunity to determine if this
amount is too much, too little, or just enough. The space may have an
abundance of natural light, reducing the need for artificial lighting. As the
ambient lighting changes throughout the day, so too does the amount of dimming
in artificial lighting. Thus, to achieve the greatest energy efficiency with the
maximum amount of dimming while still providing a sufficient amount of light, a
method of measuring the amount of ambient light in a space was needed.

This was done using photoresistors, although any standard photosythetically
active radiation (PAR) photodiode would suffice. These analog devices are able
to detect visible light, outputting a variable between 0 and 1023 depending on the
amount of light detected.

Another useful piece of information about the environment is whether or not it is
occupied. An occupancy sensor is a device that detects whether or not a room is
in use. This provides the option of turning lights off automatically to save energy
if someone leaves a room. This helps avoid lights being left on in an unoccupied
room, using electricity, and wasting energy.

4

There are currently two types of occupancy sensors available: Ultrasonic sensors
and Infrared sensors.

Passive Infrared (PIR) sensors detect heat and movement; they respond to
sudden changes in background heat energy. This requires that the sensor be
placed very carefully so as to allow a “line of sight”, because they cannot see
around objects. The sensitivity of these sensors also decreases with distance,
which makes tuning them slightly more difficult.

Ultrasonic sensors use sound waves to detect occupants. A quartz crystal
radiates high frequency (25-40kHz) sound waves whose reflected frequency is
measured. Movement within the room is detected from a shift in reflected
frequency. These sensors provide the ability to sense around objects given the
surface of the object is hard enough.

A comparison of these two technologies can be seen in Table 1.

Table 1: PIR and Ultrasound Detection Comparison

PIR Sensors Ultrasonic Sensors

Sensitivity:
Hand movement up to 10 ft.
Upper body movement up to 20 ft.
Full body movement up to 40 ft.

Totally restricted to detecting
occupancy within “line of sight”

More sensitive than ultrasonic in
situations where the occupant is
moving laterally in front of the
sensor rather than towards or
away from the sensor

Not sensitive to small changes in
the space, resulting in fewer false
triggers unless a sudden heat
change occurs in the same
wavelength range as that emitted
by humans

Sensitivity:
Hand movement up to 25 ft.
Upper body movement up to 30 ft.
Full body movement up to 40+ ft. (In
general, can cover a larger area than
PIR sensors)

Less dependent on “line of sight” for
occupancy; may detect occupancy
behind objects/around corners if in
enclosed space with hard surfaces

More sensitive than PIR in situations
where the occupant is moving towards
or away from the sensor rather than
laterally

Ultrasonic sensors are more sensitive to
small changes in the space, such as
breezes from HVAC system or
windows, resulting in more false triggers
unless carefully calibrated

5

More effective for restricted-
coverage areas such as aisles,
outdoor and high-bay applications

Costs a little less to purchase

May result in false triggers in restricted-
coverage areas, outdoor and high-bay
applications due to “leakage” of waves

Costs a little more to purchase

Source: [9]

The characteristics of PIR sensors seem to suit applications such as those
similar to LUZinda. A Panasonic AMN41121 standard detection PIR sensor was
chosen. More information on this product can be found in Appendix C.

In addition, the information recorded by these sensors, the motion sensor and the
ambient light sensor, needs to be analysed. This requires the use of some sort
of microprocessor. For this, an Arduino Dieceimilia was used. This small and
powerful microcontroller was readily available and its open-source platform made
it very easy to use. This acts as the “brain” of LUZinda. It receives as input the
information provided by the sensors, analyses it, and determines which actions
should be taken.

To perform these actions, however, the Arduino needed a method of
communicating with light sources in a space. To create a system that was easy
to install, it made sense to look at wireless solutions or at those that did not
require electrical rewiring of the existing space. This means that a system could
theoretically be installed by the user—without the aide of a certified electrician—
saving time and money.

A method of home automation already available on the market is called X10.
This protocol uses existing household wiring to transmit data between X10
devices. Digital data is encoded in 120kHz signals and transmitted in bursts
during AC zero crossings (see FIG. 1). The data consists of an address (house
code and unit code) and a command code.

Two different types of X10 modules are needed in the LUZinda design: an X10
transmitter and an X10 receiver.

A single X10 transmitter is required to send X10 signals to all light sources in the
room. Known as an X10 two-way interface, the PSC05 transmitter is told what
signals to send by Arduino. An RJ11 cable, commonly used as a telephone jack,
connects the two-way interface to the Arduino. This interface is able to both send

6

and receive X10 commands, and it can transmit/receive to/from multiple light
sources in a room.

All lights being controlled by the interface, or transmitter, must be attached to a
receiver. This receiver, known as an X10 module, decodes the X10 commands
sent by the interface and performs the commands on the light source it is
controlling. Both table and floor lamps are attached to an X10 lamp module,
while the overhead light uses an X10 dimmer switch, replacing the standard light
switch. These modules receive the X10 command sent from the interface and
control the lamp accordingly. Lamps may be dimmed, brightened, turned off, or
turned on. Modules are necessary in decoding X10 signals sent from the
interface.

FIG. 1: Description of X10 Signal Communication Using Existing Electrical Wiring
Source: http://hometoys.com/emagazine.php?url=/htinews/feb99/articles/kingery/kingery13.html

Another aspect of wireless communication that improves the ease of use of
LUZinda is having the sensors transmit wirelessly. This allows for sensors to be
placed discretely and strategically throughout a space to provide accurate and
useful data collection.

7

FIG. 2: XBee Device
Source: http://www.trossenrobotics.com/store/p/5977-XBee-Explorer-Regulated.aspx

A relatively simple device that was readily available, met all of our criteria, and
that interfaced well with the Arduino was the XBee (as seen in FIG. 2), which
uses the ZigBee protocol. They are able to communicate both analog and digital
signals, a necessary function for use with our ambient light sensors and
occupancy sensors, respectively. They use little power (up to 50mW) and can
send and receive data.

Each sensor is attached to an XBee that will read its output. This XBee will
communicate with another XBee attached to the Arduino. Analog signals cannot
be sent directly, but they can be converted to PWM and this can then be sent.
These PWM signals need to be analyzed and converted back into analog signals
by the Arduino.

Due to time restrictions, the analog abilities of XBee were never realized for this
stage of the design. Thus, only motion sensors are able to communicate
wirelessly while the photosensors must be hardwired to the Arduino.

Finally, after this system had been designed, adjustments had to be made to
make LUZinda easy to use. A simple user interface was designed for this
purpose.

In many homes where automatic lighting exists, it is not used effectively because
the method of control is complicated and unclear to anyone not trained in its
operation. For example, many porch lights can be controlled by a motion sensor,
but if this is overridden, it can be difficult to return it to automatic mode again. In
this case, the light may be left on longer than is necessary, wasting power.

While energy conservation and management is important, so is lighting quality.
Lighting preferences can vary widely and there is a correlation between lighting
satisfaction and occupant productivity [3]. This introduces the need for a system

8

that can “learn” to supply the perfect amount of light for individuals, for various
activities. In fact, it has been recently shown that it could be energy efficient on
average, if occupants were allowed to work under their ideal lighting conditions
[3].

For these reasons, LUZinda must be able to determine what the optimal lighting
environment is based on a user’s preference. This means that there must be
some form of user input for LUZinda to decipher and interpret, in order to gain an
understanding of the user’s needs. Thus, LUZinda has two modes of operation:
a “learning” mode and standard mode.

During the first few days after install, LUZinda is under “learning” status. This
means that LUZinda is trying to determine the user’s preferred lighting output.
This is achieved by having the user answer a simple question several times
throughout the day for the entirety of the learning period (about 10 days). The
questions are displayed and answered using an LCD screen attached to the
Arduino. The screen has four buttons as input: Up, Down, Yes, and No. The
learning period interface is designed as follows in FIG. 3:

FIG. 3: User Interface Flow Diagram During Learning Operation

Do you need more
light?

Yes

Increment light level by
one

No

Maintain light
output

Save and store light
level

9

After LUZinda has completed the learning period and has determined the user’s
lighting threshold, standard operation starts. In this setting, the user can either
choose to accept the lighting environment provided automatically by LUZinda,
determined from the sensor inputs and thresholds, or they may adjust the
settings manually. When in automatic mode, inputs from both motion and
ambient light sensors are taken, and lights are turned on and adjusted according
to the input from these sensors. If and when the user decides they need a more
specific lighting environment, whether due to a specialized task or for another
reason, they can adjust the light output using the push buttons on the LCD
screen. Doing so enters manual mode. If there is not enough light in the room,
the user simply has to adjust the brightness using the buttons on the interface
and the network will adjust the lighting output accordingly. They may also
choose to have LUZinda remember these changes. This will adjust the light
threshold to include the settings just changed by the user. It is explained as
follows in FIG. 4:

FIG. 4: User Interface Flow Diagram During Standard Operation

Would you like to change the
current light levels?

Up Down

Would you like LUZinda to
remember these changes?

Yes

Changes saved,
lighDng base
adjusted

No

Changes not
saved

10

In order for LUZinda to determine the threshold light level, the analog signal from
the light sensor is saved when the user has answered “No” during the learning
phase. This value is saved to the Arduino’s EEPROM memory. EEPROM
consists of 1024 bytes, and each byte stores an integer value from zero to 255.
LUZinda initializes all of the values to zero at the beginning of the learning phase.
Throughout the entirety of the learning, when the user is satisfied with a certain
light level, the EEPROM byte value corresponding to the ambient light level (0-
1023) is incremented by one. At the end of the learning phase the mean value of
the user’s preferred light levels is calculated, and a range of ±15 is set around the
mean value (to allow for slight variances in the analog information from the
photosensor). This mean value is set as LUZinda’s threshold light level.

Finally, in the standard operating setting, the user has the ability to manually
override the automatic controls by increasing or decreasing the light levels. When
the override occurs, the user is asked if they would like LUZinda to remember the
changes. If the answer is “Yes”, the EEPROM byte value corresponding to the
ambient light level (0-1023) is incremented by one and a new mean value is
calculated. Again, this new mean value is set as LUZinda’s new threshold light
level.

SYSTEM FLOW DIAGRAM

FIG. 5: LUZinda System Flow Diagram

Interface Arduino XBee XBee

Ambient
Light Sensor

Occupancy
Sensor

 Wall

Wired
 Wireless

X10
Module

Lamp

11

TESTING AND RESULTS

LUZinda was installed in a 3-meter x 3-meter test room to imitate real-life
conditions. This room contains a desk lamp, an overhead ceiling lamp, and a 1-
meter x 2-meter window. This provided a variety of light sources within the room.

The system was able to respond to different stimuli appropriately. It was able to
vary the output of each light source independently. It provided a smooth
transition between dimming and brightening, and was able to maintain a constant
light output as per the user’s preference.

Tasked with saving energy in the home, this was the main focus of testing. Data
was needed to verify that the system was not using more energy than it was
saving.

Dimming lights, a feature of our system, reduces the power used. A lamp with
X10 lamp module was plugged into a power meter; X10 commands were sent to
this light to dim and brighten it. The energy versus dim setting was recorded, and
the process was repeated several times. The data can be seen in FIG. 6 below.

FIG. 6: Power Used VS Dim Level of a Standard Desk Lamp Taken Using LUZinda

The power used by different components of the system was also recorded using
the power meter. The values taken are as follows in Table 2:

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35

Po
w
er
 (W

)

Dim Level

Power Used (W) VS Dim Level

Brigthening

Dimming

12

Table 2: Power Used by LUZinda Components

PSC05 Two-Way X10 Interface
Standby 1.9 W
Sending Commands 1.9 W

Table Lamp
6.85 W

Arduino with LCD Screen
Standby 1.15 W
Sending Commands 1.15 W

Interface + Lamp Module + Arduino
3.35 W

DISCUSSION OF RESULTS

It is clear from FIG. 6 that the power used by a lamp decreased as it dims. This
is true for any incandescent light. This means that the more LUZinda is able to
dim a light, the greater the energy savings will be.

It was also imperative to determine the amount of power LUZinda needs to
operate. If this amount is greater than the savings the system generates, then it
is clear that it is of no benefit to install.

Any installation of LUZinda, whether with one sensor or ten, only needs a single
interface. This interface requires the greatest draw on power at 1.9-Watts
constant (it doesn’t vary with sending or receiving a command, or with standby
operation). Each additional module or switch, needed for each separate light
fixture in the space, only draws 50-miliWatts (or 0.05-Watts).

With a single desk lamp (such as the one used during testing), it requires a dim
setting of nearly 15 out of 32 to achieve a net-energy use of zero —that is, the
dimmed lamp’s energy use with the system’s energy use is equal to the the
energy use of just the lamp at full power. This translates to a very dim and rather
impractical light output. However, if two lights are installed in the system, a net-
energy use of zero is achieved with a much more practical and realistic dim
setting.

Therefore, since the main energy draw of the system is due to a single interface,
with low-power modules and switches affording energy savings due to dimming,
a system with multiple light sources provides the most energy savings. The more

13

lights that are able to be dimmed, the more energy is saved to offset the high
power usage of the interface. Thus, a room with many light sources provides the
greatest energy savings.

14

Conclusions

In creating a system to increase energy efficiency in the home, a smart lighting
system named LUZinda was designed. LUZinda combines a wireless sensor
network and the X10 protocol to provide an easy-to-install system, requiring little
to no costly electrical rewiring. By creating a simple user interface, LUZinda
focuses on user satisfaction in a lighting environment to provide consistent and
efficient conditions.

While installing the LUZinda system adds to the overall electrical energy draw in
a space, the total savings in decreased lighting output negates this added draw
of power. In spaces where there are two or more lights, the system is able to
reduce the net amount of power required to light a room to a satisfactory (or
preferred) level for the user.

LUZinda, when used in a space with more than two artificial lighting sources, has
achieved the guidelines of increasing the energy efficiency it the home. It is easy
to use, easy to install, able to predict a user’s preferred lighting environment, and
able to autonomously adjust to these preferred settings.

15

Project Deliverables

DELIVERABLES

As discussed in the proposal for this system, the deliverables for this project are
a working prototype with documentation provided in this report. The final
prototype has remained true to the original plan with the exception of the analog
photosensors not being wireless. The final design is as discussed previously in
this report.

FINANCIAL SUMMARY

As can be seen from Table 3 below, this project has remained under the initial
budget of $200.

Table 3: LUZinda Financial Summary
Description Quantity Vendors Cost/ea Purchased

by:
To be
funded by:

1 X10 Two-way
interface

1 Ebay ~$5 Jon Nakane Project
Lab

2 RJ11 – phone
jack

1 n/a Project Lab Project
Lab

3 X10 Lamp
Module

2 AARTech
Canada

$19.99 Jon Nakane Project
Lab

4 X10 Dimmer
Switch

1 AARTech
Canada

$24.99 Jon Nakane Project
Lab

5 MP Motion
Sensor

1 Digikey $15.44 Jon Nakane Project
Lab

6 Arduino
Diecimila

1 $10 Project Lab Project
Lab

7 Arduino LCD
and KeyPad
Shield

1 $12 Project Lab Project
Lab

8 Belkin Smart
Meter

1 Craig R. $0 n/a n/a

9 Photocell 2 Digikey $0.80 Project Lab Project
Lab

10 Comparator
LM311

2 Digikey $0.56 Project Lab Project
Lab

11 9V batteries 2 Digikey $2.38 Project Lab Project
Lab

12 Miscellaneous
(i.e.
breadboards,

n/a n/a ~$10 Project Lab Project
Lab

16

circuit
components,
wire, etc.)

Total Cost ~$101.16 Project Lab Project
Lab

ONGOING COMMITMENTS BY TEAM MEMBERS

While there are a few small design features that have not been completed
(mainly the wireless communication ability of the photosensors), a functioning
system has been implemented in the test-room. The team will ensure that this
prototype is functioning as expected, testing each component of the design,
before submission, as follows:

1. Automatic control of lights through receiving and analyzing signals from
one motion sensor and one ambient light sensor

2. User interface goes through learning phase and correctly stores user’s
preferred light levels.

3. User interface smoothly enters standard operating phase, and correctly
allows manual override, as well as, any changes made to the threshold
light level.

Once this has been accomplished, the project is deemed successful and all
future design alterations may be attempted by whoever pleases. The team will
remain available for contact if questions or further clarification are desired.

17

Recommendations

For this system to reach its full potential, a list of recommended improvements
and alterations has been compiled. They are detailed below.

1. Wireless Photosensors using XBee

According to several sources online, XBee’s have the ability to simply send
analog signals via PWM. After many hours of debugging, it was decided that
this feature was not going to be incorporated into this design phase. Using
the XBee’s to send analog data from the photosensors wirelessly proved to
be too time consuming for this stage of the design, but its incorporation would
provide much more flexibility as to the placement of the light sensors. This
would also enable zoning (discussed below).

2. Zoning

The state and usage of a lighting environment change with the available
daylight and the tasks being performed in the space. By dividing the floor
plan of a space into several zones, each having separate lighting controls,
one can adjust the lighting in each zone to accommodate how it’s being used
[8]. Individual dimming of each light source is necessary to deliver the
appropriate light outputs for energy savings and user satisfaction [3]. A
coordinated illumination approach exploiting zoning can be used to optimize
the effects of meeting an occupants lighting preference while reducing the net
energy usage [6].

Due to the limited amount of time in designing this system, only a single
motion sensor and a single photosensor were implemented. To fully take
advantage of the capabilities of X10 control, of being able to control separate
light sources differently using a single interface, it is recommended to install
multiple sensors at different locations in the space. This provides the
opportunity for zoning—having different zones within a space that have
different lighting environments for different requirements or tasks. For
instance, if a certain portion of a room is darker than others, this zone
requires a greater lighting output. This situation requires that this zone have a
separate photosensor to determine the output of light needed to attain a
satisfactory level.

18

By increasing the number of sensors in a space, one can incorporate zoning
to achieve greater flexibility and function with LUZinda.

3. Task-Specific Lighting

Providing the possibility of predictive lighting, in all senses, would create a
truly smart lighting system. By incorporating a more detailed and planned
approach to motion sensors, it is conceivable that LUZinda could one day
determine a lighting environment based not only on a user’s lighting
preference, but also on their preference according to the task being
performed. If the user were writing or reading, brighter task lighting would
normally be preferred over softer, ambient light. Having the ability to discern
between different events, either through motion detected or by some other
means, would provide a wealth of opportunity for LUZinda.

4. Energy Savings

Since installing LUZinda in the home adds roughly 3-Watts of power usage
regardless of the number of lights being controlled, using the system with
more lights will only increase energy savings. Using this system with a single
light may not provide savings, but using it with two or more lights will
demonstrate energy savings. For this reason, it is recommended that
LUZinda be installed in larger, open spaces using several different artificial
lighting sources.

5. Distinguishing Between Users

Different users often have different lighting preferences. The current design
of the system takes the average of these stored preferences to determine the
lighting environment. If LUZinda were able to distinguish one user from
another, to discern a particular user’s preference from another’s, then the
satisfaction with the produced lighting environment should only be increased.
Distinguishing the presence of different users may be achieved through RFID
tags, cameras, or by other means.

6. Accuracy of Motion Detection

It seems common for complaints about the accuracy of motion detection to
arise. Implementing a method of achieving motion detection while reducing
the number of false triggers would ease these worries. It would also further

19

increase electricity savings by decreasing the amount of time lights are
wrongly turned on or left on.

7. Product Design

While a functioning system has been built and a conceptual design for the
system housing has been provided, building this housing has not been
attempted. By doing this, the system would appear more complete and its
aesthetics would be less obtrusive for a user to install. This would increase
its appeal to the masses.

8. Portable Interface

It is well understood that a user may not enjoy constantly entering their
lighting preference during the system’s “learning” period, especially if this
involves crawling to a narrow area near the wall receptacle. For this reason,
having a wireless, portable user interface would be ideal. Somewhat like a
TV remote, this interface allows the user to control LUZinda from afar if
needed. It may also be able to be mounted on a wall for storage and
increased accessibility.
Another option is to have a smart phone app that performs as this interface.
With the increasing popularity of this technology, this idea could be attractive
to users today.

20

References

[1] M. Miki et al., “Proposal for an intelligent lighting system, and verification of
control method effectiveness,” in Conference on Cybernetics and Intelligent
Systems, Singapore, 2004, pp. 520-525.

[2] C.-H. Tsai et al., “PIR-sensor-based lighting device with ultra-low standby
power consumption,” in Instrumentation and Measurement Technology
Conference, Taipei, 2011, pp. 1-6.

[3] Y.-J. Wen and A.M. Agogino, “Wireless networked lighting systems for
optimizing energy savings and user satisfaction,” in Wireless hive Networks
Conference, Berkeley, CA, 2008, pp. 1-7.

[4] A. Fernandez-Montes et al., “A study on saving energy in artificial lighting by
making smart use of wireless sensor networks and actuators,” Network, vol. 23,
no. 6, pp. 16-20, Dec 2009.

[5] A. Lay-Ekuakille et al., “Sensor conditioning unit design for public lighting
control,” Sensors, 2008, pp. 768-771.

[6] Advantages of Dimmers. (n.d). Retrieved November 2, 2011, from
http://www.sprags.com/advantages_of_dimmers.html

[7] X10 Theory. (n.d.). Retrieved November 11, 2011, from
http://www.smarthomeusa.com/info/x10theory/x10theory/#theory

[8] V. Singhvi et al., “Intelligent light control using sensor networks,” in
Proceedings of the 3rd International Conference on Embedded Network Sensor
Systems, San Diego, CA. ACM, 2005.

[9] Introduction to Occupancy Sensors. (n.d.). Retrieved November 12, 2011,
from http://www.lightingdesignlab.com/articles/occ_sensor/intro_occsens.htm

[10] How Dimmer Switches Work. (n.d.). Retrieved November 12, 2011, from
http://home.howstuffworks.com/dimmer-switch2.htm

21

Appendix A: LUZinda Code

/*
This sketch incorporates UserInterface_Learning.pde and
UserInterface_Standard.pde into lightsensor.pde
Combined by Megan Cramb on 25 Mar 2012 using code from Keara
Marshall and Sofia Moreno
Modified by Megan Cramb on 28 Mar 2012
-added UserInterface_Standard components
Modified by Megan Cramb on 29 Mar 2012
-removed software reset (commented out)
-added unit code before every command so program doesn't
forget which light it's writing to
--> should we remove the unit code from setup()??
-added proportional gain to lightsensing ("calc_p()")
-added saving data to EEPROM ("save_data()")
-added calculate mean ("calc_base()")
--> still need to analyze data to find range
Modified by Sofia Moreno on 01 Apr 2012
-changed sequence of some events and functions
-removed test_phase() function
-added transition from learning to standard phase
-added occupancy LOW timer (i.e. when to turn off lights)
-added variables that will stand in as new ranges--depending
on current phase

*/

//#include <psc05.h>
//#include "Arduino.h"
#include <x10.h>
#include <x10constants.h>
#include <LiquidCrystal.h>
#include <EEPROM.h>
#include <WProgram.h>

//constants/variables
//x10
#define zcPin 2 //yellow
#define dataPin 3 //blk

int lightSense = 1; //analog pin1 on arduino
int occupancySense = 11; //digital pin11 on arduino
int light = 0; //initialize analog value read
from lightsensor
int occupancy = 0; //initialize LOW occupancy
int base;

22

int p = 2; //# times to write dim/bright
command to light -- initial, later calculated proportional
to diff b/w current & base light
int range;

x10 myHouse = x10(zcPin, dataPin);

unsigned long time;
unsigned long startTime;

//lcd screen
int lcd_key = 0;
int lcd_but = 0;
int lcd_but2 = 0;
int adc_key_in = 0;
boolean YES = true;
boolean NO = true;
boolean UP = true;
boolean DOWN = true;
#define btnNO 0
#define btnRIGHT 0
#define btnUP 1
#define btnDOWN 2
#define btnYES 3
#define btnLEFT 3
#define btnSELECT 4
#define btnNONE 5
boolean learning = true;
boolean standard = false;
boolean testing = false;

LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

//function declarations
int read_LCD_buttons();
void learning_phase();
void standard_phase();
int calc_p();
void save_data();
int calc_base();

void setup()
{
 Serial.begin(9600);
 pinMode(occupancySense, INPUT);

 time = 0.0;
 startTime = 0.0;

23

 base = 150; //can range from 0-1023
 range = 30; //initial range around low base level

 myHouse.write(HOUSE_A, UNIT_1, 3);
 myHouse.write(HOUSE_A, UNIT_3, 3);

////EEPROM initialization --
////can only write to EEPROM a limited number of times
(100,000), commented out unless testing the data saving
 /*
 // write a 0 to all 512 bytes of the EEPROM
 for (int i = 0; i < 1024; i++)
 EEPROM.write(i, 0);
 */
}

void loop()
{
 occupancy = digitalRead(occupancySense);
 delay(100);

 while (occupancy == LOW)
 {
 time = millis();

 if (time-startTime >= 180000) //if more than 3
minutes has passed while occupancy=LOW
 //turn all lights off
 myHouse.write(HOUSE_A, ALL_UNITS_OFF, 3);

 occupancy = digitalRead(occupancySense);
 }

 while (occupancy == HIGH)
 {
 light = analogRead(lightSense);

 startTime = millis();
 Serial.println(startTime);
 Serial.println(light);
 delay(100);

 if (startTime >= 864000000) // when 10 days have
passed, enter standard phase
 standard = true;

 while (light > base + range) //decrease light

24

level
 {
 p = calc_p();
 //send DIM command
 myHouse.write(HOUSE_A, UNIT_1, 3);
 myHouse.write(HOUSE_A, DIM, p);
 delay(200);
 myHouse.write(HOUSE_A, UNIT_3, 3);
 myHouse.write(HOUSE_A, DIM, p);
 delay(600);
 light = analogRead(lightSense);
 Serial.println(light);
 Serial.println(p);
 }
 while (light < base - range) //increase light level
 {
 p = calc_p();
 //send BRIGHT command
 myHouse.write(HOUSE_A, UNIT_1, 3);
 myHouse.write(HOUSE_A, BRIGHT, p);
 delay(200);
 myHouse.write(HOUSE_A, UNIT_3, 3);
 myHouse.write(HOUSE_A, BRIGHT, p);
 delay(600);
 light = analogRead(lightSense);
 Serial.println(light);
 Serial.println(p);
 }

 if (learning == true)
 {
 range = 300; //so as not to reverse any
changes user made
 learning_phase();
 }

 else if(standard == true)
 {
 if (learning == true) //transition from learning to
standard -- only once! when both are true
 {
 base = calc_base();
 range = 15; //narrow the range so during
std op. light levels are as close to user's preference
 learning = false;
 }
 standard_phase();
 }

25

 //check for occupancy
 occupancy = digitalRead(occupancySense);
 }
}

//
//
///
FUNCTIONS
//
//
//

//
//
// Read LCD Buttons
// returns which button was pressed
//
//

int read_LCD_buttons()
{
 adc_key_in = analogRead(0);
 if (adc_key_in > 1000) return btnNONE; // We make this the
1st option for speed reasons since it will be the most
likely result
 if (adc_key_in < 50) return btnRIGHT;
 if (adc_key_in < 195) return btnUP;
 if (adc_key_in < 380) return btnDOWN;
 if (adc_key_in < 555) return btnLEFT;
 if (adc_key_in < 790) return btnSELECT;
 return btnNONE; //when no button pressed
}

//
//
// Learning Phase
// asks the user if they need more light and saves data when
// user is satisfied
//
//

void learning_phase()
{
 lcd.setCursor(0,0);

26

 lcd.print("Do you need more");
 lcd.setCursor(0,1);
 lcd.print("light?");

 lcd.setCursor(10,1);
 lcd_key = read_LCD_buttons();

 if(lcd_key == btnLEFT) //User needs more light
 {
 lcd.setCursor(10,1);
 lcd.print("YES");
 //increase light level
 //send BRIGHT command
 myHouse.write(HOUSE_A, UNIT_1, 2);
 myHouse.write(HOUSE_A, BRIGHT, 2);
 delay(200);
 myHouse.write(HOUSE_A, UNIT_3, 2);
 myHouse.write(HOUSE_A, BRIGHT, 2);
 delay(500);
 lcd.clear(); ///// clears screen until it
is ready to receive an answer again
 }

 else if(lcd_key == btnRIGHT) //Current light
level is adequate
 {
 lcd.setCursor(10,1);
 lcd.print("NO");
//add in code here to
save data (EEPROM)//
 //save_data();

 delay(500);
 lcd.clear();
 }

 lcd.setCursor(10,1);
 lcd.print(" ");
}

//
//
// Standard Phase
// Set after learning phase, regular operation, manual
// override
//
//

27

void standard_phase()
{
 lcd_key = read_LCD_buttons();

 YES = true;
 NO = true;
 UP = true;
 DOWN = true;

 lcd.setCursor(0,0);
 lcd.print("Would you like to change the current light
levels?");

 switch(lcd_key)
 {
 case btnYES:
 {
 while(YES == true)
 {
 lcd.clear();
 lcd.print("Use UP or DOWN,"); //to adjust light
levels
 lcd.setCursor(0,1);
 lcd.print("then press YES");

 delay(300);

 lcd_but = read_LCD_buttons();

 switch(lcd_but)
 {
 case btnSELECT:
 {
 YES = false;
 break;
 }
 case btnYES:
 {
 while(UP == true)
 {
 lcd.clear();
 lcd.print("Would you like Luzinda to remember
these changes?");

 delay(500);

 lcd_but2 = read_LCD_buttons();

28

 switch(lcd_but2)
 {
 case btnYES:
 {
 while(YES == true)
 {
 lcd.clear();
 lcd.setCursor(6,0);
 lcd.print("YES");
///
add code to save data (EEPROM)
///
 //save_data();
 //base = calc_base();
 lcd.setCursor(0,1);
 lcd.print("Changes saved");
 delay(1000);
 YES = false;
 NO = false;
 UP = false;
 lcd.clear();
 break;
 }
 break;
 }
 case btnNO:
 {
 while(NO == true)
 {
 lcd.clear();
 lcd.setCursor(6,0);
 lcd.print("NO");
 lcd.setCursor(0,1);
 lcd.print("Changes not saved");
 delay(1000);
 UP = false;
 NO = false;
 YES = false;
 lcd.clear();
 break;
 }
 break;
 }
 case btnSELECT:
 {
 lcd.clear();
 lcd.print("Changes not saved");
 delay(1500);

29

 UP = false;
 YES = false;
 NO = false;
 lcd.clear();
 break;
 }
 }
 }
 }
 case btnUP:
 {
 //increase light output
 myHouse.write(HOUSE_A, UNIT_1, 3);
 myHouse.write(HOUSE_A, BRIGHT, 2);
 delay(200);
 myHouse.write(HOUSE_A, UNIT_3, 3);
 myHouse.write(HOUSE_A, BRIGHT, 2);
 }
 case btnDOWN:
 {
 //decrease light output
 myHouse.write(HOUSE_A, UNIT_1, 3);
 myHouse.write(HOUSE_A, DIM, 2);
 delay(200);
 myHouse.write(HOUSE_A, UNIT_3, 3);
 myHouse.write(HOUSE_A, DIM, 2);
 }
 }
 }
 break;
 }
 case btnNO:
 {
 lcd.clear();
 lcd.setCursor(6,0);
 lcd.print("NO");
 delay(1000);
 break;
 }
 default:
 break;
 }
}

//
//
// Calculating P
// returns a value=p that is proportional to the difference

30

// between ambient light levels and the base light level
//
//

int calc_p()
{
 int diff = base - light;
 int new_diff = abs(diff);
 if (new_diff > 200)
 {
 p = 4;
 }
 else if (200 > new_diff > 100)
 {
 p = 3;
 }
 else if (new_diff < 100)
 {
 p = 2;
 }
 return p;
}

//
//
// Save Data
// saves the number of times the user is satisfied with a
// current light level to the Arduino's EEPROM memory
//
//

/*
void save_data()
{
 int address = light;
 byte value = EEPROM.read(address); //current number of
times this light setting was saved
 if (value == 254)
 {
 Serial.print("max value reached"); //so that
value stored will not go above 255 or reset to 0
 }
 else if (value < 254)
 {
 value = value + 1; //increment the
number of times this light setting was saved
 EEPROM.write(address, value); //store this value in
the corresponding light level address in memory

31

 }

 Serial.print(address);
 Serial.print("\t");
 Serial.print(value, DEC);
 Serial.println();
}
*/

//
//
// Calculate the Base
// returns the mean value of the light levels the user has
// been satisfied with over the learning period
//
//

/*
int calc_base()
{
 int value = 0; //number of times corresponding light
value was saved
 int sum = 0;
 int n = 0; //number of times data was stored
 int mean = 0;
 //read current values from memory, add up all light
sensing values,
 //find mean
 for(int i=0; i<1023; i++)
 {
 value = EEPROM.read(i);
 sum = sum + value*i;
 n = n + value;
 }
 mean = sum / n;
 return mean;
}
*/

32

Appendix B: Photosensor Datasheet

33

Appendix C: Motion Sensor Datasheet

34

35

36

37

38

39

40

41

42

Appendix D: System Design Sketches

43

Features:

• 4 push buttons: Up, Down, Yes, No
• Large, backlit LCD screen
• Portability
• Wireless communication with LUZinda base station
• Finger grips on sides

44

Includes:

• X10 Two-Way Interface
• Arduino

Features:

• Simply plug-and-go
• Status LED on face

45

Includes:

• Dimmable switch
• Status LED
• Built-in motion sensor
• Touch/tap design

46

Includes:

• 9-Volt battery
• XBee
• Photosensor

Features:

• Small design
• Wall mountable (with stick pad)
• Sensor window for protection (made of plastic)
• Latch to easily replace battery

