
Co

RE

TH

omputer

A THESI
QUIREME

HE UNIVE

r Modeli
Con

S SUBMIT
ENTS FOR

Irving K.

RSITY OF

ing of M
ntent Se

Curt

TTED IN P
R THE DE

SC

. Barber Sc

F BRITISH
Ma

©Curtis

Molecula
ensitive

by

tis Stodgel

PARTIAL

EGREE OF
CIENCE

in

chool of Ar

H COLUM
arch 2007
Stodgell,

ar Genet
Analysi

ll

 FULLFIL
F HONOU

rts and Sci

MBIA OKA

2007

tic Even
is

LMENT OF
RS IN CO

iences

ANAGAN

nts using

F THE
OMPUTER

CAMPUS

g

R

1

Abstract:
The problem of motif finding plays an important role in understanding the development, function

and evolution of organisms. The Planted (l, d)-Motif Problem first introduced by Pevzner and

Sze [13] is a variant model of motif finding that has been widely studied. Nevertheless, despite

the many different algorithms constructed to solve this problem, it is far from being solved

entirely [5]. We analyze a number of algorithms including: the Basic Voting Algorithm, the

Winnower and the Closest String. One thing that has become ubiquitous among these algorithms

is the tradeoff between efficiency and accuracy. We formulate the motif-finding problem as a

constraint satisfaction problem and introduce a special form of constraint consistency. By using a

fixed-parameter algorithm for the closest string problem [4], we develop a propagation algorithm

that enforces the new constraint consistency with the same worst-case time complexity as that of

the standard path consistency algorithm. Experiments on randomly generated sequences indicate

that our approach is effective and efficient.

2

Table of Contents
Abstract ...1

Table of Contents ...2

1. Introduction ...3

2. Planted Motif Problem ...5

1. Definitions and Notation ..5
2. Winnowing Approach: Locating Signals via Winnowing ...6

 3. A Fixed Parameter Algorithm for the Closest String ...9
4. Basic Voting Algorithm ...11

3. Overview of Content Sensitive Consistency ...13

1. Constructing the Constraint Graph ..14
2. Arc Consistency ...16

 1. Arc Consistency Implementation (AC6) ...17
3. Path Consistency ..18
4. k-consistency..19
5. Content Sensitive Analysis (CSC) ...20

1. CSC Implementation (PC6+CS) ..20

4. Experimentation and Results ..22
1. Generation of Samples ...22
2. Results ..22

5. Discussion and Conclusion ..26

Appendix A ...27

References ...30

3

1 Introduction:
Transcription factors are proteins that bind to DNA in order to regulate the expression of genes

through the activation or inhibition of transcription mechanisms. Locating these sites is an

integral part of understanding the regulatory process. Computational tools are an invaluable

method used to locate these particular sites and this general problem has been termed motif

finding.

 Essentially the motif finding problem is the problem of finding common patterns among

a set of sequences. A simple model for the problem is as follows: Given a sample of random

sequences can we find a common unknown pattern (motif) that is hidden at random locations in

the sequences? If the motif was not subject to mutations it would be relatively easy to locate

using a basic brute force algorithm; however, in biology the sequences being analyzed are

subject to mutations and therefore the motif cannot be assumed to be exact. As such, it makes

sense to construct a model that will allow the patterns we are searching for to have an arbitrary

number of mutations [13].

Buher and Tompa [8, 7] found limitations for this particular problem. They found that

when the number of sequences, the length of sequences and the length of the pattern are fixed, if

the number of mutations in the pattern is larger than a particular threshold then it is highly

improbable that any algorithm would be able to find such a pattern due to an abundance of

random patterns [8, 7]. However, there have been many algorithms suggested for instances of

this problem that do not exceed this threshold [8].

In this thesis we analyze a number of different algorithms that attempt to solve the

problem in several different ways. These include A voting algorithm by Leung and Chin [8] that

locates common motifs by enumerating all neighbors of each l length substrings in a given set of

sequences, as well as a combinatorial approach by Pevzner and Sze [13] that essentially reduces

the motif finding problem to locating cliques in multi-partite graphs. Closely related to the

planted-motif problem are the closest string problem and the closest substring problem. Both of

these problems are NP-hard, but the closest string problem can be solved in linear time assuming

that the number of mutations is a fixed constant [9].

In the Winnower Pevzner and Sze designed an algorithm that prunes spurious

similarities, which enables us to easily locate the signal we are searching for. They did so with

an algorithm that has a time complexity of O(Nk+1) and found that the algorithm was accurate for

4

k=3. Our contribution includes a variation of the Winnower combined with the closest string.

We have designed an algorithm that essentially runs as the Winnower for k=2 along with the

closest string algorithm to construct an algorithm with a time complexity of O(N3 + dd) where d

is the number of mutations and constant.

 This thesis is organized as follows: In chapter 2, we will discuss numerous algorithms

that approach The Planted (l, d)-Motif Problem in various ways, each algorithm achieving a

different level of both accuracy and efficiency. In chapter 3, we present our approach to the

problem, including the CSP formulation, the propagation algorithm for the stronger notion of

path consistency and its implementation. In chapter 4 we present our results and allegorize the

pruning power and efficiency of our approach. In chapter 5, we will conclude our results and

analyses, as well as propose future challenges.

2 Plan
In this ch

variety o

2.1 Defi
In order t

definition

define no

T

partially

Definitio

mathema

strings di

they diffe

In

a string s

Definitio

problem

makes th

specific n

nted Moti
hapter we int

f existing alg

finitions an
to understan

n based on a

otation we w

The methods

by comparin

on 1 (Hamm

atics termed

iffer. For ex

er at indices

n this paper t

s and s’.

on 2 (Plante

of motif find

he problem d

number (refe

if Problem
troduce form

gorithms des

nd Notatio
nd how the m

a variant mod

will use throu

we will be u

ng the Hamm

ming Distanc

information

xample given

1 & 3; there

the notation

ed (l, d)-Mot

ding deals w

difficult is th

erred to as m

m
mally the Pla

signed to sol

on
motif finding

del of the pro

ughout this th

using to solv

ming distanc

ce): Hammi

theory. It is

n two strings

efore, the ha

DH(s, s’) wi

tif Problem)

with locating

e fact that th

mutations). F

anted (l, d)-M

lve this prob

g problem can

oblem prese

hesis.

ve this partic

ce between tw

ing distance

s defined sim

s “ATAGTC

mming dista

ill be used to

): A motif i

common pa

his pattern is

Formally we

Motif Problem

blem.

n be solved

ented by Pev

cular problem

wo strings.

is a simple c

mply as the n

CA” and “TT

ance between

o denote the

s a single or

atterns amon

 not exact an

e can describ

m [13] as we

we will give

zner and Sze

m will usuall

concept in an

number of in

TTGTCA” w

n these two s

hamming di

r repeated pa

ng a set of se

nd is allowed

be the proble

ell as discuss

e a formal

e [13], as we

ly be execute

n area of

ndices that tw

we can see th

strings is 2

istance betw

attern. The

quences. W

d to differ by

m as follow

5

s a

ell as

ed

wo

hat

ween

What

y a

s:

6

Assume there exists a motif m of length l; given t number sequences each of length n, the

problem is to find a planted motif m’ of length l in each of the t sequences such that m’ differs in

at most d positions from m.

 A more general problem is the closest substring problem which has been shown to be

NP-hard [9]. The difference between the planted motif problem and the closest string problem is

that for the planted motif problem, it is guaranteed that there exists at least one common

substring that occurs in each of the sequences. Whereas for the closest string problem, it is not

guaranteed that there will be such a common substring among each of the sequences. The

parameters l and d in the Planted (l, d)-Motif Problem have a significant impact on the practical

difficulty of the problem.

Some particularly difficult Planted (l, d)-Motif problem instances proven to be

probabilistically challenging are (9,2), (11, 3) and (15, 4) [1]. These problems are considered

challenging because given any two instances of a mutated (l, d)-signal there is a high probability

that non-signals (spurious similarities) will be randomly generated such that they very closely

resemble the proper signal. Many techniques have been designed to solve these challenging

problems which will be looked at below.

2.2 Winnowing Approach: Locating Signals via Winnowing.
Pavel A. Pevzner and Sing-Hoi Sze [4] take a combinatorial approach to the motif finding

problem by reducing it to a clique finding problem. Pevzner et al. recognize that in each

sequence there are spurious signals that occur at random that tend to hide the real signal. Most

algorithms tend to focus directly on the process of locating the real signal; however, the

winnower takes an opposite approach. It focuses on the spurious signals (rather than the signal

itself) and removes these spurious similarities incrementally until the signal we are looking for is

no longer difficult to find. This elimination process is, however, non-trivial and time consuming.

 It is important to note that the Winnower algorithm only considers signals with Hamming

distance as criterion for an edge and not insertions or deletions (signals will all be the same

length). This is done for simplicity; however the algorithm could easily be modified to account

for these constraints [8].

T

in a mult

paramete

G=(V, E)

V

the set S

represent

vertices.

T

to substri

A

by an edg

if F conta

also be th

sequence

T

been rece

generated

problem

T

remove e

the winno

that a ver

We defin

The Winnowe

ti-partite grap

er l (length o

) in the follo

Vertices will

= {s1, s2, …

t the substrin

There is an ed

ings from se

A clique in a

ge. Given an

ains a clique

he case that t

es (partites) f

The clique fin

ent interest i

d graph [6].

in that the u

The Winnowe

edges that ar

ower remov

rtex u is a ne

ne a clique to

er is set up t

ph. Given a

of the signal)

wing way:

correspond

,st} and for

ng sij of leng

dge between

eparate seque

graph G = (

ny graph F =

e of at least s

this clique c

forming an e

nding proble

n studying th

 The planted

underlying gr

er algorithm

re proven to

es edges Pev

eighbor of a

o be extenda

to reduce the

a set of t sequ

) and a numb

to substrings

each index j

gth l from ind

n vi and vj if a

ences.

V,E) is a sub

= (V, E), con

size k, can be

ontains the o

extendable c

em is a graph

he problem

d motif-findi

raph is a mu

m uses the pri

not be part o

vzner and Sz

clique C = {

able if it has

e Planted (l,d

uences S = {

ber d (numbe

s of each seq

j in sequence

dex j to (n-1)

and only if D

bset C such t

nstructed as d

e asked. On

original sign

lique can be

h-theoretical

of finding hi

ing problem

lti-partite gr

inciple of ex

of the clique

ze use the no

{v1,…,vk} if

at least one n

d)-Motif prob

{s1, s2, … , st

er of mismat

quence, that

e si we const

) + l; thus th

DH (vi, vj) ≤ 2

that any two

described by

nce such a cli

nal being sou

e seen in the

l NP-comple

idden clique

is a special

raph.

xploring thes

we are sear

otation of an

{v1, … , vk, u

neighbor in

blem to find

t} each of len

tches), const

is, for every

truct a vertex

here is a total

2d and vi an

o vertices in C

y the Winnow

ique has bee

ught after. A

figure below

ete problem [

es in an other

case of the h

se particular

ching for. T

 extendable

u} is a clique

every part o

ding large cli

ngth n, a

truct a graph

y sequence si

x v V that

l of t((n-1) +

d vj correspo

C are connec

wer, the que

en found, it w

n example o

w:

[6]. There h

rwise random

hidden cliqu

graphs and w

To describe h

clique. “We

e in the grap

of the multip

7

iques

h

i of

will

+ l)

ond

cted

stion

will

of 4

has

mly

ue

will

how

e say

ph.

artite

graph G.

k. One w

edges are

3]. The e

increases

T

Pevzner

edges tha

observati

enough s

T

and a num

vertex u w

is an edg

multipart

S4); howe

F

will pass

is no such

be delete

 We define

way to impos

e deleted afte

essential idea

s; in doing so

This is also th

[13, 15] for

at are not par

ions indicate

spurious edg

The winnowe

mber k = 1,

will pass the

ge in each si)

tite graph wi

ever, vertex

or k = 2 the

 the test if th

h vertex vi, e

ed; however,

an edge to b

se increasing

er winnowin

a of the winn

o spurious e

he approach

k = 2. How

rt of an exten

e that only w

es in such a

er removes e

the algorith

e test if there

, if vertex u

ith four parti

v12 will be d

algorithm w

here is a vert

edge (u, w) w

 edge (v12, v

be spurious i

gly strict con

ng and only e

nower is to a

dges are effe

that was tak

ever it was o

ndable cliqu

when k = 3 do

way that the

dges in the f

hm checks ev

e exists at lea

fails this tes

ite sets, verte

deleted (v12 h

will now chec

tex vi for eac

will be delet

v21) will be d

if it does not

nditions as k

extendable c

allow only ex

ectively rem

ken by Vingr

observed by

ue is too wea

oes the meth

e clique we’r

following wa

very vertex i

ast one neigh

st, it will be d

ex v11 will n

has an edge i

ck each edge

ch partite si s

ed. In the ill

deleted.

t belong to a

increases is

cliques rema

xtendable cli

moved.

ron & Agros

Pevzner & S

ak for prunin

hod become

re searching

ay: Given a

n G and app

hbor vi in ea

deleted. In t

not be deleted

in S2 and S3 b

e (u, w) in th

such that {u,

lustration bel

ny extendab

 to ensure th

in in the fina

iques of size

s[13, 14] and

Sze that whe

ng spurious e

effective at r

 becomes ev

multipartite

plies the follo

ach partite se

the illustratio

d (v11 has as

but no edge

he graph G.

, vi, w} is a t

low, edge (v

ble clique of

hat all spurio

al graph.” [3

e k to remain

d Vingron &

en k ≤ 2, filte

edges [13]. T

removing

vident.

graph G = (

owing test. A

et of G (ei: (u

on below, fo

edge in S2, S

in S4).

The edge (u

triangle. If th

v11, v22) will n

8

size

ous

3, pg.

n as k

&

ering

Their

(V,E)

A

u, vi)

or a

S3,

u, w)

here

not

S

continues

similar te

vertex vi

x) & (u, x

W

locating e

Winnowe

power of

complexi

the Plant

meaningf

result it b

2.3 A F
The Clos

biology,

given the

o, as k incre

s in this fash

est for the ot

in each part

x) will be rem

Winnower is

extendable c

er takes O(N

f Winnower

ity of the Wi

ted-(l, d) Mo

ful. Howeve

becomes ver

Fixed-Para
sest String pr

coding theor

e following g

eases the con

hion for k = 3

ther values o

ite set si if {

moved from

an iterative

cliques of siz

N2) time, whe

increases as

innower is O

otif Problem

er the Winno

ry slow for la

ameter Alg
roblem is an

ry and conse

general defin

nditions for e

3; the algorit

of k. This tria

u, vi, w, x} i

m the graph.

algorithm th

ze k become

ere N is the l

 k increases,

O(Nk+1). Pev

k = 3 is suff

ower also re

arge samples

gorithm fo
n important p

ensus word a

nition:

edge remova

thm selects e

angle will pa

s a clique of

hat removes

a trivial pro

length of all

, but so does

vzner and Sz

ficient for fin

quires a larg

s [13].

or the Clos
problem in m

analysis [4][

al become m

each triangle

ass the test if

f size 4. Othe

inconsistent

oblem. The c

sequences i

s the running

ze point out t

nding extend

ge amount of

sest String
many areas su

9]. The Clo

uch stronger

e (u, w, x) to

f there exists

erwise the ed

t edges from

construction

n the set S. T

g time since t

that for many

dable cliques

f time and m

g Problem
uch as comp

osest String p

r. The algori

o apply the

s at least one

dges (u, w),

m a graph unt

of the graph

The pruning

the running

y instances o

s which are

memory; as a

m.
putational

problem can

9

ithm

e

(w,

il

h for

g

time

of

be

Definitio

and a num

C

applicatio

present a

particular

small (ra

Definitio

character

string in

there is n

central st

G

strings. T

We say a

character

matrix ha

on 3 (Closes

mber d the p

Closest string

ons of comp

a fixed-param

rly importan

ange of 1 ~ 7

on 4 (Closes

r at position p

the set is of

no string s’ s

tring s with

Given a set of

The term col

a particular c

rs in the colu

as only 3 dir

st String Pro

problem is to

g is an NP-co

putational bio

meter algorit

nt for the mo

).

st string not

p in s, wher

length l, we

uch that DH

DH (s, si) = 2

f k strings of

lumns of a C

column of th

umn. For the

rty columns.

oblem): Giv

o find a cente

omplete prob

ology d is qu

thm with an

otif finding p

ation): For

e 1 ≤ p ≤ l.

 say a string

(s’, si) < DH

2 for all si

f length l, we

Closest String

is matrix is a

e example be

ven a set S =

er string s’ s

blem; howev

uite small. Je

exponential

problem cons

a given strin

Given a set

g s is an optim

H (s, si) for al

{s1, s2, s3, s4

e can create

g matrix are

a dirty colum

elow the S m

= {s1, s2, … ,

such that DH

ver, when we

ens Gram &

growth com

sidering the

ng s of lengt

of strings S

mal closest s

ll si S. The

4, s5, s6}.

a k x l chara

e in reference

mn if there ar

matrix has 8 d

sk} of t strin

(s’, si) ≤ d fo

e are dealing

Rolf Nieder

mplexity of O

value d is co

th l, s[p] will

= {s1, s2, …

string for S i

e example b

acter matrix

e to this part

re two or mo

dirty column

ngs of length

or all si S.

g with

rmeirer [4]

O(dd). This i

onstant and q

l denote the

, sk}, where

if and only if

elow shows

from this se

ticular matrix

ore differing

ns while the

10

h n,

is

quite

each

f

a

t of

x.

g

T

B

algorithm

recursive

if such a

In

more tha

center str

arbitrary

another s

the candi

= (h-1).

find a sol

when car

is O(dd),

2.4 Bas
This sect

which is

the BVR

 G

sequence

(n-1) – l.

each vari

regardles

variants i

T

O(n(3l)d

Bounded sear

ms for a varie

e procedure p

string exists

nitially, befo

an kd dirty co

ring can be f

string si S

string sj S (

idate string a

The algorith

lution to the

reful sub cas

where d is c

ic Voting
tion will desc

a variant of

R using the sa

Given a set of

e si S and g

 For each l-

iant generate

ss of the fact

in this way,

The BVR trad

+ nt), in com

rch tree is on

ety of proble

presented by

s for a given

ore calling th

olumns, of th

found for giv

S as the cand

(where si ≠ s

and changed

hm continues

problem (a

ses of this rec

constant.

Algorithm
cribe the Ba

an algorithm

ame notation

f sequences

generate l-le

-length subst

ed. Any vari

t that an iden

it will be the

des a lower t

mparison to a

ne of the bas

ems. The alg

y Gramm & N

set of string

he procedure

he Closest St

ven value of

didate string

sj), where DH

d to match th

s in this fash

center string

cursion are s

m
asic Voting A

m first propo

n as defined

S and two n

ngth substrin

tring the algo

iant generate

ntical variant

e case that m

time comple

a brute force

sic technique

gorithm for C

Niedermeire

gs [4].

e, Gramm &

tring matrix

f k & d). Oth

s and an inte

H(s, sj) = h an

hat of string s

hion until eit

g s’ is found

selected the

Algorithm (B

osed by Ware

by the Plant

numbers l and

ngs from eac

orithm will g

ed will get o

t is generate

motif m will h

exity O(nt(3l

e algorithm w

es used in de

Closest Strin

er that is pro

Niedermier

S, then the i

herwise the m

eger value d

nd h > d, the

sj at the same

her s moves

). Gramm &

upper limit o

BSV) created

emann et al.

ted (l,d)-Mot

d d, the BVA

ch position i

generate all d

one and only

d at a later s

have t numb

l)d) for an inc

which has co

esigning fixe

ng in Append

oven to find a

point out th

instance is re

method is cal

d as paramete

en a position

e position su

 to far away

& Niedermie

on the size o

d by Leung a

 [8, 16]. We

tif Problem.

A will iterate

in si from ind

d variants an

one vote, pe

step. When c

ber of votes.

creased spac

omplexities O

ed-parameter

dix A is a

a central stri

hat if there ar

ejected (no

lled with any

ers. If there

n is selected

uch that DH(s

from si or w

er point out t

of this search

and Chin [8]

 will describ

e through ea

dex 0 to inde

nd cast a vot

er sequence,

casting votes

ce complexit

O(nt4l) and

11

r

ing s

re

y

is

in

s, sj)

we

that

h tree

]

be

ach

ex

te on

s on

ty

12

O(nt) respectively [8]. Leung et al. show the BVR to be efficient for solving many Planted (l, d)

Motif Problem instances [8].

13

3 Overview of Content Sensitive Consistency (CSC)
The problem of motif finding can be formulated as a constraint satisfaction problem (CSP).

Formulating in this way allows us to detect and remove spurious similarities via the use of

constraint propagation techniques that enforces local consistency. This process works similar to

the methods used in the winnower approach with equivalent time complexities.

A CSP is a combinatorial search problem – well studied in the area of Artificial

Intelligence. Essentially a CSP can be defined as: given a set of variables one must assign each

variable a value that will satisfy a predefined number of constraints. Often a CSP requires a

heuristic and combinatorial search method to be solved in reasonable time.

Definition 6 (CSP): A CSP consists of: A set of variables X = {X1, X2, … , Xn} and a set of

constraints C = {C1, C2, … , Cm}.

Each variable Xi has a set of i possible domains D = {D1, D2, … , Di} where for each

value j, Dj D defines a possible value. Each constraint is defined over a subset of variables

and specifies the allowable combinations of values for that subset. Each state of this problem is

defined by the assignment of values to a partial or a complete set of variables.

We say an assignment is consistent when a variable takes on a value that does not violate

any constraint Ci C for all of i. An assignment is complete when all variables have a value

assigned (not necessarily satisfying all constraints). A solution to a CSP occurs when an

assignment is both consistent and complete.

A general way to solve a CSP is to incrementally make assignments to variables in a

consistent way until a complete assignment is achieved. There are many methods available to

perform this operation; however, because the CSP is NP-hard, most algorithms have a time

complexity that is exponential. There are however, many algorithms that can achieve lower

running times when based on particular problem specific features. The CSP can be used to

formulate many different existing problems. We show how to formulate the clique finding

problem as a CSP.

Definition 7 (Motif finding as a binary CSP): Given a set of sequences S for an instance of the

motif finding problem, we can define an instance of a CSP whose variables X correspond to S.

Each var

domain v

constrain

the two v

A

variable a

that the H

less than

winnowe

3.1 Con
Our grap

of length

input, a g

T

correspon

index j in

from inde

 F

would be

riable xi X

value will co

nt requiring t

variables, mu

A binary CSP

and each arc

Hamming di

2d. This co

er.

nstructing
ph constructi

h n), a param

graph G=(V,E

The algorithm

nd to substri

n sequence s

ex j to (n-1)

or example

e split into th

will have a

orrespond to

that the two

ust have a H

P can be repr

c represents c

stance betwe

onstraint grap

 the Const
on algorithm

meter l (length

E) will be co

m iterates thr

ings of each

si we constru

+ l; for a tot

given any ar

he vertices co

set of possib

each l-lengt

substrings c

Hamming dist

resented as a

constraint be

een the two

ph is constru

traint Gra
m takes in as

h of signal) a

onstructed in

rough each s

sequence, th

uct a vertex v

tal of t((n-1)

rbitrary sequ

orresponding

ble domains

th substring.

orrespondin

tance less th

a constraint g

etween two v

l-length sub

ucted in muc

aph:
 input a set o

and a numbe

n the followi

sequence in t

hat is, for ev

v V that wi

) + l) vertice

uence si the f

g to substrin

D = {D1, D2

 For each pa

ng to the two

han or equal

graph where

variables. T

strings (relat

ch the same w

of t sequence

er d (number

ing way:

the set S and

very sequenc

ill represent

s.

figure below

ngs.

2, …, D(n-1)-l}

air of variab

 domain valu

to 2d.

e each node r

The constrain

tive to the no

way as the g

es S = {s1, s2

r of mismatc

d constructs v

e si of the se

the substring

w illustrates h

} where each

bles, there is

ues, assigne

represents a

nt for an arc

odes) must b

graph in the

2, … , st} (ea

ches). Given

vertices that

et S and for e

g sij of lengt

how the sequ

14

h

a

d to

is

be

ach

n this

t

each

th l

uence

15

After running this procedure across all t sequences we would achieve a multi-partite graph

similar to figure below:

After this vertex constructing process the algorithm iterates through each vertex vi in each

jth partite Sj and compares vi against every other vertex in each remaining partite. An edge

between two vertices will correspond to vertices that have a hamming distance less than 2d, that

is, we connect vertices vij and vab by an edge if and only if DH (vij, vab) ≤ 2d where vij and vab are

from separate sequences.

 Constructing a graph in this way will encapsulate the signal in a clique; if we select any

arbitrary edge between any two vertices, corresponding to a signal, that edge will have a

maximum hamming distance of at most 2d [13].

 However constructing the graph in this manner also gives rise to many spurious edges

that are not part of the clique we want to find. In order to prune these edges we use constraint

propagation. The main idea of constraint propagation is to repeatedly reduce the domain of each

variable in order to be consistent with its arcs. Reducing the domains in this manner is what

makes constraint propagation an effective pruning mechanism. Applying constraint propagation

is what is known as achieving local consistency.

The requirement of local consistency conditions are to take a CSP problem P and map

that problem into another problem P’ without altering the original problem’s solutions. This

mapping is referred to as constraint propagation. The main idea here is to create a problem that is

less complex by reducing the domains of variables by applying constraints or adding new ones.

There are several such local consistency conditions that exist; the ones we will concern with here

are arc consistency, path consistency and the general case k-consistency.

16

3.2 Arc Consistency
Arc consistency is one of the simplest forms of local consistency and is a process equivalent to

the Winnower for k=1. To achieve arc consistency we apply an algorithm that will remove all

unsupported values from the domains of individual variables to return a reduced CSP that is

easier to solve (or find the problem to have no solution). Generally we say a CSP P is arc

consistent if each of a variable’s admissible values in P is consistent with every other variable’s

admissible values in P. Formally:

Definition 7 (Formal Arc Consistency): Given a set of variables X = {x1, x2, …, xn} we say

variable xi X is arc-consistent with another variable xj X (where xi ≠ xj) if for every value ai

in the domain xi (there exists) a value bj in the domain of xj such that (ai, bj) satisfies each

constraint between xi and xj. We will call such a variable bj a support of ai.

Graphically we can illustrate how arc consistency works with the following binary network:

We see S1 is arc consistent with S2 & S3. S3 is arc consistent with S1 & S2. S2 is arc

consistent with S3 however not with S1. This is because the assignment S2 = 1 does not

correspond to any value for S1 (no supporting variable for S2=1). We can therefore remove 1

from the domain of S2. Now S3 is no longer arc consistent with S2, because S3 = 2 does not

correspond to any value for S2. We therefore remove 2 from the domain of S3. We continue to

remove values until we end up with a new problem which is arc consistent:

W

construct

partites, w

partite of

have the

edge. An

removed

proposed

3.2.1 Ar
There are

Mackwor

and O(er

to be opt

and a spa

Cordier [

optimal r

GAC3 (O

T

(such as t

each part

and, for e

We can use th

ted by our gr

we simply en

f G. That is,

property suc

ny vertex tha

along with a

d by Bessiere

rc Consist
e several wa

rth [2, 10] is

r) space (whe

imal is the A

ace complex

[3] that comp

run time com

O(ed)).

The main ide

the GAC3 d

tite. Upon in

each vertex v

his idea of ar

raph constru

nsure that fo

any given v

ch that there

at does not h

any edges th

e and Cordie

tency Imp
ays to implem

s a non optim

ere r is the g

AC4 propose

ity of O(ed2)

promises bet

mplexity of th

a of the AC6

does), but rat

nitialization

v AC6 attem

rc consistenc

uction algorit

or every vert

ertex v that r

 exists a sup

have this pro

hat are conne

er [3].

plementati
ment arc con

mal algorithm

greatest rank

ed by Mohr a

) [2, 11, 12]

tween the G

he AC4 (O(e

6 is not to co

ther to ensur

AC6 increm

mpts to find a

cy to prune a

thm) G=(V,E

tex v in G the

remains afte

pporting vert

operty is not

ected to it. T

on (AC6)
nsistency. Th

m that achiev

k among cons

and Henders

. AC6 is an

AC3 and the

ed2)) with a

ount how ma

e each vertex

mentally itera

a supporting

away spurio

E) which is a

ere exists a s

er arc consist

tex v in each

arc consisten

The algorithm

he GAC3 alg

ves arc consi

straints) [2].

son, with a ti

algorithm p

e AC4 insofa

lower space

any supportin

x has at leas

ates through

variable u in

us edges. G

a multi-parti

supporting v

tency is perf

h partite - me

nt and theref

m we use in

gorithm prop

istency in O

 An algorith

ime complex

proposed by B

far that it mai

e complexity

ng vertices e

st one suppor

each vertex

n each partit

Given a graph

te graph wit

variable u in

formed on G

eaning (u, v)

fore will be

CSC is AC6

posed by

(er3dr+1) tim

hm that is sh

xity of O(ed2

Bessiere and

intains the

y closer to th

each vertex h

rting vertex

 in the graph

te for vertex

17

h (as

th t

each

G, will

is an

6 as

me

hown
2)

d

at of

has

in

h

v. If

18

such a vertex u is found in each partite, then v will remain, otherwise it will be deleted. Briefly

the AC6 algorithm (Appendix A) works as follows: The AC6 maintains a list S where S[xj, vj]

stores all supporting values for which vj is the supporting variable for xj. The algorithm checks

that there is a support vj for each variable xj in graph G. If there is no such variable vj, then xj

will be removed and stored in list Q for future propagation. The propagation loop in AC6 checks

the consequences of removing the variables that are stored in Q. When a vertex ai is chosen

from Q, AC6 searches list S to check if ai was a support for some other vertex xj. It does so by

checking list S for S[xj, aj]. If it was a supporting variable then a new support must be found for

xj, if none is found xj will be removed and in turn be stored in list Q. If there is a support then

this new support will replace aj and stored in list S. The algorithm continues in this manner until

the list Q is empty at which point every remaining vertex in graph G will have supporting

variables in each partite of graph G, and thus arc consistent.

Arc consistency is an effective pruning measure for simple instances of the planted motif

problem; however, a stronger consistency is required for more challenging instances [13].

3.3 Path Consistency
Path consistency works much like arc consistency, but considers pairs of vertices rather than a

single vertex which is essentially the same pruning mechanism used in the winnower for k=2.

We define path consistency formally as:

Definition 8 (Formal Path Consistency): Given a set of variables X = {x1, x2, …, xn} we say

pair (xi, xj) X are path consistent with another variable xk X (where xi ≠ xj) if for every pair of

values (a, b) that satisfies the constraint between (xi, xj) (there exists) a value c in the domain of

xk such that (a, c) and (b, c) satisfies each constraint between (xi, xk) and (xj, xk). We will call

such a variable xk a supporting variable of pair (xi, xj).

Graphically the figure below show’s an example of enforced path consistency:

19

The figure on the left is an example of a graph that is arc consistent but not path consistent. The

dotted edges in the figure on the right indicate edges that would be removed if the graph was to

be made path consistent.

 We use this idea of path consistency to prune away spurious edges. The same algorithm

(AC6) is used with a slight modification. Instead of search for supporting variables for a single

vertex xi we will search for supporting variables for edges (xi, xj). That is, for every edge (xi, xj)

we need to search each partite for a support vj such that (xi, xj, vj) forms a triangle.

Path consistency is a more powerful pruning mechanism than arc consistency; however,

it is still insufficient for difficult instances of the planted motif problem [13]. One way to

increase the pruning power is to increase to 4-consistency (k-consistency) which is equivalent to

the winnower method for k=3.

3.4 k-consistency
K-consistency generalizes the notion of arc consistency and path consistency to sets of variables:

Definition 8 (k-consistency): Given a set of variables X = {x1, x2, …, xn} we say a sub set of

variables X’ X of size k-1 are k-consistent if for every set of values A = (a1, a2, … , at) that

satisfies the constraint between all variables in X’ there exists a value c in a variable uk such that

no constraint is violated for (a1, a2, … , at, c). Such a variable uk is a supporting variable of X’.

Given this formal definition, arc consistency is equivalent to 2-consistency and path

consistency is equivalent to 3-consistency. For the winnower, Pevzner et al. show that k=3 is

20

sufficient as an effective pruning mechanism, which would be equivalent to 4-consistency for

our CSP. The tradeoff for this high degree of accuracy is a rather high time complexity of O(N4).

We will now look at a new approach which combines path consistency along with the notion of

closest string for a time complexity of O(N3 + dd).

3.5 Content Sensitive Analysis
Instead of increasing to 4-consistency we add a new constraint to our path consistency. Not only

do we enforce path consistency but for every pair of nodes that have support we also ensure there

is a center string among these three nodes we are analyzing. The figure below shows a graph

that is path consistent on the left. The figure on the right shows that a center string c must also

exist if the edges in the graph on the left are to remain.

How the algorithm works is described below.

3.5.1 Content Sensitive Analysis Implementation (PC6+CS)
The PC6+CS maintains an array of lists S where S[vj] stores all a list for which vj is the

supporting variable for all pairs of nodes (xi, xj). The algorithm checks that there is a support vj

for each edge (xi, xj) in graph G. If there is no such variable vj, then edge (xi, xj) will be

removed and stored in list Q for future propagation. If there is a support vj found the algorithm

then uses the CS algorithm to find if there exists a center string c for nodes (xi, xj, vj). If such a

string exists (xi, xj) is stored in list S under otherwise (xi, xj) is removed from G and (xi, xj) is

stored in list Q for future propagation.

21

The propagation loop in PC6+CS checks the consequences of removing the variable pairs

that are stored in Q. When a pair (xi, xj) is chosen from Q, PC6+CS searches list S to check if (xi,

xj) was a supporting edge for some other pair of vertices (xi, a) or (xi, a). It does so by checking

list S[xi] for (xj, a), and S[xj] for pair (xi, a). If it was a supporting edge then a new support must

be found for both (xj, a) and (xi, a), if none is found (xj, a) and (xi, a), will be removed and in turn

be stored in list Q. If there is a support vj then, as before, a center string c will be sought after. If

such a string c is found then vj will replace aj and stored in list S. The algorithm continues in this

manner until the list Q is empty at which point every remaining vertex in graph G will have

supporting variables in each partite of graph G, and that satisfies our constraints.

22

4 Experimentation and Results.
In this section we will describe how we generated samples as well as describe our results of

running AC6, PC6 and PC6+CS on this these samples. All analysis was based on

implementations in Java.

4.1 Sample Generation
To test the effectiveness of our algorithm it is important to be able to generate random samples.

Our sample generation algorithm works as follows:

The algorithm takes in as input numbers t, n, l and d. Given these numbers the algorithm

will generate set of sequences S = {s1, s2, …, st} where each si is of length n and each position in

si is a nucleotide selected at random from alphabet ‘A’, ‘C’, ‘T’, or ‘G’. A string s of length l

will be randomly generated using this same alphabet. A set of strings M = {m1, m2, …, mt} are

generated where each mi is a d-variant of s (i.e: DH(s, mi) = d for all i). The algorithm then

randomly selects a position j in each sequence si and plants string mi at this position replacing all

nucleotides in sequences si from j to j+l.

4.2 Results
We test the performance and limitations of AC6, PC6 and PC6+CS on several instances of the

Planted (l, d)-Motif Problem.

First we will represent our results based on the (3, 15) problem. We run tests for each

algorithm based on parameters t=20, l=15 and d=3. In instances of the (3,15) problem all three

algorithms pruned away sufficient edges to expose the signal we are searching for. The chart

below is based on the average results obtained from running each algorithm independently on 50

different samples each. The ‘-‘ indicates a time that is greater than 1 hour.

The grap

locating t

F

Though t

running t

PC6+CS

A
vg

Ti
m
e
(s
)

ph below illu

the signal.

or this (3, 15

the AC6 has

time in pract

the conditio

0.01

0.1

1

10

100

1000

10000

50

A
vg
. T
im

e
(s
)

Se

ustrates avera

5) problem t

 the lowest t

tice. An exp

on for edge r

0 100 150

AC

quence Leng

n
50
100
150
200
250
300
350
400
450
500
550
600

age time (in

the graph illu

time comple

planation for

removal is m

200 250 300

C6, PC6

th
A

1
1

10
31
72
13
219

seconds) as

ustrates an in

xity, of all th

r this interest

much stricter,

0 350 400 4n

& PC6+C

T

AC6

.805
9.73

01.601
17.01
0.453
20.43
90.797
‐
‐
‐
‐

‐

a function o

nteresting ph

hree algorith

ting phenom

, therefore ed

50 500 550

CS vs. n

Time (s)

PC6

0.063
0.179
0.369
0.666
1.045
1.552
2.095
2.76
3.621
4.64
5.792

7.058

of sequence l

henomenon t

hms, it has th

menon is that

dges are rem

600

PC6

PC6

AC6

PC6+CS
0.331
0.482
0.687
0.989
1.393
1.902
2.569
3.431
4.168
5.188
6.398
7.848

length n, for

that occurs.

he largest

t for PC6 and

moved more

 (with CS)

 (no CS)

6

23

r

d

24

quickly resulting in less iterations and thus a shorter running. A similar observation was also

made by Pevzner et al. [8].

 AC6 tends to become impractical for n > 350 in comparison to PC6 and PC6+CS. The

PC6 and PC6+CS find the signal under 10 seconds for relatively long sequence length (n=600).

For this instance they both have roughly the same running time.

Secondly we run tests for the (4, 15) problem. For this problem each algorithm is

executed based on parameters t=20, l=15 and d=4. We first compare the AC6 with the PC6+CS.

We randomly generated 50 samples for every value of n; for each sample we run the AC6 and

then pass this arc consistent graph to the PC6+CS to assess how many edges were not pruned by

the AC6. The chart below is based on the average results obtained from running both algorithms

sequentially. We see that AC6 is accurate in finding the clique we are searching for n =50

however AC6 is insufficient for n > 50, and will be non effective for removing any edges at all

for n ≥ 400.

Sequence
Length TIME (s) EDGES

n AC6 PC6 + CS Initial Edges AC6 prune PC6 + CS Prune

50 1.512 0.401 31520 31140 0
100 9.612 0.597 163346 151251 11709
150 2.013 4.441 401516 6753 394374
200 0.81 9.523 748116 996 746725
250 0.736 23.255 1202603 132 1202066
300 1.164 63.515 1763251 23 1762820
350 1.639 190.054 2433053 12 2432635
400 2.515 834.385 3211088 0 3210672

We then executed another 50 tests on the (4, 15) problem comparing accuracy and

efficiency between PC6 and PC6+CS. First we run PC6 on each sample, once PC6 is finish the

resulting path consistent graph is sent to PC6+CS to examine how many edges PC6+CS will

prune from an already path consistent sample. Interestingly the PC6+CS is slightly more

accurate and becomes increasingly accurate as n increases, removing a trivial number of edges

after the graph has been made path consistent. The running time for of the PC6 become

impractical (over 4 hours) for n > 300.

Finally w

implemen

The grap

function

mechanis

Sequence
Length

n
50
100
150
200
250
300

we run a sepa

ntation of th

ph below com

of n and illu

sm than the P

1

10

100

A
vg
. T
im

e
(s
)

Se

TIM

PC6
0.432
1.604
3.666
9.421
46.869
941.822

arate test on

he PC6+CS,

mpares the ru

ustrates that i

PC6.

0.1

1

10

100

000

000

50 10

equence Leng

n
50
100
150
200
250
300
350
400
450

ME (s)

PC6 + CS

0.393
0.451
0.503
0.593
0.725

2 0.852

the (4, 15) p

the running

unning times

in practice, P

00 150 200

Tim

gth TIME (

PC6 + C

0.898
2.209
4.562
9.497
22.534
608.37
188.15
834.38

3754.39

Initial Edges

31353
163793
402334
749111
1202661

1764138

problem usin

time becom

s of the both

PC6+CS is a

250 300 3

n

me (s) vs

s)

CS Initial Ed

8 3157
9 16344
2 40226
7 74884
4 12018
7 17645
56 24330
85 32110

96 40929

EDGES

s PC6 prune

30970
163403
401941
748711
1202250

1763728

ng only the P

mes impractic

h PC6 and PC

a slightly mo

350 400 450

n

EDGES

dges PC6 +

0 3
44 1
65 4
45 74
33 12
60 17

053 24
088 32

68 40

S

e PC6 + CS

1
1
2
4

0 8
8 7

PC6+CS. Fo

cal for n> 45

C6+CS with

ore efficient

0

PC6

PC6

+ CS Prune
31188
63057
01872
48450
201438
764160
432647
210672
092541

Prune

or our

0.

h time as a

pruning

6

6+CS

25

26

5 Discussion and Conclusion

The problem of motif finding plays a very important role in understanding gene regulatory

mechanisms. An area of bioinformatics is concerned with modeling this problem in a way that

will allow computational algorithms to lend aid in locating these motifs. One such model

includes the Planted (l, d)-Motif Problem. In this thesis we have analyzed the efficiency and

accuracy of several algorithms designed to solve this particular Planted (l, d)-Motif Problem,

including: the Basic Voting Algorithm, the Winnower and the Closest String. We have

presented a new formulation that composes the Planted (l, d)-Motif Problem as a CSP as well as

introduced a new form of center string constraint consistency. Experimental results on a Java

implementation, based on this formulation, locate signals accurately and efficiently for simulated

data. However, using this implementation, we were unable to conclude the relative strength of

this center string consistency when comparing it to the notion of Hamming distance. The

impractical running times for this implementation did not allow us to test for large values of n

where the PC6 is known to fail. This may be due to either a non optimal implementation or the

relatively slow performance of Java. Future work may include an implementation in C so that

we could achieve a practical running time with a large enough value of n such as n≥700 for the

(4, 15) where the PC6 is known to fail [8]. Running the PC6+CS for these values of n is

required to analyze the relative pruning strength of this new notion of consistency.

27

Appendex A

Algorithm 1: AC6 [2, pg. 20]

X ← 2D constraint graph
Q ← ø
S[xj , vj] = 0, vj D(xj), xj X
foreach xi X, cij C, vi D(xi) do

vj ← smallest value in D(xj) s.t. (vi, vj) cij
if vj exists then add (xi, vi) to S[xj , vj]
else remove vi from D(xi) and add (xi, vi) to Q
if D(xi) = ø then return false

while Q ≠; do
select and remove (xj , vj) from Q;
foreach (xi, vi) S[xj, vj] do
if vi D(xi) then

v’j ← smallest value in D(xj) greater than vj s.t. (vi, vj) cij
if v’j exists then add (xi, vi) to S[xj, v’j]
else

remove vi from D(xi); add (xi, vi) to Q;
if D(xi) = ø then return false

return true

Algorithm 2: Closest String [4, pg. 6]

recursive procedure: CSd(s, ∆d)
Global variables: Set of strings S = {s1, s2, . . . , sk}, integer d.
Input: Candidate string s and integer ∆d.
Output: A strings with maxi=1,...,kdH(s, si) ≤ d and dH(s, s) ≤ ∆d if it exists, and “not found,”
otherwise.

if (∆d < 0), then return “not found”;
if (dH(s, si) > d + ∆d) for some i {1, . . . , k} then return “not found”;
if (dH(s, si) ≤ d) for all i = 1, . . . , k then return s;
Choose some i {1, . . . , k} such that dH(s, si) > d:

P := { p | s[p] si[p] };
Choose any P’ P with |P’| = d + 1;
for all p P do

s’:= s;
s’[p] := si[p];
sret:= CSd(s , ∆d − 1);
If sret “not found” then return sret

return “not found”

28

Algorithm 3: PC6+CS

// initialization
C ← a 2D constraint graph
Q ← ø // Q list stores all deleted pairs of variables
S[n] ← ø // where s[i] stores all pairs of variables supported by i.
D ← all pairs of variables that have not yet violated any constraint

// begin
foreach pair (xai, xbj) do // where a and b indicate partites which x is a member
 foreach partite c where c ≠ a and c ≠ b do
 vc == checkForSupport(xai, xbj, c)) //return ‐1 if no support found
 if (vc ≠ ‐1) and (centerString(xai, xbj, vc)) then
 S[Vc] ← (xai, xbj)
 else
 C[xai][xbj] = 0
 Q ← (xai, xbj)

remove (xai, xbj) from D
 if D empty return false // no feasible solution

// propagation
while Q ≠ ø do

select and remove (xai, xbj) from Q
 S’ ← each triple (yai, ybi, vc) of variables for which edge (xai, xbj) was a support
 foreach (yai, ybj) S’ do
 if (yai, ybj) D then
 vc == checkForSupport(yai, ybj, vc)) //starting at index vc in c
 if (vc ≠ ‐1) and (centerString(yai, ybj, vc)) then
 S[Vc] ← (yai, ybj)

else
 C[xai][xbj] = 0
 Q ← (yai, ybj)

remove (yai, ybj) from D
 if D empty return false // no feasible solution
return true

29

Algorithm 4: Basic Voting Algorithm [8, pg. 4]

Create two hash tables V and R and set the value of each entry to be 0
{Table V keeps the number of votes received by each length-l sequence s. Each length-l
sequence, received t votes is a candidate for motif. Hash table R ensures that each length-l
sequence receives at most one vote from each input sequence. Si{j} is the j-th character in the i-
th input sequence Si and H(s) is the hash value of a length-l sequence s.}
C ← ø
for i ← 1 to t
 do for j ← 1 to n – l + 1
 do for each length‐l sequence is N(Si[j … j + l – 1],d)
 do if R[H(s)] <> i
 then V[H(s)] ← V[H(s)] + 1
 R[H(s)] ← i
for j ← to n – l + 1
 do for each length‐l sequence s in N(Si[j … j + l – 1],d)
 do if V{H(s)]= t
 then insert s into C

30

References
[1] S. Balla, J. Davila and S. Rajasekaran. On the Challenging Instances of the Planted Motif

Problem. http://www.engr.uconn.edu/becat/reports/BECAT-CSE-TR-07-2.pdf

[2] C. Bessiere. Constraint Propagation. Handbook of Constraint Programming. Ch. 3, Pg. 29 –

85 ISBN 0-444-52726-5

[3] C. Bessiere, M.O. Cordier. Arc-consistency and arc-consistency again. In Proceedings

AAAI’93, pages 108–113, Washington D.C., 1993.

[4] J. Gramm R. Niedermeier. Fixed-Paramter Algorithms for Closest String and Related

Problems. Algorithmica [0178-4617] Gramm yr:2003 vol:37 iss:1 pg:25

[5] J. Hu, B Li, D. Kihara. Limitations and potentials of current motif discovery algorithms.

Nucleic Acids Res 2005, 33(15):4899-4913.

[6] R. M. Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer

Computations, Proc. Sympos. IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y.. New

York: Plenum, p.85-103. 1972.

[7] C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald and J. Wootton. Detecting subtle

sequence signals: a Gibbs sampling strategy for multiple alignment. Science, 262:208-214,

1993.

[8] H. C.M. Leung, F.Y.L. Chin. Algorithms for challenging motif problems. Journal of

bioinformatics and computational biology [0219-7200] Leung yr: 2006 vol: 4 iss: 1 pg: 43 -58

[9] M. Li, B. Ma, L. Wang. 2002. On the Closest String and Substring Problems. Journal of the

ACM, Vol. 49, No. 2, March 2002, pp. 157-171.

31

[10] A.K. Mackworth. Consistency in networks of relations. Technical Report 75-3, Dept. of

Computer Science, Univ. of B.C. Vancouver, 1975. (also in Artificial Intelligence 8, 99-118,

1977).

[11] R. Mohr and T.C. Henderson. Arc and path consistency revisited. Arti-

ficial Intelligence, 28:225–233, 1986.

[12] R. Mohr and G. Masini. Good old discrete relaxation. In ProceedingsECAI’88, pages 651–

656, Munchen, FRG, 1988.

[13] P.A. Pevzner, S.H. Sze. Combinatorial approaches to finding subtle signals in DNA

sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol., 269–278, AAAI Press, 2000.

[14] M. Vingron, and P. Argos, 1991. Motif recognitionand alignment for many sequences by

comparison of dot-matrices. Journal of Molecular Biology 218:33-43.

[15] M.Vingron, and P. Pevzner, 1995. Multiple sequence comparison and consistency on

multipartite graphs. Advances in Applied Mathematics 16:1-22.

[16] M.S. Waterman, R. Arratia and D.J. Galas. Pattern recognition in several sequences:

consensus and alignment. Bull. Math. Biol., 46:515-527. 1984.

