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Abstract:  
The problem of motif finding plays an important role in understanding the development, function 

and evolution of organisms.  The Planted (l, d)-Motif Problem first introduced by Pevzner and 

Sze [13] is a variant model of motif finding that has been widely studied.  Nevertheless, despite 

the many different algorithms constructed to solve this problem, it is far from being solved 

entirely [5].  We analyze a number of algorithms including: the Basic Voting Algorithm, the 

Winnower and the Closest String.  One thing that has become ubiquitous among these algorithms 

is the tradeoff between efficiency and accuracy.  We formulate the motif-finding problem as a 

constraint satisfaction problem and introduce a special form of constraint consistency. By using a 

fixed-parameter algorithm for the closest string problem [4], we develop a propagation algorithm 

that enforces the new constraint consistency with the same worst-case time complexity as that of 

the standard path consistency algorithm. Experiments on randomly generated sequences indicate 

that our approach is effective and efficient. 
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1 Introduction: 
Transcription factors are proteins that bind to DNA in order to regulate the expression of genes 

through the activation or inhibition of transcription mechanisms.  Locating these sites is an 

integral part of understanding the regulatory process.  Computational tools are an invaluable 

method used to locate these particular sites and this general problem has been termed motif 

finding. 

 Essentially the motif finding problem is the problem of finding common patterns among 

a set of sequences. A simple model for the problem is as follows: Given a sample of random 

sequences can we find a common unknown pattern (motif) that is hidden at random locations in 

the sequences?  If the motif was not subject to mutations it would be relatively easy to locate 

using a basic brute force algorithm; however, in biology the sequences being analyzed are 

subject to mutations and therefore the motif cannot be assumed to be exact. As such, it makes 

sense to construct a model that will allow the patterns we are searching for to have an arbitrary 

number of mutations [13].  

Buher and Tompa [8, 7] found limitations for this particular problem.  They found that 

when the number of sequences, the length of sequences and the length of the pattern are fixed, if 

the number of mutations in the pattern is larger than a particular threshold then it is highly 

improbable that any algorithm would be able to find such a pattern due to an abundance of 

random patterns [8, 7]. However, there have been many algorithms suggested for instances of 

this problem that do not exceed this threshold [8]. 

In this thesis we analyze a number of different algorithms that attempt to solve the 

problem in several different ways.  These include A voting algorithm by Leung and Chin [8] that 

locates common motifs by enumerating all neighbors of each l length substrings in a given set of 

sequences, as well as  a combinatorial approach by Pevzner and Sze [13] that essentially reduces 

the motif finding problem to locating cliques in multi-partite graphs.  Closely related to the 

planted-motif problem are the closest string problem and the closest substring problem.  Both of 

these problems are NP-hard, but the closest string problem can be solved in linear time assuming 

that the number of mutations is a fixed constant [9].      

In the Winnower Pevzner and Sze designed an algorithm that prunes spurious 

similarities, which enables us to easily locate the signal we are searching for.  They did so with 

an algorithm that has a time complexity of O(Nk+1) and found that the algorithm was accurate for 
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k=3.  Our contribution includes a variation of the Winnower combined with the closest string. 

We have designed an algorithm that essentially runs as the Winnower for k=2 along with the 

closest string algorithm to construct an algorithm with a time complexity of O(N3 + dd) where d 

is the number of mutations and constant. 

 This thesis is organized as follows: In chapter 2, we will discuss numerous algorithms 

that approach The Planted (l, d)-Motif Problem in various ways, each algorithm achieving a 

different level of both accuracy and efficiency. In chapter 3, we present our approach to the 

problem, including the CSP formulation, the propagation algorithm for the stronger notion of 

path consistency and its implementation. In chapter 4 we present our results and allegorize the 

pruning power and efficiency of our approach.  In chapter 5, we will conclude our results and 

analyses, as well as propose future challenges. 
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Assume there exists a motif m of length l; given t number sequences each of length n, the 

problem is to find a planted motif m’ of length l in each of the t sequences such that m’ differs in 

at most d positions from m. 

 

 A more general problem is the closest substring problem which has been shown to be 

NP-hard [9].  The difference between the planted motif problem and the closest string problem is 

that for the planted motif problem, it is guaranteed that there exists at least one common 

substring that occurs in each of the sequences.  Whereas for the closest string problem, it is not 

guaranteed that there will be such a common substring among each of the sequences.  The 

parameters l and d in the Planted (l, d)-Motif Problem have a significant impact on the practical 

difficulty of the problem. 

Some particularly difficult Planted (l, d)-Motif problem instances proven to be 

probabilistically challenging are (9,2), (11, 3) and (15, 4) [1].  These problems are considered 

challenging because given any two instances of a mutated (l, d)-signal there is a high probability 

that non-signals (spurious similarities) will be randomly generated such that they very closely 

resemble the proper signal.  Many techniques have been designed to solve these challenging 

problems which will be looked at below. 

 

2.2 Winnowing Approach:  Locating Signals via Winnowing. 
Pavel A. Pevzner and Sing-Hoi Sze [4] take a combinatorial approach to the motif finding 

problem by reducing it to a clique finding problem.  Pevzner et al. recognize that in each 

sequence there are spurious signals that occur at random that tend to hide the real signal.  Most 

algorithms tend to focus directly on the process of locating the real signal; however, the 

winnower takes an opposite approach. It focuses on the spurious signals (rather than the signal 

itself) and removes these spurious similarities incrementally until the signal we are looking for is 

no longer difficult to find.  This elimination process is, however, non-trivial and time consuming.   

 It is important to note that the Winnower algorithm only considers signals with Hamming 

distance as criterion for an edge and not insertions or deletions (signals will all be the same 

length).  This is done for simplicity; however the algorithm could easily be modified to account 

for these constraints [8].  
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O(nt) respectively [8].  Leung et al. show the BVR to be efficient for solving many Planted (l, d) 

Motif Problem instances [8].  
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3 Overview of Content Sensitive Consistency (CSC) 
The problem of motif finding can be formulated as a constraint satisfaction problem (CSP).  

Formulating in this way allows us to detect and remove spurious similarities via the use of 

constraint propagation techniques that enforces local consistency.  This process works similar to 

the methods used in the winnower approach with equivalent time complexities. 

A CSP is a combinatorial search problem – well studied in the area of Artificial 

Intelligence.  Essentially a CSP can be defined as: given a set of variables one must assign each 

variable a value that will satisfy a predefined number of constraints.  Often a CSP requires a 

heuristic and combinatorial search method to be solved in reasonable time.   

 

Definition 6 (CSP):  A CSP consists of:  A set of variables X = {X1, X2, … , Xn} and a set of 

constraints C = {C1, C2, … , Cm}. 

Each variable Xi has a set of i possible domains D = {D1, D2, … , Di} where for each 

value j, Dj  D defines a possible value.  Each constraint is defined over a subset of variables 

and specifies the allowable combinations of values for that subset.  Each state of this problem is 

defined by the assignment of values to a partial or a complete set of variables. 

 

We say an assignment is consistent when a variable takes on a value that does not violate 

any constraint Ci  C for all of i. An assignment is complete when all variables have a value 

assigned (not necessarily satisfying all constraints).   A solution to a CSP occurs when an 

assignment is both consistent and complete. 

A general way to solve a CSP is to incrementally make assignments to variables in a 

consistent way until a complete assignment is achieved.  There are many methods available to 

perform this operation; however, because the CSP is NP-hard, most algorithms have a time 

complexity that is exponential.  There are however, many algorithms that can achieve lower 

running times when based on particular problem specific features. The CSP can be used to 

formulate many different existing problems.  We show how to formulate the clique finding 

problem as a CSP. 

 

Definition 7 (Motif finding as a binary CSP):  Given a set of sequences S for an instance of the 

motif finding problem, we can define an instance of a CSP whose variables X correspond to S.  
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After running this procedure across all t sequences we would achieve a multi-partite graph 

similar to figure below: 

 

 
After this vertex constructing process the algorithm iterates through each vertex vi in each 

jth partite Sj and compares vi against every other vertex in each remaining partite. An edge 

between two vertices will correspond to vertices that have a hamming distance less than 2d, that 

is, we connect vertices vij and vab by an edge if and only if DH (vij, vab) ≤ 2d where vij and vab are 

from separate sequences.   

 Constructing a graph in this way will encapsulate the signal in a clique; if we select any 

arbitrary edge between any two vertices, corresponding to a signal, that edge will have a 

maximum hamming distance of at most 2d [13].  

 However constructing the graph in this manner also gives rise to many spurious edges 

that are not part of the clique we want to find.  In order to prune these edges we use constraint 

propagation.  The main idea of constraint propagation is to repeatedly reduce the domain of each 

variable in order to be consistent with its arcs.  Reducing the domains in this manner is what 

makes constraint propagation an effective pruning mechanism. Applying constraint propagation 

is what is known as achieving local consistency. 

The requirement of local consistency conditions are to take a CSP problem P and map 

that problem into another problem P’ without altering the original problem’s solutions. This 

mapping is referred to as constraint propagation. The main idea here is to create a problem that is 

less complex by reducing the domains of variables by applying constraints or adding new ones.  

There are several such local consistency conditions that exist; the ones we will concern with here 

are arc consistency, path consistency and the general case k-consistency. 
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3.2 Arc Consistency 
Arc consistency is one of the simplest forms of local consistency and is a process equivalent to 

the Winnower for k=1.  To achieve arc consistency we apply an algorithm that will remove all 

unsupported values from the domains of individual variables to return a reduced CSP that is 

easier to solve (or find the problem to have no solution).  Generally we say a CSP P is arc 

consistent if each of a variable’s admissible values in P is consistent with every other variable’s 

admissible values in P.  Formally: 

 

Definition 7 (Formal Arc Consistency):  Given a set of variables X = {x1, x2, …, xn} we say 

variable  xi  X is arc-consistent with another variable xj  X (where xi ≠ xj) if for every value ai 

in the domain xi (there exists) a value bj in the domain of xj such that (ai, bj) satisfies each 

constraint between xi and xj.  We will call such a variable bj a support of ai. 

 

Graphically we can illustrate how arc consistency works with the following binary network: 

 

                    
We see S1 is arc consistent with S2 & S3.  S3 is arc consistent with S1 & S2. S2 is arc 

consistent with S3 however not with S1. This is because the assignment S2 = 1 does not 

correspond to any value for S1 (no supporting variable for S2=1).  We can therefore remove 1 

from the domain of S2.  Now S3 is no longer arc consistent with S2, because S3 = 2 does not 

correspond to any value for S2.  We therefore remove 2 from the domain of S3.  We continue to 

remove values until we end up with a new problem which is arc consistent: 
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such a vertex u is found in each partite, then v will remain, otherwise it will be deleted.  Briefly 

the AC6 algorithm (Appendix A) works as follows: The AC6 maintains a list S where S[xj, vj] 

stores all supporting values for which vj is the supporting variable for xj.  The algorithm checks 

that there is a support vj for each variable xj in graph G.  If there is no such variable vj, then xj 

will be removed and stored in list Q for future propagation.  The propagation loop in AC6 checks 

the consequences of removing the variables that are stored in Q.  When a vertex ai is chosen 

from Q, AC6 searches list S to check if ai was a support for some other vertex xj.  It does so by 

checking list S for S[xj, aj].  If it was a supporting variable then a new support must be found for 

xj, if none is found xj will be removed and in turn be stored in list Q.  If there is a support then 

this new support will replace aj and stored in list S.  The algorithm continues in this manner until 

the list Q is empty at which point every remaining vertex in graph G will have supporting 

variables in each partite of graph G, and thus arc consistent. 

Arc consistency is an effective pruning measure for simple instances of the planted motif 

problem; however, a stronger consistency is required for more challenging instances [13]. 

  

3.3 Path Consistency 
Path consistency works much like arc consistency, but considers pairs of vertices rather than a 

single vertex which is essentially the same pruning mechanism used in the winnower for k=2.  

We define path consistency formally as: 

 

Definition 8 (Formal Path Consistency):  Given a set of variables X = {x1, x2, …, xn} we say  

pair (xi, xj)  X are path consistent with another variable xk  X (where xi ≠ xj) if for every pair of 

values (a, b)  that satisfies the constraint between  (xi, xj) (there exists) a value c in the domain of 

xk such that (a, c) and (b, c) satisfies each constraint between (xi, xk) and (xj, xk).  We will call 

such a variable xk a supporting variable of pair (xi, xj). 

 

Graphically the figure below show’s an example of enforced path consistency: 
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The figure on the left is an example of a graph that is arc consistent but not path consistent. The 

dotted edges in the figure on the right indicate edges that would be removed if the graph was to 

be made path consistent.   

  We use this idea of path consistency to prune away spurious edges. The same algorithm 

(AC6) is used with a slight modification.  Instead of search for supporting variables for a single 

vertex xi we will search for supporting variables for edges (xi, xj).  That is, for every edge (xi, xj) 

we need to search each partite for a support vj such that (xi, xj, vj) forms a triangle. 

Path consistency is a more powerful pruning mechanism than arc consistency; however, 

it is still insufficient for difficult instances of the planted motif problem [13].  One way to 

increase the pruning power is to increase to 4-consistency (k-consistency) which is equivalent to 

the winnower method for k=3.   

 

3.4 k-consistency 
K-consistency generalizes the notion of arc consistency and path consistency to sets of variables: 

 

Definition 8 (k-consistency):  Given a set of variables X = {x1, x2, …, xn} we say a sub set of 

variables X’  X of size k-1 are k-consistent if for every set of values A = (a1, a2, … , at) that 

satisfies the constraint between all variables in X’ there exists a value c in a variable uk such that 

no constraint is violated for (a1, a2, … , at, c).  Such a variable uk is a supporting variable of X’. 

 

Given this formal definition, arc consistency is equivalent to 2-consistency and path 

consistency is equivalent to 3-consistency.  For the winnower, Pevzner et al. show that k=3 is 
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sufficient as an effective pruning mechanism, which would be equivalent to 4-consistency for 

our CSP.  The tradeoff for this high degree of accuracy is a rather high time complexity of O(N4).  

We will now look at a new approach which combines path consistency along with the notion of 

closest string for a time complexity of O(N3 + dd). 

 

3.5 Content Sensitive Analysis 
Instead of increasing to 4-consistency we add a new constraint to our path consistency.  Not only 

do we enforce path consistency but for every pair of nodes that have support we also ensure there 

is a center string among these three nodes we are analyzing.  The figure below shows a graph 

that is path consistent on the left.  The figure on the right shows that a center string c must also 

exist if the edges in the graph on the left are to remain. 

 
 

 

How the algorithm works is described below. 

 

3.5.1 Content Sensitive Analysis Implementation (PC6+CS) 
The PC6+CS maintains an array of lists S where S[vj] stores all a list for which vj is the 

supporting variable for all pairs of nodes (xi, xj).  The algorithm checks that there is a support vj 

for each edge (xi, xj) in graph G.  If there is no such variable vj, then edge  (xi, xj) will be 

removed and stored in list Q for future propagation.  If there is a support vj found the algorithm 

then uses the CS algorithm to find if there exists a center string c for nodes (xi, xj, vj).  If such a 

string exists (xi, xj) is stored in list S under otherwise (xi, xj) is removed from G and (xi, xj) is 

stored in list Q for future propagation. 
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The propagation loop in PC6+CS checks the consequences of removing the variable pairs 

that are stored in Q.  When a pair (xi, xj) is chosen from Q, PC6+CS searches list S to check if (xi, 

xj) was a supporting edge for some other pair of vertices (xi, a) or (xi, a).  It does so by checking 

list S[xi] for (xj, a), and S[xj] for pair (xi, a).  If it was a supporting edge then a new support must 

be found for both (xj, a) and (xi, a), if none is found (xj, a) and (xi, a), will be removed and in turn 

be stored in list Q.  If there is a support vj then, as before, a center string c will be sought after.  If 

such a string c is found then vj will replace aj and stored in list S.  The algorithm continues in this 

manner until the list Q is empty at which point every remaining vertex in graph G will have 

supporting variables in each partite of graph G, and that satisfies our constraints. 
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4 Experimentation and Results. 
In this section we will describe how we generated samples as well as describe our results of 

running AC6, PC6 and PC6+CS on this these samples.  All analysis was based on 

implementations in Java. 

 

4.1 Sample Generation 
To test the effectiveness of our algorithm it is important to be able to generate random samples.  

Our sample generation algorithm works as follows: 

The algorithm takes in as input numbers t, n, l and d.  Given these numbers the algorithm 

will generate set of sequences S = {s1, s2, …, st} where each si is of length n and each position in 

si is a nucleotide selected at random from alphabet ‘A’, ‘C’, ‘T’, or ‘G’.  A string s of length l 

will be randomly generated using this same alphabet.  A set of strings M = {m1, m2, …, mt} are 

generated where each mi is a d-variant of s (i.e: DH(s, mi) = d for all i).  The algorithm then 

randomly selects a position j in each sequence si and plants string mi at this position replacing all 

nucleotides in sequences si from j to j+l. 

 

4.2 Results 
We test the performance and limitations of AC6, PC6 and PC6+CS on several instances of the 

Planted (l, d)-Motif Problem. 

First we will represent our results based on the (3, 15) problem.  We run tests for each 

algorithm based on parameters t=20, l=15 and d=3.  In instances of the (3,15) problem all three 

algorithms pruned away sufficient edges to expose the signal we are searching for.  The chart 

below is based on the average results obtained from running each algorithm independently on 50 

different samples each. The ‘-‘ indicates a time that is greater than 1 hour. 
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quickly resulting in less iterations and thus a shorter running. A similar observation was also 

made by Pevzner et al. [8]. 

 AC6 tends to become impractical for n > 350 in comparison to PC6 and PC6+CS.  The 

PC6 and PC6+CS find the signal under 10 seconds for relatively long sequence length (n=600).  

For this instance they both have roughly the same running time. 

Secondly we run tests for the (4, 15) problem. For this problem each algorithm is 

executed based on parameters t=20, l=15 and d=4.  We first compare the AC6 with the PC6+CS.  

We randomly generated 50 samples for every value of n; for each sample we run the AC6 and 

then pass this arc consistent graph to the PC6+CS to assess how many edges were not pruned by 

the AC6.  The chart below is based on the average results obtained from running both algorithms 

sequentially.  We see that AC6 is accurate in finding the clique we are searching for n =50 

however AC6 is insufficient for n > 50, and will be non effective for removing any edges at all 

for n ≥ 400.   

 

Sequence 
Length  TIME (s) EDGES

n  AC6   PC6 + CS Initial Edges AC6 prune PC6 + CS Prune

50  1.512  0.401 31520 31140 0 
100  9.612  0.597 163346 151251 11709 
150  2.013  4.441 401516 6753 394374 
200  0.81  9.523 748116 996 746725 
250  0.736  23.255 1202603 132 1202066 
300  1.164  63.515 1763251 23 1762820 
350  1.639  190.054 2433053 12 2432635 
400  2.515  834.385 3211088 0 3210672 

 

We then executed another 50 tests on the (4, 15) problem comparing accuracy and 

efficiency between PC6 and PC6+CS.  First we run PC6 on each sample, once PC6 is finish the 

resulting path consistent graph is sent to PC6+CS to examine how many edges PC6+CS will 

prune from an already path consistent sample.  Interestingly the PC6+CS is slightly more 

accurate and becomes increasingly accurate as n increases, removing a trivial number of edges 

after the graph has been made path consistent.  The running time for of the PC6 become 

impractical (over 4 hours) for n > 300. 
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5 Discussion and Conclusion 

The problem of motif finding plays a very important role in understanding gene regulatory 

mechanisms.  An area of bioinformatics is concerned with modeling this problem in a way that 

will allow computational algorithms to lend aid in locating these motifs.  One such model 

includes the Planted (l, d)-Motif Problem.  In this thesis we have analyzed the efficiency and 

accuracy of several algorithms designed to solve this particular Planted (l, d)-Motif Problem, 

including: the Basic Voting Algorithm, the Winnower and the Closest String.  We have 

presented a new formulation that composes the Planted (l, d)-Motif Problem as a CSP as well as 

introduced a new form of center string constraint consistency.  Experimental results on a Java 

implementation, based on this formulation, locate signals accurately and efficiently for simulated 

data.  However, using this implementation, we were unable to conclude the relative strength of 

this center string consistency when comparing it to the notion of Hamming distance. The 

impractical running times for this implementation did not allow us to test for large values of n 

where the PC6 is known to fail.  This may be due to either a non optimal implementation or the 

relatively slow performance of Java.  Future work may include an implementation in C so that 

we could achieve a practical running time with a large enough value of n such as n≥700 for the 

(4, 15) where the PC6 is known to fail [8].  Running the PC6+CS for these values of n is 

required to analyze the relative pruning strength of this new notion of consistency. 
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Appendex A  
 
Algorithm 1:  AC6 [2, pg. 20] 
 
X ← 2D constraint graph  
Q ← ø  
S[xj , vj] = 0,  vj    D(xj ),  xj   X 
foreach xi   X, cij   C, vi   D(xi) do 

vj  ← smallest value in D(xj) s.t. (vi, vj)   cij  
if vj exists then add (xi, vi) to S[xj , vj] 
else remove vi from D(xi) and add (xi, vi) to Q 
if D(xi) = ø then return false 

while Q ≠; do 
select and remove (xj , vj) from Q; 
foreach (xi, vi)   S[xj, vj ] do 
if vi   D(xi) then 

v’j   ← smallest value in D(xj) greater than vj s.t. (vi, vj)   cij 
if v’j exists then add (xi, vi) to S[xj, v’j] 
else 

remove vi from D(xi); add (xi, vi) to Q; 
if D(xi) = ø then return false 

return true 
 
Algorithm 2:  Closest String [4, pg. 6] 
 
recursive procedure: CSd(s, ∆d) 
Global variables: Set of strings S = {s1, s2, . . . , sk}, integer d. 
Input: Candidate string s and integer ∆d. 
Output: A strings with maxi=1,...,kdH(s, si) ≤ d and dH(s, s) ≤ ∆d if it exists, and “not found,” 
otherwise. 
 
if (∆d < 0), then return “not found”; 
if (dH(s, si) > d + ∆d) for some i   {1, . . . , k} then return “not found”; 
if (dH(s, si) ≤ d) for all i = 1, . . . , k then return s; 
Choose some i   {1, . . . , k} such that dH(s, si) > d: 

P := { p | s[p]   si[p] }; 
Choose any P’   P with |P’| = d + 1; 
for all p   P do 

s’:= s; 
s’[p] := si[p]; 
sret:= CSd(s , ∆d − 1); 
If sret  “not found” then return sret 

return “not found” 
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Algorithm 3: PC6+CS  
 
// initialization  
C ← a 2D constraint graph 
Q ← ø // Q list stores all deleted pairs of variables 
S[n] ← ø // where s[i] stores all pairs of variables supported by i. 
D ← all pairs of variables that have not yet violated any constraint 
 
// begin  
foreach pair (xai, xbj) do // where a and b indicate partites which x is a member 
  foreach partite c where c ≠ a and c ≠ b do 
    vc  ==  checkForSupport(xai, xbj, c))  //return ‐1 if no support found 
    if (vc  ≠ ‐1) and (centerString(xai, xbj, vc))  then 
        S[Vc] ← (xai, xbj) 
    else 
      C[xai][xbj] = 0 
      Q  ← (xai, xbj) 

remove (xai, xbj) from D 
      if D empty return false // no feasible solution 
 
// propagation 
while Q ≠ ø do 

select and remove (xai, xbj) from Q 
  S’ ← each triple (yai, ybi, vc) of variables for which edge (xai, xbj) was a support 
  foreach (yai, ybj)    S’ do 
    if (yai, ybj)   D then 
      vc  ==  checkForSupport(yai, ybj, vc))  //starting at index vc in c 
      if (vc  ≠ ‐1) and (centerString(yai, ybj, vc))  then 
        S[Vc] ← (yai, ybj) 

else 
      C[xai][xbj] = 0 
      Q  ← (yai, ybj) 

remove (yai, ybj) from D 
      if D empty return false // no feasible solution 
return true 
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Algorithm 4: Basic Voting Algorithm [8, pg. 4] 
 
Create two hash tables V and R and set the value of each entry to be 0 
{Table V keeps the number of votes received by each length-l sequence s.  Each length-l 
sequence, received t votes is a candidate for motif.  Hash table R ensures that each length-l 
sequence receives at most one vote from each input sequence.  Si{j} is the j-th character in the i-
th input sequence Si and H(s) is the hash value of a length-l sequence s.} 
C ← ø 
for i ← 1 to t 
  do for j ← 1 to n – l + 1 
    do for each length‐l sequence is N(Si[j … j + l – 1],d) 
      do if R[H(s)] <> i 
        then V[H(s)] ← V[H(s)] + 1 
          R[H(s)] ← i 
for j ← to n – l + 1 
  do for each length‐l sequence s in N(Si[j … j + l – 1],d) 
    do if V{H(s)]= t 
      then insert s into C 
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