Computer Modeling of Molecular Genetic Events using
Content Sensitive Analysis

by
Curtis Stodgell
A THESIS SUBMITTED IN PARTIAL FULLFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF HONOURS IN COMPUTER
SCIENCE

Irving K. Barber School of Arts and Sciences

M

B

N

THE UNIVERSITY OF BRITISH COLUMBIA OKANAGAN CAMPUS
March 2007
©Curtis Stodgell, 2007

)
i)

Abstract:

The problem of motif finding plays an important role in understanding the development, function
and evolution of organisms. The Planted (/, d)-Motif Problem first introduced by Pevzner and
Sze [13] is a variant model of motif finding that has been widely studied. Nevertheless, despite
the many different algorithms constructed to solve this problem, it is far from being solved
entirely [5]. We analyze a number of algorithms including: the Basic Voting Algorithm, the
Winnower and the Closest String. One thing that has become ubiquitous among these algorithms
is the tradeoff between efficiency and accuracy. We formulate the motif-finding problem as a
constraint satisfaction problem and introduce a special form of constraint consistency. By using a
fixed-parameter algorithm for the closest string problem [4], we develop a propagation algorithm
that enforces the new constraint consistency with the same worst-case time complexity as that of
the standard path consistency algorithm. Experiments on randomly generated sequences indicate

that our approach is effective and efficient.

Table of Contents

ADSIFACT ...ttt et ettt e st e st et e st eaa e e anees 1
Table Of COMEENTSoooouiiiiiiiii ettt e st e s e e st e e sabeeenabeeea 2
Lo INErOAUCTIONoooiiiiiiiiiii ettt ettt ettt et e b e s 3
2. Planted Motif Problem...............coooiiiiiiiiiiiiiieee et 5
1. Definitions and NOAtIONc...coiuiiiiiiiiiieee ettt 5

2. Winnowing Approach: Locating Signals via WiNNOWing.............ccceeeeveerienveenieenveennnnns 6

3. A Fixed Parameter Algorithm for the Closest String.........c.cceccvveevcieeeriieeriie e 9

4. Basic Voting AlGOTTtRMcoooiiiiiiieiiiece e 11

3. Overview of Content Sensitive CONSISTENCYcocviriiiiiiiiiiiiniieceeceeeeee e 13
1. Constructing the Constraint Graphccceeviieiiienieeiiieieeieee e 14

2. ATC COMSISEEIICY ...veeeiieniieeiiieiie et eiteete e tteeteesteeeebeesseeebeenseeenseesstesnseesssaenseesssesnseenseeenns 16

1. Arc Consistency Implementation (ACO)ccceeevuieeieeiieenieeiieeie e 17

3. Path CONSISTENCY ...euvviiiieiiiieiieeiie ettt ettt ettt ete ettt e e teeebeebeessbeesaessseensaessseenseas 18

T oT0) 115 1753 1 Lo 2RSSR 19

5. Content Sensitive ANalySiS (CSC) ..uuiiiiiiiiiiieiiieeeeeciee et e e veeesvee e 20

1. CSC Implementation (PCOTCS)ooviiiiiiiiiieeieeeeee ettt 20

4. Experimentation and Resultscoooiiiiiiiiiiii e 22
1. Generation Of SAMPIEScccuiiriiiiiieiie ettt et et e e e enes 22

2 RESUILS .. ettt ettt sttt b et eneenaes 22

5. Discussion and ConCIUSION ..ottt 26
APPEIAIX A L.ttt et e et e bt e e bt e e et e et e e e bt e e abeeenabee e 27
REFCICIICES ...ttt ettt e e e e st e e et e e st e e e e 30

1 Introduction:

Transcription factors are proteins that bind to DNA in order to regulate the expression of genes
through the activation or inhibition of transcription mechanisms. Locating these sites is an
integral part of understanding the regulatory process. Computational tools are an invaluable
method used to locate these particular sites and this general problem has been termed motif
finding.

Essentially the motif finding problem is the problem of finding common patterns among
a set of sequences. A simple model for the problem is as follows: Given a sample of random
sequences can we find a common unknown pattern (motif) that is hidden at random locations in
the sequences? If the motif was not subject to mutations it would be relatively easy to locate
using a basic brute force algorithm; however, in biology the sequences being analyzed are
subject to mutations and therefore the motif cannot be assumed to be exact. As such, it makes
sense to construct a model that will allow the patterns we are searching for to have an arbitrary
number of mutations [13].

Buher and Tompa [8, 7] found limitations for this particular problem. They found that
when the number of sequences, the length of sequences and the length of the pattern are fixed, if
the number of mutations in the pattern is larger than a particular threshold then it is highly
improbable that any algorithm would be able to find such a pattern due to an abundance of
random patterns [8, 7]. However, there have been many algorithms suggested for instances of
this problem that do not exceed this threshold [8].

In this thesis we analyze a number of different algorithms that attempt to solve the
problem in several different ways. These include A voting algorithm by Leung and Chin [8] that
locates common motifs by enumerating all neighbors of each / length substrings in a given set of
sequences, as well as a combinatorial approach by Pevzner and Sze [13] that essentially reduces
the motif finding problem to locating cliques in multi-partite graphs. Closely related to the
planted-motif problem are the closest string problem and the closest substring problem. Both of
these problems are NP-hard, but the closest string problem can be solved in linear time assuming
that the number of mutations is a fixed constant [9].

In the Winnower Pevzner and Sze designed an algorithm that prunes spurious
similarities, which enables us to easily locate the signal we are searching for. They did so with

k+1

an algorithm that has a time complexity of O(N" ") and found that the algorithm was accurate for

3

k=3. Our contribution includes a variation of the Winnower combined with the closest string.
We have designed an algorithm that essentially runs as the Winnower for k=2 along with the
closest string algorithm to construct an algorithm with a time complexity of O(N°> + dd) where d
is the number of mutations and constant.

This thesis is organized as follows: In chapter 2, we will discuss numerous algorithms
that approach The Planted (/, d)-Motif Problem in various ways, each algorithm achieving a
different level of both accuracy and efficiency. In chapter 3, we present our approach to the
problem, including the CSP formulation, the propagation algorithm for the stronger notion of
path consistency and its implementation. In chapter 4 we present our results and allegorize the
pruning power and efficiency of our approach. In chapter 5, we will conclude our results and

analyses, as well as propose future challenges.

2 Planted Motif Problem

In this chapter we introduce formally the Planted (/, d)-Motif Problem [13] as well as discuss a

variety of existing algorithms designed to solve this problem.

2.1 Definitions and Notation

In order to understand how the motif finding problem can be solved we will give a formal
definition based on a variant model of the problem presented by Pevzner and Sze [13], as well as
define notation we will use throughout this thesis.

The methods we will be using to solve this particular problem will usually be executed

partially by comparing the Hamming distance between two strings.

Definition 1 (Hamming Distance): Hamming distance is a simple concept in an area of
mathematics termed information theory. It is defined simply as the number of indices that two
strings differ. For example given two strings “ATAGTCA” and “TTTGTCA” we can see that

they differ at indices 1 & 3; therefore, the hamming distance between these two strings is 2

1234567

ATAGTCA
TTTGTCA

In this paper the notation Dy(s, s’) will be used to denote the hamming distance between

a string s and s .

Definition 2 (Planted (I, d)-Motif Problem): A motif is a single or repeated pattern. The
problem of motif finding deals with locating common patterns among a set of sequences. What
makes the problem difficult is the fact that this pattern is not exact and is allowed to differ by a

specific number (referred to as mutations). Formally we can describe the problem as follows:

Assume there exists a motif m of length /; given number sequences each of length #n, the
problem is to find a planted motif m* of length / in each of the # sequences such that m * differs in

at most d positions from m.

A more general problem is the closest substring problem which has been shown to be
NP-hard [9]. The difference between the planted motif problem and the closest string problem is
that for the planted motif problem, it is guaranteed that there exists at least one common
substring that occurs in each of the sequences. Whereas for the closest string problem, it is not
guaranteed that there will be such a common substring among each of the sequences. The
parameters / and d in the Planted (/, d)-Motif Problem have a significant impact on the practical
difficulty of the problem.

Some particularly difficult Planted (/, 4)-Motif problem instances proven to be
probabilistically challenging are (9,2), (11, 3) and (15, 4) [1]. These problems are considered
challenging because given any two instances of a mutated (/, d)-signal there is a high probability
that non-signals (spurious similarities) will be randomly generated such that they very closely
resemble the proper signal. Many techniques have been designed to solve these challenging

problems which will be looked at below.

2.2 Winnowing Approach: Locating Signals via Winnowing.
Pavel A. Pevzner and Sing-Hoi Sze [4] take a combinatorial approach to the motif finding
problem by reducing it to a clique finding problem. Pevzner et al. recognize that in each
sequence there are spurious signals that occur at random that tend to hide the real signal. Most
algorithms tend to focus directly on the process of locating the real signal; however, the
winnower takes an opposite approach. It focuses on the spurious signals (rather than the signal
itself) and removes these spurious similarities incrementally until the signal we are looking for is
no longer difficult to find. This elimination process is, however, non-trivial and time consuming.
It is important to note that the Winnower algorithm only considers signals with Hamming
distance as criterion for an edge and not insertions or deletions (signals will all be the same
length). This is done for simplicity; however the algorithm could easily be modified to account

for these constraints [8].

The Winnower is set up to reduce the Planted (/,d)-Motif problem to finding large cliques
in a multi-partite graph. Given a set of # sequences S = {s;, 52, ..., s;} each of length n, a
parameter / (length of the signal) and a number d (number of mismatches), construct a graph
G=(V, E) in the following way:

Vertices will correspond to substrings of each sequence, that is, for every sequence s; of
the set S = {s, 52, ... ,s;} and for each index j in sequence s; we construct a vertex v = V that will
represent the substring s;; of length / from index j to (n-1) + /; thus there is a total of #((n-1) + /)
vertices.

There is an edge between v; and v; if and only if Dy (vi, vj) < 2d and v; and v; correspond
to substrings from separate sequences.

A clique in a graph G = (V,E) is a subset C such that any two vertices in C are connected
by an edge. Given any graph F = (V, E), constructed as described by the Winnower, the question
if F contains a clique of at least size &, can be asked. Once such a clique has been found, it will
also be the case that this clique contains the original signal being sought after. An example of 4

sequences (partites) forming an extendable clique can be seen in the figure below:

GTAAT
S$1= TGCACCGTCATTCGG

S2= ATAATGTTGES__CCAGA

$S3= GCTCTGCATCGTAAC

i
e

S4= TCCGATGTCGTAAGA

The clique finding problem is a graph-theoretical NP-complete problem [6]. There has
been recent interest in studying the problem of finding hidden cliques in an otherwise randomly
generated graph [6]. The planted motif-finding problem is a special case of the hidden clique
problem in that the underlying graph is a multi-partite graph.

The Winnower algorithm uses the principle of exploring these particular graphs and will
remove edges that are proven to not be part of the clique we are searching for. To describe how
the winnower removes edges Pevzner and Sze use the notation of an extendable clique. “We say
that a vertex u is a neighbor of a clique C = {v,,...,w} if {v;, ..., v, u} is a clique in the graph.

We define a clique to be extendable if it has at least one neighbor in every part of the multipartite

7

graph G. We define an edge to be spurious if it does not belong to any extendable clique of size
k. One way to impose increasingly strict conditions as k increases is to ensure that all spurious
edges are deleted after winnowing and only extendable cliques remain in the final graph.” 3, pg.
3]. The essential idea of the winnower is to allow only extendable cliques of size & to remain as k
increases; in doing so spurious edges are effectively removed.

This is also the approach that was taken by Vingron & Agros[13, 14] and Vingron &
Pevzner [13, 15] for k =2. However it was observed by Pevzner & Sze that when & < 2, filtering
edges that are not part of an extendable clique is too weak for pruning spurious edges [13]. Their
observations indicate that only when k = 3 does the method become effective at removing
enough spurious edges in such a way that the clique we’re searching becomes evident.

The winnower removes edges in the following way: Given a multipartite graph G = (V,E)
and a number k = 1, the algorithm checks every vertex in G and applies the following test. A
vertex u will pass the test if there exists at least one neighbor v; in each partite set of G (ei: (u, v;)
is an edge in each s;), if vertex u fails this test, it will be deleted. In the illustration below, for a
multipartite graph with four partite sets, vertex v;; will not be deleted (v;; has as edge in S>, S3,

S4); however, vertex v;»> will be deleted (v;, has an edge in S>and S; but no edge in S,).

S1 SE S3 Si S1 552 Sﬂ- 84

v Vi v vai v
Vi X viz p Va2 viz

Vil

viz

¥in Vin Vin Vin Vin Vin

For k = 2 the algorithm will now check each edge (1, w) in the graph G. The edge (u, w)
will pass the test if there is a vertex vi for each partite s; such that {u, v;, w} is a triangle. If there
is no such vertex v;, edge (u, w) will be deleted. In the illustration below, edge (v;;, v2,) will not

be deleted; however, edge (v;2, v2;) will be deleted.

Si S: Ss S. Si S: Ss S

Vi1 vai v v v
V12 W22 Va2 V22 Va2
Vin Vin Van Vin Vin Vin Vin Vin

So, as k increases the conditions for edge removal become much stronger. The algorithm
continues in this fashion for k = 3; the algorithm selects each triangle (u, w, x) to apply the
similar test for the other values of k. This triangle will pass the test if there exists at least one
vertex v; in each partite set s; if {u, v;, w, x} is a clique of size 4. Otherwise the edges (u, w), (w,
x) & (u, x) will be removed from the graph.

Winnower is an iterative algorithm that removes inconsistent edges from a graph until
locating extendable cliques of size k become a trivial problem. The construction of the graph for
Winnower takes O(N?) time, where N is the length of all sequences in the set S. The pruning
power of Winnower increases as k increases, but so does the running time since the running time
complexity of the Winnower is O(Nkﬂ). Pevzner and Sze point out that for many instances of
the Planted-(/, d) Motif Problem k = 3 is sufficient for finding extendable cliques which are
meaningful. However the Winnower also requires a large amount of time and memory; as a

result it becomes very slow for large samples [13].

2.3 A Fixed-Parameter Algorithm for the Closest String Problem.
The Closest String problem is an important problem in many areas such as computational
biology, coding theory and consensus word analysis [4][9]. The Closest String problem can be

given the following general definition:

Definition 3 (Closest String Problem): Given a set S = {s;, s, ..., sx} of # strings of length n,

and a number d the problem is to find a center string s’ such that Dy(s’, s;) < d for all s; = S.

Closest string is an NP-complete problem; however, when we are dealing with
applications of computational biology d is quite small. Jens Gram & Rolf Niedermeirer [4]
present a fixed-parameter algorithm with an exponential growth complexity of O(¢”). This is
particularly important for the motif finding problem considering the value d is constant and quite

small (range of 1 ~ 7).

Definition 4 (Closest string notation): For a given string s of length /, s[p] will denote the
character at position p in s, where 1 <p </. Given a set of strings S = {sy, s, ..., Sx}, where each
string in the set is of length /, we say a string s is an optimal closest string for S if and only if
there is no string s’ such that Dy (s, ;) <Dy (s, s;) for all 5; = S. The example below shows a

central string s with Dy (s, s;) = 2 for all s; & {5, 52, 3, 54, S5, S6}.

S1: ACCGCTA Sz2: ATAACTT
S3: ATAGGGA ATAGCTA S4: GTATCTA
Ss : ATATATA Ss : ATAGACA
d = 2

Given a set of k& strings of length /, we can create a k x / character matrix from this set of
strings. The term columns of a Closest String matrix are in reference to this particular matrix.
We say a particular column of this matrix is a dirty column if there are two or more differing
characters in the column. For the example below the S matrix has 8 dirty columns while the T

matrix has only 3 dirty columns.

10

TGTAGCTA CGTAGCTG
S= CTACAAGG T= CGTCAATG
GGTAGCTG CGTAGCTG

Bounded search tree is one of the basic techniques used in designing fixed-parameter
algorithms for a variety of problems. The algorithm for Closest String in Appendix A is a
recursive procedure presented by Gramm & Niedermeirer that is proven to find a central string s
if such a string exists for a given set of strings [4].

Initially, before calling the procedure, Gramm & Niedermier point out that if there are
more than kd dirty columns, of the Closest String matrix S, then the instance is rejected (no
center string can be found for given value of k & d). Otherwise the method is called with any
arbitrary string s; < S as the candidate string s and an integer value d as parameters. If there is
another string s; = S (where s; # 5;), where Du(s, s;) = 4 and /& > d, then a position is selected in
the candidate string and changed to match that of string s; at the same position such that Dy(s, s;)
= (h-1). The algorithm continues in this fashion until either s moves to far away from s; or we
find a solution to the problem (a center string s’ is found). Gramm & Niedermier point out that
when careful sub cases of this recursion are selected the upper limit on the size of this search tree

is O(d”), where d is constant.

2.4 Basic Voting Algorithm

This section will describe the Basic Voting Algorithm (BSV) created by Leung and Chin [8]
which is a variant of an algorithm first proposed by Waremann et al. [8, 16]. We will describe
the BVR using the same notation as defined by the Planted (/,d)-Motif Problem.

Given a set of sequences S and two numbers / and d, the BVA will iterate through each
sequence s; = S and generate /-length substrings from each position in s; from index 0 to index
(n-1) — 1. For each /-length substring the algorithm will generate all d variants and cast a vote on
each variant generated. Any variant generated will get one and only one vote, per sequence,
regardless of the fact that an identical variant is generated at a later step. When casting votes on
variants in this way, it will be the case that motif m will have # number of votes.

The BVR trades a lower time complexity O(n#(31)?) for an increased space complexity

O(n(3l)d1 + nt), in comparison to a brute force algorithm which has complexities O(nt4l) and

11

O(nt) respectively [8]. Leung et al. show the BVR to be efficient for solving many Planted (/, d)

Motif Problem instances [8].

12

3 Overview of Content Sensitive Consistency (CSC)

The problem of motif finding can be formulated as a constraint satisfaction problem (CSP).
Formulating in this way allows us to detect and remove spurious similarities via the use of
constraint propagation techniques that enforces local consistency. This process works similar to
the methods used in the winnower approach with equivalent time complexities.

A CSP is a combinatorial search problem — well studied in the area of Artificial
Intelligence. Essentially a CSP can be defined as: given a set of variables one must assign each
variable a value that will satisfy a predefined number of constraints. Often a CSP requires a

heuristic and combinatorial search method to be solved in reasonable time.

Definition 6 (CSP): A CSP consists of: A set of variables X = {X}, X, ..., X,,} and a set of
constraints C = {C}, C5, ..., Cp}.

Each variable X has a set of 1 possible domains D = {D;, D, ..., D;} where for each
value j, D; = D defines a possible value. Each constraint is defined over a subset of variables
and specifies the allowable combinations of values for that subset. Each state of this problem is

defined by the assignment of values to a partial or a complete set of variables.

We say an assignment is consistent when a variable takes on a value that does not violate
any constraint C; = C for all of i. An assignment is complete when all variables have a value
assigned (not necessarily satisfying all constraints). A solution to a CSP occurs when an
assignment is both consistent and complete.

A general way to solve a CSP is to incrementally make assignments to variables in a
consistent way until a complete assignment is achieved. There are many methods available to
perform this operation; however, because the CSP is NP-hard, most algorithms have a time
complexity that is exponential. There are however, many algorithms that can achieve lower
running times when based on particular problem specific features. The CSP can be used to
formulate many different existing problems. We show how to formulate the clique finding

problem as a CSP.

Definition 7 (Motif finding as a binary CSP): Given a set of sequences S for an instance of the

motif finding problem, we can define an instance of a CSP whose variables X correspond to S.

13

Each variable x; = X will have a set of possible domains D = {D,, D, ..., D¢,.;).;} where each
domain value will correspond to each /-length substring. For each pair of variables, there is a
constraint requiring that the two substrings corresponding to the two domain values, assigned to

the two variables, must have a Hamming distance less than or equal to 2d.

A binary CSP can be represented as a constraint graph where each node represents a
variable and each arc represents constraint between two variables. The constraint for an arc is
that the Hamming distance between the two /-length substrings (relative to the nodes) must be
less than 2d. This constraint graph is constructed in much the same way as the graph in the

winnower.

3.1 Constructing the Constraint Graph:

Our graph construction algorithm takes in as input a set of # sequences S = {s;, 52, ..., s/} (each
of length n), a parameter / (length of signal) and a number d (number of mismatches). Given this
input, a graph G=(V,E) will be constructed in the following way:

The algorithm iterates through each sequence in the set S and constructs vertices that
correspond to substrings of each sequence, that is, for every sequence s; of the set S and for each
index j in sequence s; we construct a vertex v £ V that will represent the substring s;; of length /
from index j to (n-1) + [; for a total of #((n-1) + /) vertices.

For example given any arbitrary sequence s; the figure below illustrates how the sequence

would be split into the vertices corresponding to substrings.

=1
=0

S =ICGGTCAGTGC. .. TAGGAATC.

j=(n-1) -1

V. CGGTCAGT _
v: GGTCAGTG

Vi TAGGAATC

14

After running this procedure across all t sequences we would achieve a multi-partite graph

similar to figure below:

S1 S»
OO @

©©

@ @
R

After this vertex constructing process the algorithm iterates through each vertex v; in each

16IGY:;

Jjth partite S; and compares v; against every other vertex in each remaining partite. An edge
between two vertices will correspond to vertices that have a hamming distance less than 24, that
is, we connect vertices v; and v, by an edge if and only if Dy (v, vas) < 2d where v; and v, are
from separate sequences.

Constructing a graph in this way will encapsulate the signal in a clique; if we select any
arbitrary edge between any two vertices, corresponding to a signal, that edge will have a
maximum hamming distance of at most 24 [13].

However constructing the graph in this manner also gives rise to many spurious edges
that are not part of the clique we want to find. In order to prune these edges we use constraint
propagation. The main idea of constraint propagation is to repeatedly reduce the domain of each
variable in order to be consistent with its arcs. Reducing the domains in this manner is what
makes constraint propagation an effective pruning mechanism. Applying constraint propagation
is what is known as achieving local consistency.

The requirement of local consistency conditions are to take a CSP problem P and map
that problem into another problem P’ without altering the original problem’s solutions. This
mapping is referred to as constraint propagation. The main idea here is to create a problem that is
less complex by reducing the domains of variables by applying constraints or adding new ones.
There are several such local consistency conditions that exist; the ones we will concern with here

are arc consistency, path consistency and the general case k-consistency.

15

3.2 Arc Consistency

Arc consistency is one of the simplest forms of local consistency and is a process equivalent to
the Winnower for k=1. To achieve arc consistency we apply an algorithm that will remove all
unsupported values from the domains of individual variables to return a reduced CSP that is
easier to solve (or find the problem to have no solution). Generally we say a CSP P is arc
consistent if each of a variable’s admissible values in P is consistent with every other variable’s

admissible values in P. Formally:

Definition 7 (Formal Arc Consistency): Given a set of variables X = {x;, x», ..., x,} we say
variable x; = X is arc-consistent with another variable x; € X (where x; # x;) if for every value g;
in the domain x; (there exists) a value b; in the domain of x; such that (a;, b;) satisfies each

constraint between x; and x;. We will call such a variable b; a support of a;.

Graphically we can illustrate how arc consistency works with the following binary network:

We see S; is arc consistent with S, & S3. S3is arc consistent with S; & S». S»is arc
consistent with S3; however not with S;. This is because the assignment S,= 1 does not
correspond to any value for S; (no supporting variable for S>=1). We can therefore remove 1
from the domain of S,. Now S; is no longer arc consistent with S,, because S; = 2 does not
correspond to any value for S>. We therefore remove 2 from the domain of S;. We continue to

remove values until we end up with a new problem which is arc consistent:

16

We can use this idea of arc consistency to prune away spurious edges. Given a graph (as
constructed by our graph construction algorithm) G=(V,E) which is a multi-partite graph with ¢
partites, we simply ensure that for every vertex v in G there exists a supporting variable u in each
partite of G. That is, any given vertex v that remains after arc consistency is performed on G, will
have the property such that there exists a supporting vertex v in each partite - meaning (u, v) is an
edge. Any vertex that does not have this property is not arc consistent and therefore will be
removed along with any edges that are connected to it. The algorithm we use in CSC is AC6 as

proposed by Bessiere and Cordier [3].

3.2.1 Arc Consistency Implementation (AC6)
There are several ways to implement arc consistency. The GAC3 algorithm proposed by
Mackworth [2, 10] is a non optimal algorithm that achieves arc consistency in O(er’d”") time
and O(er) space (where 7 is the greatest rank among constraints) [2]. An algorithm that is shown
to be optimal is the AC4 proposed by Mohr and Henderson, with a time complexity of O(ed”)
and a space complexity of O(ed”) [2, 11, 12]. AC6 is an algorithm proposed by Bessiere and
Cordier [3] that compromises between the GAC3 and the AC4 insofar that it maintains the
optimal run time complexity of the AC4 (O(ed”)) with a lower space complexity closer to that of
GAC3 (O(ed)).

The main idea of the AC6 is not to count how many supporting vertices each vertex has
(such as the GAC3 does), but rather to ensure each vertex has at least one supporting vertex in
each partite. Upon initialization AC6 incrementally iterates through each vertex in the graph

and, for each vertex v AC6 attempts to find a supporting variable « in each partite for vertex v. If

17

such a vertex u is found in each partite, then v will remain, otherwise it will be deleted. Briefly
the AC6 algorithm (Appendix A) works as follows: The AC6 maintains a list S where S[xj, v/]
stores all supporting values for which v; is the supporting variable for x;. The algorithm checks
that there is a support v; for each variable x; in graph G. If there is no such variable v;, then x;
will be removed and stored in list Q for future propagation. The propagation loop in AC6 checks
the consequences of removing the variables that are stored in Q. When a vertex a; is chosen
from Q, AC6 searches list S to check if a; was a support for some other vertex x;. It does so by
checking list S for S[x; a;]. If it was a supporting variable then a new support must be found for
x;, if none is found x; will be removed and in turn be stored in list Q. If there is a support then
this new support will replace a; and stored in list S. The algorithm continues in this manner until
the list Q is empty at which point every remaining vertex in graph G will have supporting
variables in each partite of graph G, and thus arc consistent.

Arc consistency is an effective pruning measure for simple instances of the planted motif

problem; however, a stronger consistency is required for more challenging instances [13].

3.3 Path Consistency
Path consistency works much like arc consistency, but considers pairs of vertices rather than a
single vertex which is essentially the same pruning mechanism used in the winnower for k=2.

We define path consistency formally as:

Definition 8 (Formal Path Consistency): Given a set of variables X = {x;, x2, ..., x,} we say
pair (x; x;) = X are path consistent with another variable x; € X (where x; # x;) if for every pair of
values (a, b) that satisfies the constraint between (x; x;) (there exists) a value c in the domain of
xi such that (a, c¢) and (b, c) satisfies each constraint between (x;, x;) and (x;, xk). We will call

such a variable x; a supporting variable of pair (x; x;).

Graphically the figure below show’s an example of enforced path consistency:

18

The figure on the left is an example of a graph that is arc consistent but not path consistent. The
dotted edges in the figure on the right indicate edges that would be removed if the graph was to
be made path consistent.

We use this idea of path consistency to prune away spurious edges. The same algorithm
(AC6) is used with a slight modification. Instead of search for supporting variables for a single
vertex x; we will search for supporting variables for edges (x; x;). That is, for every edge (x; x;)
we need to search each partite for a support v; such that (x; x;, v;) forms a triangle.

Path consistency is a more powerful pruning mechanism than arc consistency; however,
it is still insufficient for difficult instances of the planted motif problem [13]. One way to
increase the pruning power is to increase to 4-consistency (k-consistency) which is equivalent to

the winnower method for k=3.

3.4 k-consistency

K-consistency generalizes the notion of arc consistency and path consistency to sets of variables:

Definition 8 (k-consistency): Given a set of variables X = {x,, x», ..., x,} we say a sub set of
variables X~ = X of size k-1 are k-consistent if for every set of values A = (a; a, .. a;) that
satisfies the constraint between all variables in X’ there exists a value ¢ in a variable u; such that

no constraint is violated for (a; a, .., a, c). Such a variable uy is a supporting variable of X"

Given this formal definition, arc consistency is equivalent to 2-consistency and path

consistency is equivalent to 3-consistency. For the winnower, Pevzner et al. show that k=3 is

19

sufficient as an effective pruning mechanism, which would be equivalent to 4-consistency for
our CSP. The tradeoff for this high degree of accuracy is a rather high time complexity of O(N*).
We will now look at a new approach which combines path consistency along with the notion of

closest string for a time complexity of O(N° + d%).

3.5 Content Sensitive Analysis

Instead of increasing to 4-consistency we add a new constraint to our path consistency. Not only
do we enforce path consistency but for every pair of nodes that have support we also ensure there
is a center string among these three nodes we are analyzing. The figure below shows a graph
that is path consistent on the left. The figure on the right shows that a center string ¢ must also

exist if the edges in the graph on the left are to remain.

S: S:

S £ Ss S 0 Ss
/ Y
P H

.

A ..

o . I
i . kc
¥ " -
. .
N
L]

e — e
I':E) I‘*«E,-"'I I\E:] |€;I

How the algorithm works is described below.

3.5.1 Content Sensitive Analysis Implementation (PC6+CS)

The PC6+CS maintains an array of lists S where S[v;] stores all a list for which v; is the
supporting variable for all pairs of nodes (x; x;). The algorithm checks that there is a support v;
for each edge (xi, xj) in graph G. If there is no such variable v;, then edge (x; x;) will be
removed and stored in list Q for future propagation. If there is a support v; found the algorithm
then uses the CS algorithm to find if there exists a center string ¢ for nodes (x;, x;, v;). If such a
string exists (x; x;) is stored in list S under otherwise (x; x;) is removed from G and (x; x;) is

stored in list Q for future propagation.

20

The propagation loop in PC6+CS checks the consequences of removing the variable pairs
that are stored in Q. When a pair (x; x;) is chosen from Q, PC6+CS searches list S to check if (x;
x;) was a supporting edge for some other pair of vertices (x;, a) or (x; a). It does so by checking
list S[x;] for (x;, @), and S[x;] for pair (x; a). If it was a supporting edge then a new support must
be found for both (x;, a) and (x;, a), if none is found (x;, @) and (x; a), will be removed and in turn
be stored in list Q. If there is a support v; then, as before, a center string ¢ will be sought after. If
such a string c is found then v; will replace a; and stored in list S. The algorithm continues in this
manner until the list Q is empty at which point every remaining vertex in graph G will have

supporting variables in each partite of graph G, and that satisfies our constraints.

21

4 Experimentation and Results.

In this section we will describe how we generated samples as well as describe our results of
running AC6, PC6 and PC6+CS on this these samples. All analysis was based on

implementations in Java.

4.1 Sample Generation
To test the effectiveness of our algorithm it is important to be able to generate random samples.
Our sample generation algorithm works as follows:

The algorithm takes in as input numbers ¢, n, [and d. Given these numbers the algorithm
will generate set of sequences S = {s;, 52, ..., s;} where each s; is of length n and each position in
s; 1s a nucleotide selected at random from alphabet ‘A’, ‘C’, ‘T, or ‘G’. A string s of length /
will be randomly generated using this same alphabet. A set of strings M = {m,, m,, ..., m,} are
generated where each m; is a d-variant of s (i.e: Dy(s, m;) = d for all i). The algorithm then
randomly selects a position j in each sequence s; and plants string m; at this position replacing all

nucleotides in sequences s; from j to j+1.

4.2 Results
We test the performance and limitations of AC6, PC6 and PC6+CS on several instances of the
Planted (1, d)-Motif Problem.

First we will represent our results based on the (3, 15) problem. We run tests for each
algorithm based on parameters =20, /=15 and d=3. In instances of the (3,15) problem all three
algorithms pruned away sufficient edges to expose the signal we are searching for. The chart
below is based on the average results obtained from running each algorithm independently on 50

different samples each. The ‘- indicates a time that is greater than 1 hour.

22

Sequence Length Time (s)

n AC6 PC6 PC6+CS
50 1.805 0.063 0.331
100 19.73 0.179 0.482
150 101.601 0.369 0.687
200 317.01 0.666 0.989
250 720.453 1.045 1.393
300 1320.43 1.552 1.902
350 2190.797 2.095 2.569
400 - 2.76 3.431
450 - 3.621 4.168
500 - 4.64 5.188
550 - 5.792 6.398
600 - 7.058 7.848

The graph below illustrates average time (in seconds) as a function of sequence length n, for

locating the signal.

AC6, PC6 & PC6+CS vs. n
10000
-
1000 il
a
= 100 -
£ o —4—PC6 (with CS)
£ 1
% W e pc6 (noCs)
>
z 1 4—AC6
0.1
0.01
50 100 150 200 250 300,350 400 450 500 550 600

For this (3, 15) problem the graph illustrates an interesting phenomenon that occurs.
Though the AC6 has the lowest time complexity, of all three algorithms, it has the largest
running time in practice. An explanation for this interesting phenomenon is that for PC6 and

PC6+CS the condition for edge removal is much stricter, therefore edges are removed more

quickly resulting in less iterations and thus a shorter running. A similar observation was also
made by Pevzner et al. [8].

AC6 tends to become impractical for n > 350 in comparison to PC6 and PC6+CS. The
PC6 and PC6+CS find the signal under 10 seconds for relatively long sequence length (n=600).
For this instance they both have roughly the same running time.

Secondly we run tests for the (4, 15) problem. For this problem each algorithm is
executed based on parameters t=20, 1=15 and d=4. We first compare the AC6 with the PC6+CS.
We randomly generated 50 samples for every value of n; for each sample we run the AC6 and
then pass this arc consistent graph to the PC6+CS to assess how many edges were not pruned by
the AC6. The chart below is based on the average results obtained from running both algorithms
sequentially. We see that AC6 is accurate in finding the clique we are searching for n =50
however AC6 is insufficient for n > 50, and will be non effective for removing any edges at all

for n > 400.

Sequence
Length TIME (s) EDGES
n AC6 PC6 + CS Initial Edges | AC6 prune PC6 + CS Prune

50 1512 0.401 31520 31140 0
100 9.612 0.597 163346 151251 11709
150 2013 4.441 401516 . 6753 . 394374
200 081 | 9.523 748116 996 746725
250 0736 = 23.255 1202603 132 1202066
300 1164 63.515 1763251 23 1762820
350 1639 = 190.054 | 2433053 12 2432635
400 2515 | 834385 | 3211088 0 | 3210672

We then executed another 50 tests on the (4, 15) problem comparing accuracy and
efficiency between PC6 and PC6+CS. First we run PC6 on each sample, once PC6 is finish the
resulting path consistent graph is sent to PC6+CS to examine how many edges PC6+CS will
prune from an already path consistent sample. Interestingly the PC6+CS is slightly more
accurate and becomes increasingly accurate as n increases, removing a trivial number of edges
after the graph has been made path consistent. The running time for of the PC6 become

impractical (over 4 hours) for n > 300.

24

Sequence
Length TIME (s) EDGES
n PC6 PC6 + CS | Initial Edges | PC6 prune | PC6 + CS Prune
50 0.432 0.393 31353 30970 1
100 1.604 0.451 163793 163403 1
150 3.666 0.503 402334 401941 2
200 9.421 0.593 749111 748711 4
250 46.869 0.725 1202661 1202250 8
300 941.822 ¢ 0.852 1764138 1763728 7

Finally we run a separate test on the (4, 15) problem using only the PC6+CS. For our

implementation of the PC6+CS, the running time becomes impractical for n> 450.

Sequence Length | TIME (s) EDGES
n PC6 + CS | Initial Edges | PC6 + CS Prune

50 0.898 31570 31188

100 2.209 163444 163057
150 4.562 402265 401872
200 9.497 748845 748450
250 22.534 1201833 1201438
300 608.37 1764560 1764160
350 188.156 2433053 2432647
400 834.385 3211088 3210672
450 3754.396 4092968 4092541

The graph below compares the running times of the both PC6 and PC6+CS with time as a
function of n and illustrates that in practice, PC6+CS is a slightly more efficient pruning

mechanism than the PC6.

Time (s) vs n

10000
1000
=
s 100 -
£ —o—PC6
g 10 —B—PC6+CS
1 | T 1
100 150 200 250 300 350 400 450

n

5 Discussion and Conclusion

The problem of motif finding plays a very important role in understanding gene regulatory
mechanisms. An area of bioinformatics is concerned with modeling this problem in a way that
will allow computational algorithms to lend aid in locating these motifs. One such model
includes the Planted (/, d)-Motif Problem. In this thesis we have analyzed the efficiency and
accuracy of several algorithms designed to solve this particular Planted (1, d)-Motif Problem,
including: the Basic Voting Algorithm, the Winnower and the Closest String. We have
presented a new formulation that composes the Planted (1, d)-Motif Problem as a CSP as well as
introduced a new form of center string constraint consistency. Experimental results on a Java
implementation, based on this formulation, locate signals accurately and efficiently for simulated
data. However, using this implementation, we were unable to conclude the relative strength of
this center string consistency when comparing it to the notion of Hamming distance. The
impractical running times for this implementation did not allow us to test for large values of n
where the PC6 is known to fail. This may be due to either a non optimal implementation or the
relatively slow performance of Java. Future work may include an implementation in C so that
we could achieve a practical running time with a large enough value of n such as n>700 for the
(4, 15) where the PC6 is known to fail [§]. Running the PC6+CS for these values of n is

required to analyze the relative pruning strength of this new notion of consistency.

26

Appendex A

Algorithm 1: AC6 [2, pg. 20]

X & 2D constraint graph
Q<o
S[xj, vi] =0, Yvj € D(xj), Vx; X
foreach x; = X, ¢; € C, v; = D(x) do
v; €& smallest value in D(x;) s.t. (vi, vj) € ¢j
if v; exists then add (x;, vj) to S[x;, vj]
else remove v;from D(x;) and add (x;, vi) to Q
if D(x;) = @ then return false
while Q #; do
select and remove (x;, vj) from Q;
foreach (x;, vi) = S[x;, v;] do
if v £ D(x;) then
V'j € smallest value in D(x;) greater than v; s.t. (vi, vj) = ¢;;
if vj exists then add (x;, vi) to S[x;, v'j]
else
remove v; from D(x;); add (x;, vi) to Q;
if D(x;) = @ then return false
return true

Algorithm 2: Closest String [4, pg. 6]

recursive procedure: CSd(s, Ad)

Global variables: Set of strings S ={s4, S», . . ., Sk}, integer d.

Input: Candidate string s and integer Ad.

Output: A strings with maxi=1,__du(s, si) < d and dy(s, s) < Ad if it exists, and “not found,”
otherwise.

if (Ad < 0), then return “not found”;
if (du(s, si) >d + Ad) forsomei {1, ..., k} then return “not found”;
if (du(s, si) <d) foralli=1,..., kthenreturns;
Choose somei {1, ..., k}such that dy(s, s;) > d:
P:={p | slp] ¥ silp]};
Choose any P" = P with |[P’| =d + 1;
forallp =P do
s':=s;
s’'[p] :=silp];
Sret:= CSd(s , Ad - 1);
If s.e: ¥ “not found” then return s
return “not found”

27

Algorithm 3: PC6+CS

// initialization

C & a 2D constraint graph

Q ¢ ¢ // Qlist stores all deleted pairs of variables

S[n] ¢ @ // where s]i] stores all pairs of variables supported by i.
D < all pairs of variables that have not yet violated any constraint

// begin
foreach pair (x,;, Xpj) do // where a and b indicate partites which x is a member
foreach partite cwherec#aandc#bdo
v == checkForSupport(xai, Xuj, €)) //return -1 if no support found
if (v¢ #-1) and (centerString(xai, Xpj, Vc)) then
SIVel € (e Xb)
else
Clxail[xp] =0
Q < (Xai, ij)
remove (Xai, Xpj) from D
if D empty return false // no feasible solution

// propagation
while Q # ¢ do
select and remove (xi, Xpj) from Q
S’ & each triple (yai, Ybi, Vc) of variables for which edge (xai, xpj) was a support
foreach (y.i, yy) = S’ do
if (Vai, Yb;) = D then
Ve == checkForSupport(yai, Y, Vc)) //starting at index vcin ¢
if (v #-1) and (centerString(yai, yuj, Vc)) then
S[Vc] < (yai: ybj)
else
Clxail[xe] = 0
Q < (Yai Vo))
remove (Yai, Ybj) from D

if D empty return false // no feasible solution
return true

28

Algorithm 4: Basic Voting Algorithm [8, pg. 4]

Create two hash tables V and R and set the value of each entry to be 0
{Table V keeps the number of votes received by each length-/ sequence s. Each length-/
sequence, received ¢ votes is a candidate for motif. Hash table R ensures that each length-/
sequence receives at most one vote from each input sequence. S;{;} is the j-th character in the i-
th input sequence S; and H(s) is the hash value of a length-/ sequence s.}
C<o
fori< 1tot
doforj<1ton—-/+1
do for each length-I sequence is N(Si[j ... j + [— 1],d)
do if R[H(s)] <> i
then V[H(s)] € V[H(s)] +1
R[H(s)] & i
forj<ton-/+1
do for each length-I sequence s in N(S;[j ... j + | — 1],d)
do if V{H(s)]=t
then insertsinto C

29

References

[1]S. Balla, J. Davila and S. Rajasekaran. On the Challenging Instances of the Planted Motif
Problem. http://www.engr.uconn.edu/becat/reports/BECAT-CSE-TR-07-2.pdf

[2] C. Bessiere. Constraint Propagation. Handbook of Constraint Programming. Ch. 3, Pg. 29 —
85 ISBN 0-444-52726-5

[3] C. Bessiere, M.O. Cordier. Arc-consistency and arc-consistency again. In Proceedings

AAAI’93, pages 108—113, Washington D.C., 1993.

[4] J. Gramm R. Niedermeier. Fixed-Paramter Algorithms for Closest String and Related
Problems. Algorithmica [0178-4617] Gramm yr:2003 vol:37 iss:1 pg:25

[51J. Hu, B Li, D. Kihara. Limitations and potentials of current motif discovery algorithms.

Nucleic Acids Res 2005, 33(15):4899-4913.

[6] R. M. Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer
Computations, Proc. Sympos. IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y.. New
York: Plenum, p.85-103. 1972.

[7] C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald and J. Wootton. Detecting subtle

sequence signals: a Gibbs sampling strategy for multiple alignment. Science, 262:208-214,
1993.

[8] H. C.M. Leung, F.Y.L. Chin. Algorithms for challenging motif problems. Journal of
bioinformatics and computational biology [0219-7200] Leung yr: 2006 vol: 4 iss: 1 pg: 43 -58

[9] M. Li, B. Ma, L. Wang. 2002. On the Closest String and Substring Problems. Journal of the
ACM, Vol. 49, No. 2, March 2002, pp. 157-171.

30

[10] A.K. Mackworth. Consistency in networks of relations. Technical Report 75-3, Dept. of
Computer Science, Univ. of B.C. Vancouver, 1975. (also in Artificial Intelligence 8, 99-118,
1977).

[11] R. Mohr and T.C. Henderson. Arc and path consistency revisited. Arti-
ficial Intelligence, 28:225-233, 1986.

[12] R. Mohr and G. Masini. Good old discrete relaxation. In ProceedingsECAI’8S8, pages 651—
656, Munchen, FRG, 1988.

[13] P.A. Pevzner, S.H. Sze. Combinatorial approaches to finding subtle signals in DNA
sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol., 269-278, AAAI Press, 2000.

[14] M. Vingron, and P. Argos, 1991. Motif recognitionand alignment for many sequences by
comparison of dot-matrices. Journal of Molecular Biology 218:33-43.

[15] M.Vingron, and P. Pevzner, 1995. Multiple sequence comparison and consistency on

multipartite graphs. Advances in Applied Mathematics 16:1-22.

[16] M.S. Waterman, R. Arratia and D.J. Galas. Pattern recognition in several sequences:

consensus and alignment. Bull. Math. Biol., 46:515-527. 1984.

31

