
Convexity of the Proximal Average
by

Jennifer Johnstone

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE HONOURS

in

The I. K. Barber School of Arts & Sciences

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Kelowna, Canada)

December, 2008

c© Jennifer Johnstone 2008



Abstract

The proximal average operator is recognized for its ability to transform two
convex functions into another convex function. However, we prove with
examples that the proximal average operator does have limitations, with
respect to convexity. We also look at the importance of λ ∈ [0, 1] and
describe an idea of how to plot the proximal average of two convex functions
more efficiently.
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Chapter 1

Introduction

The purpose of this thesis is to investigate the convexity of the proximal
average and elaborate on some of the properties of the proximal average.
In this chapter, we review some of the standard facts on Convex Analysis
followed by a review of some of the basics of the proximal average in Chapter
2, in which we also provide the main results of our investigation into the
convexity of the proximal average.

1.1 Convex Functions

In this section we recall some of the basics of Convex Analysis to help the
reader better understand the results in Chapter 2. We assume that we are
working in a real Hilbert space, H, which is defined as a complete, real, inner
product space. The Hilbert space H is complete if all Cauchy sequences in
H converge, with respect to the defined norm, and H is an inner product
space if an inner product exists such that ‖x‖ =

√
< x, x >, for all x ∈ H.

So we define <· , ·>: H ×H → R such that for all x, y, z ∈ H and λ, µ ∈ R
we have

< x, y > = < y, x >

< λx + µy, z > = λ < x, z > +µ < y, z >

< x, x > ≥ 0 and < x, x >= 0 iff x = 0.

Then working in H we can extend any function g : Ω ⊂ H → R to
g̃ : H → R ∪ {+∞} with

g̃(x) =

{
g(x) if x ∈ Ω,

+∞ if not.

We also define dom g̃ as

dom g̃ := {x ∈ H|g̃(x) < +∞}
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1.1. Convex Functions

Definition 1.1 (Convex Sets). Let Ω ⊂ H then Ω is a convex set if for all
x1 ∈ Ω and x2 ∈ Ω it contains all points

αx1 + (1− α)x2, 0 < α < 1.

Definition 1.2 (Convex Functions). Let C be a non-empty convex set in
H. A function g : C → R is said to be convex on C when, for all pairs
(x1, x2) ∈ C × C and all 0 < α < 1, we have

g(αx1 + (1− α)x2) ≤ αg(x1) + (1− α)g(x2).

For a convex function, g, we see that the line segment

{(αx1 + (1− α)x2, αg(x1) + (1− α)g(x2) : α ∈ [0, 1]}

is always above the graph of g, as illustrated in Figure 1.1. On the other
hand, in Figure 1.2 we see that this is not the case for all pairs (x1, x2) ∈
C × C and all 0 < α < 1.

Figure 1.1: For g = x2 we see that the line segment
{(αx1 + (1− α)x2, αg(x1) + (1− α)g(x2) : α ∈ [0, 1]} is always above
the graph g thus g is a convex function.
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1.1. Convex Functions

Figure 1.2: For g = x4 + 3x3 + 10 we see that the line seg-
ment {(αx1 + (1− α)x2, αg(x1) + (1− α)g(x2) : α ∈ [0, 1]}] is not above the
graph of g at x = −1 thus g is a non-convex function.

We will only consider proper functions, since we are not interested in
degenerate functions such as g = +∞ everywhere.

Definition 1.3 (Proper). A function g is called proper if g(x) > −∞ for
all x and g(x) < +∞ for at least one x.

An example of a proper function would be the indicator function which
is defined on a nonempty set C by

iC(x) =

{
0 if x ∈ C,

+∞ otherwise.

Definition 1.4 (Lower Semi-continuous). A function f is said to be lower
semi-continuous (lsc) at a point x̄ ∈ dom f if

f(x̄) ≤ lim inf
x→x̄

f(x)

While continuous functions are lsc, Figure 1.3 gives an example of a lsc
function which is not continuous everywhere.
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1.2. Subdifferential

Figure 1.3: An example of a lower semi-continuous function (lsc): it is lsc
at x=5 and continuous everywhere else.

1.2 Subdifferential

Since convex functions are not always differentiable we need to introduce
the concept of a subgradient.

Definition 1.5 (Subgradients). Let g : H → R∪{+∞} be a proper convex
function and let x ∈ dom g. A vector s in H satisfying

g(y) ≥ g(x)+ < s, y − x > ∀y ∈ H

is called a subgradient of g at x.

Moreover, the set of all subgradients of g at x is called the subdifferential
of g at x, denoted by ∂g(x) , see Figure 1.4 for a graph of a function with
some subtangent lines. We note that if g is convex and differentiable the
subgradient of g at x is 5g(x) such that ∂g(x) = {5g(x)}. An example of
when ∂g(x) = {5g(x)} is represented in the tangent of Figure 1.4 when x
= 3, as this function is differentiable there.

4



1.2. Subdifferential

Figure 1.4: An example of a convex function with both subtangents and
tangents.

When g is twice continuously differentiable we denote52g(x) its Hessian
at x. The Hessian of g is defined as the following symmetric matrix:

52g(x) =




∂2g(x)
∂x2

1

∂2g(x)
∂x1∂x2

· · · ∂2g(x)
∂x1∂xn

∂2g(x)
∂x2∂x1

∂2g(x)
∂x2

2
· · · ∂2g(x)

∂x2∂xn

· · · ·
· · · ·
· · · ·

∂2g(x)
∂xn∂x1

∂2g(x)
∂xn∂x2

· · · ∂2g(x)
∂x2

n




.

It is also worth mentioning that if the Hessian of a function exists then
we have the following convexity test.

Fact 1.1 (Convexity Test). [7, Theorem 2.69(i)] If we assume that g : H →
R is a twice continuously differentiable function then g is convex if and only
if its Hessian 52g(x) is positive semi-definite for all x ∈ H.

Recall that a Hessian matrix is positive semi-definite if and only if all its
eigenvalues are greater or equal to zero [6].
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1.3. Legendre-Fenchel Conjugate

1.3 Legendre-Fenchel Conjugate

Now that we have defined a convex, lsc and proper function let

X = {f : H → R ∪ {+∞} |f is convex, lsc and proper}

be the set of functions that we are working with for the remainder of this
thesis. In this section we define the Fenchel Conjugate that is important in
the field of convex analysis.

Definition 1.6 (Legendre-Fenchel Conjugate). The Legendre-Fenchel Con-
jugate (aka convex conjugate) of f ∈ X is the function f∗ ∈ X defined
by

f∗(s) := sup
x
{< s, x > −f(x)} ∀s ∈ H.

Furthermore, we note that the Fenchel Biconjugate Theorem, as seen in
[3, 4], states that

f ∈ X ⇐⇒ f∗∗ = f.

We also define the relative interior of a convex set.

Definition 1.7. The relative interior of a convex set C ⊂ H is the interior
of C for the topology relative to the affine hull of C.

We now present the Fenchel Duality Theorem which allows us to solve
convex optimization problems.

Theorem 1.1 (Fenchel Duality). [3] Given two functions f and g in X
such that

y = inf
x∈H

{f(x) + g(x)}

is a finite number and assume the relative interiors of dom f and dom g
intersect. Then

−y = min
x∗∈H

[f∗(x∗) + g∗(−x∗)]

is actually attained.
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Chapter 2

The Proximal Average

From now on we will assume that f0 and f1 are in X; λ0 and λ1 are two real
numbers strictly greater than zero, such that λ0 + λ1 = 1; and µ is strictly
greater than zero.

2.1 Main Results

We first start by defining the proximal average.

Definition 2.1 (Proximal Average). The λ weighted proximal average of
f0 and f1 with parameter µ is

pµ(f0, f1; λ0, λ1) =
1
µ

[
−1

2
‖x‖2 + inf

x1+x2=x

[
λ0

(
µf0

(
x0

λ0

)
+

1
2

∥∥∥∥
x0

λ0

∥∥∥∥
2
)

+λ1

(
µf1

(
x1

λ1

)
+

1
2

∥∥∥∥
x1

λ1

∥∥∥∥
2
)]]

.(2.1)

Remark 2.1 (Simplification of p). Since λ0 + λ1 = 1 we can re-write equa-
tion (2.1) as follows:

pµ(f0, f1; λ0, λ1) = pµ(f0, f1; (1− λ1), λ1).

Then for λ = λ1 we have

pµ(f0, f1;λ) = pµ(f0, f1; (1− λ), λ)).

Fact 2.1 (Reformulations). [2, Proposition 4.3] By changing variables we
see that Equation (2.1) is equivalent to the following:

pµ(f0, f1; λ)(x) = inf
(1−λ)x0+λx1=x

[(1− λ)f0(x0) + λf1(x1)+

1
µ

((1− λ)q(x0) + λq(x1)− q(x))
]

.

where q(x) = ‖x‖2
2 .
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2.1. Main Results

One of the immediate consequences of Definition 2.1, as seen in [2], is
that pµ(f0, f1; λ) = µ−1p1(µf0, µf1; λ). This consequence, in conjunction
with the definition of the proximal average, provides us with the following
two properties:

pµ(f0, f1; 0) = f0 and pµ(f0, f1; 1) = f1.

The above properties are similarly seen in [2] for µ = 1. As a visualization
we see in Figure 2.1 that pµ(f0, f1; λ) is the conversion of f0 into f1 over
λ ∈ [0, 1], with constant µ.

−15 −10 −5 0 5 10 15

0

50

100

150

200

Proximal Average (Quadratic to Quadratic)

x

P
A

 0    

 0.25 

 0.5  

 0.75 

 1    

Figure 2.1: Plot of p1(x2, 2x2; λ), for λ ∈ [0, 1].

We now state some useful and interesting properties that have be previ-
ously discovered.

Fact 2.2 (Domain). [2, Theorem 4.6] We have the following domain prop-
erty

dom pµ(f0, f1;λ) = (1− λ) domf0 + λ domf1.

Fact 2.3. [3, Proposition 2.8] Let f ∈ X. Then

p1(f, f∗;
1
2
) =

1
2
‖·‖2 .

Fact 2.4 (Fenchel Conjugate of the Proximal Average). [2, Theorem 5.1][3,
Fact 2.3]

(pµ(f0, f1; λ))∗ = pµ−1(f∗0 , f∗1 ; λ)

8



2.2. Convexity Results

2.2 Convexity Results

2.2.1 Convexity of the Proximal Average with respect to x

In this section we will show that the function φ(x) := pµ(f0, f1; λ)(x), with
f0, f1, λ and µ fixed, is convex lsc, and proper.

Proposition 2.1. [2, Corollary 5.3] Assume that µ > 0, λ ∈ [0, 1] and
f0, f1 ∈ X. Then the function

φ := x 7→ pµ(f0, f1;λ)(x)

is convex for all x ∈ dom p.

Proof. Applying Fact 2.4 twice, we see that

(pµ(f0, f1; λ))∗∗ = (pµ−1(f∗0 , f∗1 ; λ))∗

= p(µ−1)−1(f∗∗0 , f∗∗1 ;λ)
= pµ(f0, f1; λ).

Hence, by the Fenchel Biconjugate Theorem we have that φ(x) is convex.

2.2.2 Convexity of the Proximal Average with respect to λ

In this section we will show that the function φ(λ) := pµ(f0, f1; λ)(x) is
convex, with f0, f1, µ and x fixed. In order to show that φ(λ) is convex we
need to first recall some properties of marginal and perspective functions.
We start with a property pertaining to marginal functions.

Fact 2.5. [8, Theorem 2.1.3 (v)] Let Ω, O ⊂ H. If g := Ω×O 7→ R∪{+∞}
is convex then the marginal function γ associated to g is convex where

γ : O 7→ R, γ(y) := inf
x∈X

g(x, y)

Before we state a useful property of perspective functions we first need
to define them.

Definition 2.2 (Perspective function). The perspective function of f :
Rn → R ∪+∞ is the function from R× Rn to R ∪ {+∞} given by

Persp(f)(u, x) =
{

uf
(

x
u

)
if u > 0

+∞ if not.
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2.2. Convexity Results

Fact 2.6. [5, Proposition IV.2.2.1] [8, Section 1.2] If f : Rn → R∪{+∞} is
proper convex, then its perspective function Persp (f) is proper and convex
on R× Rn.

Now we prove our main result for this section.

Proposition 2.2. [1, Proposition 6.1] Assume that the functions f0, f1 are
in X, x ∈ dom pµ(f0, f1; λ), and µ > 0. Then the function

φ : λ 7→ pµ(f0, f1; λ)(x)

is convex for λ ∈ [0, 1].

Proof. Using Definition 2.1 and Remark 2.1, with x1 = x− x0, we have

φ : λ 7→ pµ(f0, f1; λ)(x) = inf
x0

[g(λ, x0)]− q(x)
µ

where q(x) = ‖x‖2
2 and

g(λ, x0) = (1− λ) (µf0 + q)
(

x0

1− λ

)
+ λ (µf1 + q)

(
x− x0

λ

)
.

Now in order to apply Fact 2.5 we need to first show that g is convex as a
function of both x0 and λ. We note that

φ(λ) =
1
µ

min
x0

[Persp(µf0 + q) (1− λ, x0) + Persp(µf1 + q)(λ, x− x0)]−q(x)
µ

based on Definition 2.2. So using Fact 2.6 and [5, Proposition IV.2.1.5] (the
composition of a convex function with an affine mapping is convex), the
function g is convex. Now, using the convexity of the functions f0 and f1

we have that the function g is bounded below for each value of λ. Hence,
Fact 2.5 applies thereby showing that φ is convex.

2.2.3 Convexity of the Proximal Average with respect to µ

In this section we will show that the function φ(µ) := pµ(f, λ)(x) is convex,
with f0, f1 ∈ X, λ0, λ1 ∈ [0, 1] such that λ0 + λ1 = 1 and x fixed.

Proposition 2.3. [1, Proposition 5.7] Assume µ > 0, λ0 + λ1 = 1, λi ≥
0, fi ∈ X for i = 1, 2 and take x ∈ dom pµ(f0, f1; λ0, λ1) = λ0 dom f0 + λ1

dom f1. Then the function

φ : µ 7→ pµ(f0, f1;λ0, λ1)(x)

is convex on ]0, +∞[.

10



2.2. Convexity Results

Proof. We begin by substituting x1 = (x−λ0x0)/µ into Equation (2.1) and
use λ0 + λ1 = 1 to obtain

φ(µ) = inf
x0

g(µ, x0)

where

g(µ, x0) = λ0f0(x0) + λ1f1

(
x− λ0x0

λ1

)
+

λ0

2µ
‖x0 − x‖2 .

Now we see that the function g is lower bounded on any set {µ} × H for
any µ > 0, and is convex (as a composition of convex functions). So, Fact
2.5 applies thereby proving that φ is convex.

2.2.4 Further Investigation of the Proximal Average

In this section we present our results on the join convexity of the proximal
average. We begin with a computation of the proximal average that will be
used to build our examples.

Lemma 2.1 (Proximal Average of energy functions). [2, Example 4.5] Let
f0 = α0q and f1 = α1q where α0 and α1 are strictly positive numbers and
q(x) = ‖x‖2 /2. Then

pµ(f0, f1;λ) =

((
(1− λ)

α0 − µ−1
+

λ

α1 − µ−1

)−1

− µ−1

)
q.

Proof. For q(x) = ‖x‖2 /2 in Remark 2.1 we see that using Fact 2.4 and
some basic properties of conjugacy, namely (αq)∗ = q∗(α·), we have

pµ−1(f0, f1; λ) = ((1− λ)(α0q + µq)∗ + λ(α1q + µq)∗)∗ − µq

=
(

1− λ

α0 + µ
q +

λ

α1 + µ
q

)∗
− µq

=
(

1− λ

α0 + µ
q +

λ

α1 + µ

)−1

q − µq.

Thus,

pµ(f0, f1;λ) =

((
1− λ

α0 − µ−1
+

λ

α1 − µ−1

)−1

− µ−1

)
q.

11



2.2. Convexity Results

We now present the main results for this section.

Proposition 2.4. The following functions are not always convex:

φxλ : (x, λ) 7→ pµ(f0, f1; λ)(x)
φxµ : (x, µ) 7→ pµ(f0, f1; λ)(x)
φλµ : (λ, µ) 7→ pµ(f0, f1; λ)(x)

when f0, f1 are two convex lsc proper functions, λ ∈ [0, 1] and µ > 0.

Proof. We need to show that φxλ, φxµ and φλµ are not always convex. So
consider the following quadratic example:

Let f0 and f1 be in X such that

f0 = α0q

f1 = α1q

where α0 and α1 are strictly positive numbers and q is the quadratic energy
function: q(x) = 1

2x2 (when x ∈ R). Then using Lemma 2.1 we have

pµ(f0, f1;λ) =

((
(1− λ)

α0 − µ−1
+

λ

α1 − µ−1

)−1

− µ−1

)
q.

To show that φxλ (resp. φxµ and φλµ) is not convex we use Fact 1.1 and show
that the Hessian of pµ(f0, f1; λ) is not positive semi-definite, for µ (resp. λ
and x) constant.

To start, consider pµ(f0, f1;λ) with µ = 1, so as to show that φx,λ(x, λ)
is not convex. Now,

p1(f0, f1; λ)(x) =
1
2

((
(1− λ)
α0 − 1

+
λ

α1 − 1

)−1

− 1

)
x2.

Then with α0 = 2 and α1 = 4 we have

φxλ(x, λ) = p1(f0, f1;λ)(x) =
1
2

((
(1− λ) +

λ

3

)−1

− 1

)
x2

and the Hessian of φxλ, at x = 2 and λ = 1
2 , is

Hxλ =
[

1
2 3
3 6

]
.

12



2.2. Convexity Results

The determinant of Hxλ is −6 which is enough to show that Hxλ is not
positive semi-definite, since −6 implies that one of the eigenvalues of the
determinant must be negative. Hence φxλ(x, λ) is not convex.

Similarly, we can show that φx,µ is not always convex by holding λ
constant. So, let λ = 1

2 then

pµ(f0, f1;
1
2
)(x) =

1
2




(
1
2

α0 − µ−1
+

1
2

α1 − µ−1

)−1

− µ−1


x2

and when α0 = 2 and α1 = 4 we have

φxµ(x, µ) = pµ(f0, f1;
1
2
)(x) =

1
2




(
1
2

2− µ−1
+

1
2

4− µ−1

)−1

− µ−1


x2.

Now, the Hessian of φxµ, at x = 2 and µ = 1, is

Hxµ =
[

1
2

9
2

9
2 −19

2

]
.

The determinant of Hxµ is −25 so φxµ(x, µ) is not convex.

Finally, to show that φλµ(λ, µ) is not always convex we consider pµ(f, λ)
with f0(x) = 2q(x) and f1(x) = 4q(x), evaluated at x = 2. Then

φλµ(λ, µ) = pµ(f0, f1; λ)(2) = 2

((
(1− λ)
2− µ−1

+
λ

4− µ−1

)−1

− µ−1

)

and the Hessian of φλµ, at µ = 1 and λ = 1
2 , is

Hλµ =
[

6 1
1 −19

2

]
.

The determinant of Hλµ is −58 so φλµ(λ, µ) is not convex.

Altogether, we proved that each of φxλ, φxµ and φλµ are not always
convex.

Corollary 2.1. The following function is not always convex:

φ : (x, λ, µ) 7→ pµ(f, λ)(x)

where f = (f0, f1) ∈ X ×X, λ ∈ [0, 1] and µ > 0.

13



2.2. Convexity Results

Proof. Corollary 2.1 is a direct result of Proposition 2.1.

Proposition 2.5. The following function is not always convex:

φ : (f0, f1) 7→ pµ(f0, f1; λ)

where f0, f1 ∈ X, λ ∈ [0, 1] and µ > 0.

Proof. In order to find a function φ(f0, f1) which is not always convex we
need to show, by Definition 1.2, that there exists an x ∈ R such that

pµ(τ(f0, f1) + (1− τ)(g0, g1), λ)(x) > τpµ((f0, f1), λ) + (1− τ)pµ((g0, g1), λ)(x)

where f0, f1, g0 and g1 are all in X and λ, τ ∈ [0, 1]. So, let

f0 = α0q

f1 = α1q

g0 = β0q

g1 = β1q

where q is the quadratic energy function q(x) = 1
2x2, when x ∈ R. Then for

α0 = 1, α1 = 2, β0 = 3 and β1 = 4 the left-hand side is

pµ(τ(f0, f1) + (1− τ)(g0, g1), λ) = pµ((τq + (1− τ)3q, τ2q + (1− τ)4q), λ).

Then with µ = 5, τ = 1
2 and λ = 1

2 , we have

pµ((τq + (1− τ)3q, τ2q + (1− τ)4q), λ) = p5

(
2q, 3q, 1

2

)
= 65

27q.

On the other hand, the right-hand side is

τp((f0, f1), λ) + τp((g0, g1), λ) = τp((q, 2q), λ) + (1− τ)p((3q, 4q), λ)

=
1
2
p((q, 2q),

1
2
) +

1
2
p((3q, 4q),

1
2
)

=
1
2

(
23
17

q

)
+

1
2

(
127
37

q

)

=
1505
629

q.

Therefore,

pµ(τ(f0, f1) + (1− τ)(g0, g1), λ)(x) > τpµ((f0, f1), λ) + (1− τ)pµ((g0, g1), λ)(x)

14



2.2. Convexity Results

since

65
27
≈ 2.41 > 2.39 ≈ 1505

629
.

Hence, φ(f0f1) is not always convex.

To conclude this section, we show that extending the proximal average
to λ ∈ R does not provide a useful tool as the following example shows the
infimum may no longer be attained.

Example 2.1. Using Definition 2.1, with Remark 2.1, µ = 1 and x1 =
x− x0, we have

p1(f0, f1; λ) = −‖x‖
2

2
+ inf

x0

[
λ

(
f0

(
x0

(1− λ)

)
+

1
2

∥∥∥∥
x0

(1− λ)

∥∥∥∥
2
)

+λ

(
f1

(
x− x0

λ

)
+

1
2

∥∥∥∥
x− x0

λ

∥∥∥∥
2
)]]

. (2.2)

Then in Equation (2.2) for f0(x) = α0x + β and f1(x) = α1x + β1, with
x ∈ R, we have

−x2

2
+inf

x0

[
(1− λ)

(
α0

x0

(1− λ)
+ β0 +

x2
0

2(1− λ)2

)
+ λ

(
α1

x− x0

λ
+ β1 +

(x− x0)2

2λ2

)]

which can be further reduced to

− x2

2
+ inf

x0

[
α0x0 + β0 − λβ0 +

x2
0

2(1− λ)
+ α1(x− x0) + λβ1 +

x2

2λ
− x0

λ
+

x2
0

2λ

]
.(2.3)

Then the dominating term of Equation (2.3) is

x2
0

2(1− λ)
+

x2
0

2λ)
=

x2
0λ + x2

0(1− λ)
2λ(1− λ)

=
x2

0

2λ(1− λ)

which requires 2λ(1− λ) > 0 for the infimum to be finite. Thus we require
λ ∈]0, 1[.
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Chapter 3

Plotting the Proximal
Average

Given two functions f0 and f1 we want to plot the proximal average of these
functions for λ ∈ [0, 1].

3.1 New Plotting function

Currently the Computation Convex Analysis Numerical Library has Scilab
functions that can be used to plot the proximal average of two piecewise
linear-quadratic (PLQ) functions, namely plq plotpa. A PLQ function is
defined on a set of disjoint domains where for each domain the function is
either a linear or quadratic polynomial. The plq plotpa function is defined to
plot the proximal average curve based on λ, as seen in Figure 3.1. However,
plq plotpa is not always very efficient as it may plot the same proximal
average curve for a given λ value when the λ values are close together.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 0    

 0.25 

 0.5  

 0.75 

 1    

Figure 3.1: Plot of p1(x2, 2x2 + 1;λ), for λ ∈ [0, 1], done in Scilab using the
original command plq plotpa.
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3.1. New Plotting function

So, we created a new plotting function, plot proxavg, that plots each
pixel of the proximal average given two PLQ functions, f0 and f1. That is
to say for each (x, y) we assign the appropriate λ value where

y = p1(f0, f1;λ)(x), (3.1)

as seen in Figure 3.2.

 .
−1.105 −0.860 −0.614 −0.368 −0.123 0.123 0.368 0.614 0.860 1.105

−0.105

0.140

0.386

0.632

0.877

1.123

1.368

1.614

1.860

2.105

 0    

 0.25 

 0.5  

 0.75 

 1    

Figure 3.2: Plot of p1(x2, 2x2 + 1;λ), for λ ∈ [0, 1], done in Scilab using the
new command plot proxavg .

The plot proxavg command requires solving Equation (3.1) for λ. This
however is not a simple task given the equation of the proximal average,
which is why we have taken a different approach. The approach that we have
taken assumes f0, f1 are convex and f0 ≤ f1 so that λ is always increasing.
Then for every x value we can determine λ starting at y0 = f0(x) for λ = 0
and going to y1 = f1(x) for λ = 1, since

p1(f0, f1; 0)(x) = f0(x) and p1(f0, f1; 1)(x) = f1(x).

The λ values in between y0 and y1, for each (x, y) where y0 < y < y1, can
be determined by incrementally increasing λ until it generates a newy value
that is as close to y as possible.
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Chapter 4

Conclusion

We have answered many of the remaining questions pertaining to the prox-
imal average including showing that

(x, λ, µ, f) 7→ pµ(f, λ)(x)

is always convex in x, λ and µ but not always convex in (x, λ), (x, µ), (λ, µ)
and (f0, f1). Our plotting algorithm needs further refinement. It cur-
rently uses a linear search to compute λ. Implementing a binary search
would reduce the computation time. Furthermore, the bounds used in
the binary search could be improved by using the fact that the function
λ 7→ p(f0, f1;λ)(x) is convex.

Future work in this area may focus on defining a partial differential
equation equivalent to the proximal average. It is believed that one exists
as the proximal average can be described as the curve evolution from f0 to
f1 over λ [1].
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