

Predictive Modeling of Prefabrication Feasibility for the U.S. Electrical Contracting Firms

Hisham Said, Ph.D.

Santa Clara University

5th International/11th Construction Specialty Conference June 10, 2015

Outline

- □ Overview
- □ Research Need and Objective
- Qualitative Data Collection
- Quantitative Data Collection
- Prefab Feasibility Binary Logistic Models
- □ Sensitivity Analysis
- □ Conclusion & Future Research

Overview

- Construction industry generally lacks behind other business sectors!
 - Productivity fell by 7% between 1995 2001 (Triplett and Bosworth, 2004)
 - 25 50% internal waste in labor and material (Tulacz and Armistead 2007)
- Need for improvement was recognized by national organizations (NIST & NRC).
- Recommended industry improvement approaches: to improving construction efficiency:
 - 1) Increased Interoperability.
 - 2) Effective Interfacing between project processes.
 - 3) Modular Construction & Offsite Prefabrication
 - 4) Use of demonstration installations
 - 5) Use of Effective Performance Measurement.

Overview

- MEP contractors have been early adopters of prefabrication.
- ☐ Previous Research Studies of Electrical Contraction:
 - Design/Build Considerations (Rowings 2000)
 - o Financial evaluation (Jaselskis et al. 2002)
 - o HR recruitment and detainment (Rojas 2013).
 - o MEP trades coordination (Riley et al. 2005, Korman and Tatum 2006, Horman et al. 2006)
 - o Planning and Control (Menches and Hanna 2006)
 - o Change orders impact (Hanna et al. 2004),
 - o BIM (Khanzode et al. 2008, Hanna et al. 2014).
 - Prefab Facility Best Practices (Bogus et al. 2009,
 Yang et al. 2014)

http://www.electri.org/research-project-archives

Research Need and Objective

- Prefab is not a one solution fits all!
- No understanding of the determinants of prefabrication feasibility for EC's.
- Research Objective:

Develop a data-driven predictive model of prefabrication feasibility of electrical contractors.

Research Methodology 1 Qualitative Data Collection

Quantitative Data Collection

- 3 Logistic Regression Model Development/Validation
- 4 Sensitivity Analysis

Qualitative Data

Semi-Structured Interview

- Impact of project supply chain stakeholders (designer, general contractor, vendor, manufacturer)
- Impact of external environment (union relations, labor hourly rates).

Site Visits

- Visits to 2 EC prefabrication facilities
- Electric Roundtable meeting

Case Studies

□ Projects, prefab assemblies

Interviewed:

- **7** EC operation managers
- 1 vendor representative,
- 3 manufacturer sale managers
- 1 NECA executive director

Quantitative Data

Web-based Questionnaire

Category	Question topics
Company characteristics	Work Volume, Prefab%, Zip Code, Lean Principles, Services (BIM, Engineering, Maintenance)
Vendor Relations	Vendor size, Vendor Partnership, Value-added services, Vendor Early Involvement
Manufacturer Relations	Manufacturer Services (Training workshops, Products customization, Custom Packaging, Materials Logistics)
Design Requirements	Flexibility of Design Code/Specs requirements
Labor Relations	Resistance to Prefab Resistance to Prefab outsourcing to vendors or manufacturers

Data

Quantitative Data

<\$5M (**30%)**

>\$200M

(6%)

\$5M -\$10 M-\$10M \$50M (16%)(22%)**Work Volume** 20% -40% > 40% (2%) **(3%)** 10% -_ 20% (8%)5% - 10% (18%)N/A < 5% (46%)

\$100M -

\$200M (12%)

\$50M - \$100M. (14%)

States of Questionnaire Responses

(<u>23%</u>)

Prefab%

Quantitative Data

Industry Economic Data

<u>USBLS-a</u>: U.S. Bureau of Labor Statistics, Local Area Unemployment Statistics.

<u>USBLS-b</u>: U.S. Bureau of Labor Statistics, Occupational Employment Statistics (OES).

USCB-a: U.S. Census Bureau. Metropolitan and Micropolitan Statistical Areas

<u>USCB-b</u>: U.S. Census Bureau. County and Metropolitan Areas Business Patterns

Prefabrication feasibility (PF) is modeled as a binary dichotomous variable

0 = Prefab is a feasible operations model

1 = Prefab is not feasible

Prefabrication Feasibility (PF)

$$PF = \begin{cases} 0 & \text{if } p < 0.5 \\ 1 & \text{if } p \ge 0.5 \end{cases}$$

Prefabrication Feasibility Probability (p)

$$p = \frac{1}{1 + e^{-(C_0 + C_1 X_1 + C_2 X_2 + \dots + C_n X_n)}}$$

PF = 1 0.5 PF = 0 0 $C_0 + CX$

The Linear Logit Function

$$Logit(p) = \ln\left(\frac{p}{1-p}\right) = C_0 + C_1X_1 + C_2X_2 + \dots + C_nX_n$$

X = Independent Variables (Prefab Determinants)

20 Prefabrication Determinants (Independent variables, X) were proposed.

Metropolitan (local) Unemployment (unemploy)	Engineering/Design Services (engDesign)
Annual Payroll of Local Electrical Contracting Firms (payroll)	BIM Capabilities (<i>BIM</i>)
Number of Local Electrical Contracting Firms (nFirms)	Level of Lean Operations (<i>lean</i>)
Average Number of Employees per a Local Firm (nEmploy)	Vendor Partnership Existence (vendorPartner)
Electricians Employment (electEmploy)	Strength of Vendor Relationship (vendorRel)
Electricians Average Hourly Wage (electWage)	Existence of Material Blanket Prices (blanketPrice)
Union Acceptance of Prefab (unionPrefab)	Vendor Size (vendorSize)
Union Acceptance of Outsourcing (unionOutsouce)	Vendor Early Involvement (vendorEarly)
Firm's Work Volume (work Volume)	Strength of Manufacturer Relation (ManufRel)
Business Territory (coverDistance)	Prefabrication Flexibility of Electrical Specifications (specsFlex)

payroll and nFirms were not considered in the regression due to their high multicolinearity.

Regression Methodology

Variables*	Sample	Model A	(Forward S	tepwise)	Model B	(Backward S	Stepwise)		
variables	Average	В	S.E.	Sig.	В	S.E.	Sig.		
Constant (C ₀)		-1.890	0.994	0.057	-6.821	5.529	0.2173		
unemploy	7.16				-0.784	0.4225	0.0633		
nEmploy	12.77	-			0.3914	0.2107	0.0632		
electWage	26.28	-		-	0.2407	0.1247	0.0536		
unionOutsouce	-1.128	1.460	0.692	<u>0.035</u>	1.9687	0.988	0.0464		
BIM	0.46	4.219	1.311	<u>0.001</u>	6.5916	1.8075	0.0003		
vendorPartner	0.397					1.3891	0.0635		
vendorRel	4.70	0.547	0.245	0.026					
Model Statistics									
Model Overall F	P-value	1.8	89E-13 (≌ 0	.0)	2.6E-13 (≌ 0.0)				
Cox & Snell	I R ²		0.589		0.637				
Nagelkerke	R ²		0.788		0.851				
CCR%			88.6%		90.0%				

$$logit(p_A) = -1.89 + 1.46 (unionOutsouce) + 4.219 (BIM) + 0.547 (vendorRel)$$

$$logit(p_B) = -6.821 - 0.784(unemploy) + 0.3914(nEmploy) + 0.2407(electWage) + 1.9687(unionOutsouce) + 6.5916(BIM) + 2.577(vendorPartner)$$

$$p = \frac{1}{1 + e^{-\log it(p)}}$$

	20	+																											+
	-	Ī																											I
		Ι								r	1.		I _	ı	D			Predicted Prefab											11
F	15	I								ľ	Λlc	C	le	!	В				No			Y	es		CR%				11
R E	15	I							(Ok	se	rve	ed		N	10			28				4		87.5	1			1+ 1I
Q		Ī								F	re	fab)	Ī	Y	es			3			3	35		92.1	1			11
U		Ι											(Οı	/ei	rall	Pe	rce	nta	ge					90.0				11
E	10	+						L											<u> </u>	<u> </u>						_			1+
N		Ι																											11
С		Ι																											11
Y		Ι	0																										11
	5	+	01																										1+
		Ι	00																									1	11
		Ι	00	00		0	0			1	1		0)	0					1						1	1	. 13	1 1I
		Ι	00	000)	0	0	0		0	0		0)	0		1			0		0		10		1	11	111	1111
Pred	licted	1				+-				+			+			+-			+		-+-		+		+	+			
Pr	ob:		0			1				2			3			.4			5		.6		.7		.8	.9			1
Gr	oup:		000	0000	00	00	000	000	000	000	0000	0000	000	000	0000	0000	0000	0000	01111	.1111	111	1111	111111	11111	111111111	1111111	1111	1111	111

Prediction Accuracy Test

\/owightee	Validation Cases											
Variables	1	2	3	4	5	6	7	8				
BIM	0	1	1	1	0	1	1	0				
vendorPartner	0	0	0	1	0	0	0	0				
unemploy	9	3.4	4.5	8.3	6.1	3.5	8.1	5.4				
nEmploy	14.7	13.27	13.5	14.74	9.4	11.25	13.17	11.8217				
electWage	30.48	20.71	22.41	24.23	19.37	22.04	30.17	40.01				
unionOutsouce	0	0	-2	-1	-1	-2	-2	-1				
Observed Prefabrication State	No	No	Yes	Yes	No	Yes	Yes	No				
Calculated Probability	0.312	0.999	0.952	0.996	0.0053	0.9425	0.869	0.774				
Predicted Prefabrication Feasibility	No	Yes	Yes	Yes	No	Yes	Yes	Yes				
CCR%	75%											

Sensitivity Analysis

Sensitivity Analysis

Conclusion and Future Research

- ☐ BIM and Union Relations have a significant impact on prefabrication feasibility for electrical contractors.
- Other prefab determinants: vendor partnership, local competition, and labor cost.
- ☐ Future Research:
 - Developing a multinomial logistic regression analysis to classify prefabrication feasibility into classes (high, medium, low).
 - Apply similar methodology to the prefabrication feasibility in other
 building trades (i.e. mechanical, plumping)
 - Develop a web-based tool to facilitate continuous collection of prefabrication data and dissemination of the results.

Predictive Modeling of Prefabrication Feasibility for the U.S. Electrical Contracting Firms

Hisham Said, Ph.D.

Santa Clara University hsaid@scu.edu

Thank you!

Your Questions and Feedback are welcomed!

