## Maintaining vertical gardens using quadrotor aerial inspection



The speaker's attendance at this conference was sponsored by the Alexander von Humboldt Foundation.

Prof. Dr. Sc. Alexey Bulgakov

http://www.humboldt-foundation.de



### **Vertical Gardens concept**



- Big cities, limited green surfaces
- Ergonomic design
- · Difficult to maintain, specialization required





## **Conventional ways limitations**



- Vertical planting layout
- High-rise structures
- High risk involved
- Insecticide





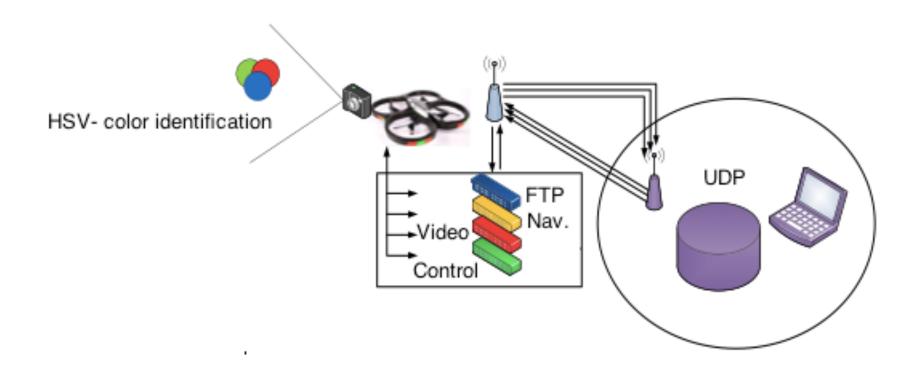
## Why quadrotor?



- Cheap, maintenance-friendly
- Practically no flight setup required
- Ability to transport loads
- Can be equipped with sensors
- High maneuverability
- Ability to reach difficult corners

# Why automating maintenance process?




- Resource efficiency
- Avoid risks/ severe injuries
- Multitasking







## **Experimental Setup**



## **Quadrotor dynamics**



[1] 
$$\ddot{X} = (\sin\psi\sin\varphi + \cos\psi\sin\theta\cos\varphi)\frac{U_1}{m}$$
;

[2] 
$$\ddot{Y} = (-\cos\psi\sin\varphi + \sin\psi\sin\theta\cos\varphi)\frac{U_1}{m}$$
;

[3] 
$$\ddot{Z} = -g + (\cos\theta\cos\varphi)\frac{U_1}{m}$$
;

[4] 
$$\dot{p} = \frac{I_{YY} - I_{ZZ}}{I_{XX}} qr - \frac{J_{TP}}{I_{XX}} q\Omega + \frac{U_2}{I_{XX}};$$

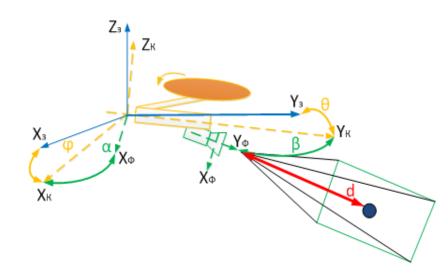
[5] 
$$\dot{q} = \frac{I_{ZZ} - I_{XX}}{I_{YY}} pr - \frac{J_{TP}}{I_{XX}} p\Omega + \frac{U_3}{I_{YY}};$$

$$[6] \dot{r} = \frac{I_{XX} - I_{YY}}{I_{ZZ}} pq + \frac{U_4}{I_{ZZ}}.$$

#### **Coordinates Transformation**

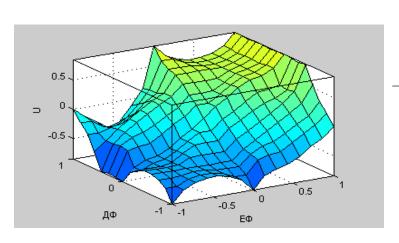


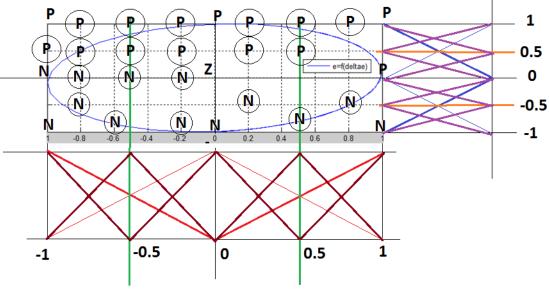
[7] 
$$d(x) = H_h = H * \tan(\varphi + \alpha)$$
;

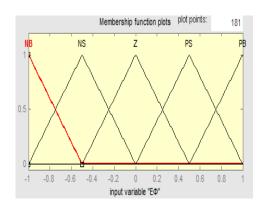

[8] 
$$d(y) = H_v = H * \tan(\theta + \beta);$$

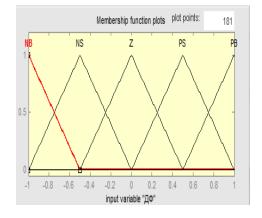
[9] 
$$X_{\Pi} = \frac{x}{\Pi x} \cdot \cos\left(\arctan\left(\frac{H_v}{H_h}\right)\right);$$

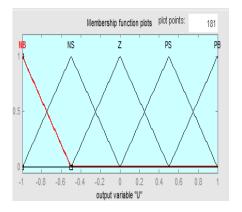
[10] 
$$Y_{\Pi} = \frac{y}{\Pi y} \cdot \sin\left(\arctan\left(\frac{H_{v}}{H_{h}}\right)\right);$$


[11] 
$$\rho_x = \sqrt{X_{\Pi}^2 + Y_{\Pi}^2} \cdot cos\left(\arctan\left(\frac{H_v}{H_h}\right)\right);$$


[12] 
$$\rho_y = \sqrt{X_n^2 + Y_n^2 \cdot sin\left(\arctan\left(\frac{H_v}{H_h}\right)\right)}$$
,

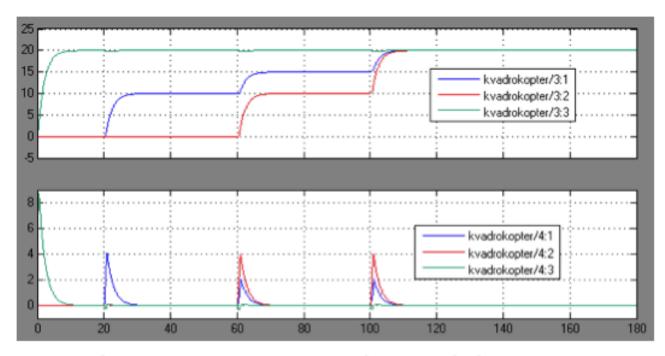




## **Fuzzy Logic Controller**

















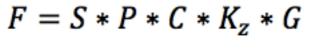

Quadrotor position control with reference to GPS waypoints. Horizontal axis – time [s], vertical axis- position [m]

## Altitude effects on flight stability

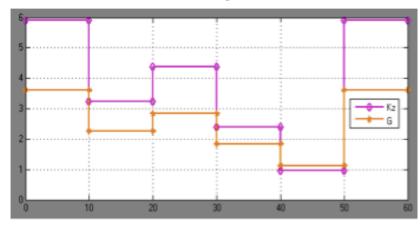


F- the load of the wind on the quadrotor

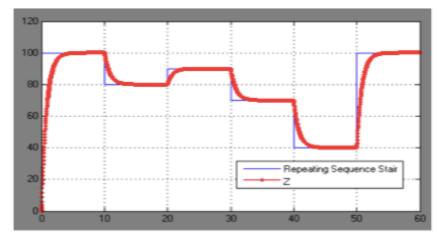
S- the exposed area


P- the wind pressure

C is the drag coefficient


Kz - the exposure coefficient

G - the gust factor

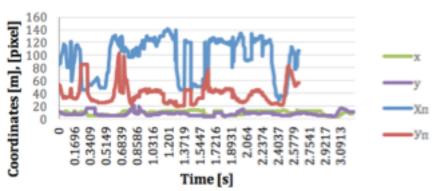

H- flight altitude



$$K_z = (H/_{33})^{2/7}$$
 $G = 0.65 + \frac{0.6}{(H/_{33})^{1/7}}$ 



Simulation of  $K_z$  and G with attitude Variation. Horizontal axis- altitude [m], vertical axis-  $K_z$  and G.




Altitude simulation results of high-rise inspection task. Horizontal axis- time [s], vertical axis- altitude [m].



### Visual Odometry real-time results

#### Tracking pixel coordinates



```
11 Color Middle Middle (69, 72)
11 Color Middle Middle (68, 67)
11 Color Middle Middle (66, 71)
11 Color Middle Middle (66, 72)
11 Color Middle Middle (67, 70)
11 Color Middle Middle (67, 71)
11 Color Middle Middle (67, 70)
11 Color Middle Middle (68, 71)
11 Color Middle Middle (68, 71)
11 Color Middle Middle (66, 70)
11 Color Middle Middle (66, 70)
11 Color Middle Middle (68, 64)
11 Color Middle Middle (68, 64)
11 Color Middle Middle (68, 70)
11 Color Middle Middle (68, 70)
11 Color Middle Middle (68, 70)
```

Visual odometry Trajectory tracking

### Possible applications



- Visual odometry + proximity sensor = 3D maintenance
- Single or swarm robotics
- Vertical/ horizontal plantation zones, roof plantation
- Visual Odometry + infrared thermal image acquisition = Moisture detection (rice, tea plantation)



# Thank you very much for your attention!