Lessons Learned From Using Bio- and Environmental Sensing in Construction: A Field Implementation

Wonil Lee*
Giovanni Migliaccio
Ken-Yu Lin

University of Washington

Francesca Russo

University of Naples Federico II
Motivation

• Industry Workforce Trends
 – Fatalities and Injuries
 – Health Issues
 – Presenteeism and Absenteeism
 – Stagnant Labor Productivity Improvement
 – Labor Shortage
Motivation

• Factors Affecting Workforce Performance and Health

- Socio-cultural Factors (e.g. Financial Situation)
- Organizational Factors (e.g. Education and Training)
- Teamwork Factors (e.g. Communication)
- Task Factors (e.g. Work Schedule)
- Environmental Factors (e.g. Temperature)
- Individual Factors (e.g. Physiological Status)
Problem Statement

- Worker’s physical strain affects:
 - Productivity
 - Quality
 - Safety
 - Health

Off-the-Shelf Sensor Technologies

- Wearable Biosensors
- Environmental Sensors
Objectives

• Sharing findings and lessons learned from:
 – Field monitoring study of bio- and environmental sensors
 – Participants administration and observer effect issues
Data Collection Methods

• Biosensor
 – Zephyr BioHarness™3

• Environmental Sensor
 – Davis Instruments Corp. Vantage Pro2™ Plus
Data Collection Methods

• Other Instruments:
 – GPS location tracking
 – Perceived fatigue level
 – Workers’ major tasks performed
 – Video recording
Data Collection

• Five healthy workers
• Mid-rise building construction site
• Seattle, Washington State, US
• Schedule of Observations
 – July 29th to August 9th (2 Weeks)
 – October 14th to October 18th (1 Week)
Data Analysis

1. Empirical Validation of Previous Finding
 - Data Pre-Processing
 - Time Series Plot

2. Physiological Status
 - Physiological Acceptable Bounds
 - Heart Rate Zones

3. Physical Strain and Environmental Job Stressor
 - Physical Strain = f (Average HR)
 - Correlation Analysis
Data Analysis

• Subject Information

<table>
<thead>
<tr>
<th>Subject Codes</th>
<th>BMI</th>
<th>Major Task</th>
<th>Study Participation</th>
<th>Total Hours of Data Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Summer</td>
<td>Fall</td>
</tr>
<tr>
<td>S.F.1</td>
<td>27.4</td>
<td>Formwork</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>S.F. 2</td>
<td>25.8</td>
<td>Formwork</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>F.3</td>
<td>26.9</td>
<td>Formwork</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>S.4</td>
<td>30.4</td>
<td>Concrete Pouring; Cleaning Deck</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>S.5</td>
<td>25.1</td>
<td>Layout; Pour Watch</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>
Findings

Heart Rate (Beats per minute)

Breathing Rate (Breaths per minute)
Findings

• Physical Strain Level Measured by HR
Findings

- Seasonal Comparison of Worker’s Physical Strain Level

<table>
<thead>
<tr>
<th>Subject Codes</th>
<th>Summer (Jul. 29 – Aug. 2)</th>
<th>Fall (Oct. 14-18)</th>
<th>Two-sample t-test Summer vs. Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Min</td>
</tr>
<tr>
<td>S.F.1</td>
<td>109.3</td>
<td>110.3</td>
<td>57</td>
</tr>
<tr>
<td>S.F.2</td>
<td>101.3</td>
<td>102.4</td>
<td>55</td>
</tr>
</tbody>
</table>

Clothing Insulation

- Summer
- Fall
Findings

• Wet-Bulb Globe Temperature (WBGT)
 \[\text{WBGT} = 0.7T_w + 0.2T_g + 0.1T_a \]
 • \(T_w \): Natural wet-bulb temperature
 • \(T_g \): Globe temperature
 • \(T_a \): Ambient temperature

• WBGT (F˚) and Physical Strain (HR: bpm)

<table>
<thead>
<tr>
<th>Subject Codes</th>
<th>Pearson-r (r)</th>
<th>n</th>
<th>p-value (α=0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.F.1</td>
<td>0.16</td>
<td>91</td>
<td>0.140</td>
</tr>
<tr>
<td>S.F.2</td>
<td>-0.19</td>
<td>91</td>
<td>0.067</td>
</tr>
<tr>
<td>S.4</td>
<td>0.23</td>
<td>91</td>
<td>0.027</td>
</tr>
</tbody>
</table>
Lessons Learned

• Use of GPS Trackers
• Confounding Factors
• Fear of Reporting to Supervisors
• Fear of Underperforming against Peers
Lessons Learned

• Trades to be Observed
 – Less variability in scope and target outputs

• Use of Video Recording
 – Positioning several fixed cameras
 – Back-up via traditional manual work sampling
Industry Applications

Use of Biosensor

• S&H professionals:
 – Monitoring for workers’ potential overexertion

• Field management:
 – Managing workers’ task demands

• Laborers:
 – Self-pacing by tracking physical strain level
Special Acknowledgements

• Skanska Innovation Fund for equipment funding, and Stone 34 project staff and labor for their help and patience
Q&A

• Thank you for your attention!

– Wonil Lee, PhD Candidate, Department of Construction Management, University of Washington

– Email: wonillee@uw.edu