IMPROVING COMMUNICATION PROCESS ON CONSTRUCTION SITES USING MOBILE TECHNOLOGIES AND CLOUD COMPUTING

Presented by Daniel Forgues, PhD.
June 8 - 10, 2015, UBC, Vancouver

AUTHORS
Sébastien Frenette, Master Student, Daniel Forgues PhD., Souha Tahrani PhD., GEN-346
RESEARCH SCOPE AND GOALS

MAIN OBJECTIVE

Define how MOBILES TECHNOLOGIES and CLOUD COMPUTING can improve communication process on the construction sites through a context of ADMINISTRATION AND PROJECT MANAGEMENT.

Photos: These photos are the property of GRIDD.
CONTEXT
The **MAJORITY OF INFORMATION** is exchanged during the construction phase to track the progress, the quality and the construction cost, but this step is **THE LESS COMPUTERIZED**.

WHY?

This phase is oriented on **TRADITIONAL PAPER-BASED PROCESSES** to collect data and **INEFFICIENT MEANS** of communication.

And it was quickly validated ...

Photos: These photos are the property of GRIDD.
What is mobility?

Mobility is a generic term used to refer to tools that allow people to access data or information regardless of where they are.

Source: Utilisation de la mobilité en gestion de projet, Olivier Laquinte et Éric Dupont, janvier 2013
Potential of mobile technologies

- Improve information sharing
- Centralizing project information
- Bring stakeholders together in a single database
- Reduce wasted time
- Reduce duplication of information
- Reduce the use of paper

Sources: Forgues, Tahrani et Frenette 2014
http://www.cefrio.qc.ca/media/uploader Construction_20_final.pdf
METHODOLOGY – PHASES

2013
J | F | M | A | M | J | J | A | S | O | N | D | J | F | M | A | M | J | J | A

2014

PRELIMINARY PHASE
Pilot Project

PHASE 1
Provincial Survey

PHASE 2
Case Studies

EXPERIMENT the use of Mobile technologies on site

DEVELOP AN EVALUATION FRAMEWORK mobile applications

Develop a CONCEPT OF OPERATION to improve the use of Mobile technologies and Cloud Computing

IDENTIFICATION OF INDICATORS OF IMPROVEMENT

ASSESSMENT MATURITY

ASSESSMENT OF IN SITU BENEFITS

GEN-346
METHODOLOGY - PHASES

2013
J F M A M J J A S O N D J F M A M J J A

PRELIMINARY PHASE
Pilot Project

EXPERIMENT the use of Mobile technologies on site

IDENTIFICATION OF INDICATORS OF IMPROVEMENT

PHASE 1
Provincial Survey

Develop an EVALUATION FRAMEWORK mobile applications

ASSESSMENT MATURITY

PHASE 2
Case Studies

Develop a CONCEPT OF OPERATION to improve the use of Mobile technologies and Cloud Computing

ASSESSMENT OF IN SITU BENEFITS

ANALYSIS AND WRITING
METHODOLOGY - CASE STUDIES

<table>
<thead>
<tr>
<th>General Contractor</th>
<th>Consortium General Contractors</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE STUDY A</td>
<td>CASE STUDY B</td>
<td>CASE STUDY C</td>
</tr>
</tbody>
</table>

Building Categories

- **Commercial Buildings**
- **Institutional Buildings**
- **Large public utilities**

Stakeholders Involved in the Study

- **Superintendent**
- **Foreman**
- **Manager**
- **Quality Monitoring Team**
- **Construction Team**
- **Field Inspector**
- **Project Planner**
- **Cost Controller**
METHODOLOGY – PROCESS

CASE A – GENERAL CONTRACTOR

CASE B – CONSORTIUM OF GENERAL CONTRACTORS

CASE C – OWNER

Step 1
KICK-OFF SURVEY
Case A, n = 32
Case B, n = 12
Case C, n = 0

Step 2
KICK-OFF INTERVIEW
Case A, n = 21
Case B, n = 9
Case C, n = 0

Step 3
ON SITE SHADOWING
Case A, n = 10
Case B, n = 5
Case C, n = 6

Step 4
ENDING SURVEY
Case A, n = 25
Case B, n = 12
Case C, n = 9

Step 5
FINAL INTERVIEW
Case A, n = 0
Case B, n = 0
Case C, n = 8
METHODOLOGY - SAMPLE

 PROJECT MANAGER: 15% (Case A), 9% (Case B), 2% (Case C)
 ON-SITE SUPERVISOR: 4% (Case A), 2% (Case B), 8% (Case C)
 DOCUMENTS ADMINISTRATOR: 10% (Case A)
 ESTIMATOR / PLANNER: 2% (Case A), 8% (Case B)
 INTERN STUDENT: 8% (Case A)
 QUALITY CONTROLLER: 6% (Case A)
 FIELD SUPERINTENDENT: 4% (Case A), 3% (Case B)
 CHEF SUPERINTENDANT: 6% (Case A)
 FOREMAN: 6% (Case A)
 ARCHITECT: 4% (Case A)
 CLIENT: 4% (Case A)
 SECURITY OFFICER: 2% (Case A)
 FIELD ENGINEER: 2% (Case A)

n = 53
SAMPLE PROFILE

Field staffs 23%

Supervisors 32%

Project Managers 45%
PREVIOUSLY

PRELIMINARY PHASE
2013 – 2014
ANALYSIS AND TOOLS

FRAMEWORK DEVELOPED AFTER THE PRELIMINARY PHASE

<table>
<thead>
<tr>
<th>POTENTIEL OF CHANGE</th>
<th>IMPROVE CONSTRUCTION PROCESS</th>
<th>IMPROVE TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time saving</td>
<td>Integrate the Field Manager into the management process</td>
<td>Predictability</td>
</tr>
<tr>
<td>Cost Tracking</td>
<td>Centralize the data of the project on a unique data base</td>
<td>Productivity</td>
</tr>
<tr>
<td>Quality monitoring</td>
<td>Define a sequence of operations unified through all the company involve</td>
<td>Construction time</td>
</tr>
<tr>
<td>Project management</td>
<td>Use the technology to automate the collection and the management of data</td>
<td>Information exchange</td>
</tr>
<tr>
<td>Personnal performance</td>
<td></td>
<td>Product quality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collaboration</td>
</tr>
</tbody>
</table>

Figure adapted from Egan (2002). The potential of changes defined are aligned with the work of Bowden (2005), Rivard (2000) and Ruwanpura (2008).
ANALYSIS AND TOOLS

FRAMEWORK DEVELOPED AFTER THE PRELIMINARY PHASE

<table>
<thead>
<tr>
<th>POTENTIAL OF CHANGE</th>
<th>IMPROVE CONSTRUCTION PROCESS</th>
<th>IMPROVE TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time saving</td>
<td>Integrate the Field Manager into the management process</td>
<td>Predictability</td>
</tr>
<tr>
<td>Cost Tracking</td>
<td>Centralize the data of the project on a unique data base</td>
<td>Productivity</td>
</tr>
<tr>
<td>Quality monitoring</td>
<td>Use the technology to automate the collection and management of data</td>
<td>Construction time</td>
</tr>
<tr>
<td>Project management</td>
<td>Define a sequence of operations unified through all the company involve</td>
<td>Information exchange</td>
</tr>
<tr>
<td>Personnal performance</td>
<td></td>
<td>Product quality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collaboration</td>
</tr>
</tbody>
</table>

Figure adapted from Egan (2002). The potential of changes defined are aligned with the work of Bowden (2005), Rivard (2000) and Ruwanpura (2008).
ANALYSIS AND TOOLS

FRAMEWORK DEVELOPED AFTER THE PRELIMINARY PHASE

<table>
<thead>
<tr>
<th>POTENTIEL CHANGE</th>
<th>IMPROVE CONSTRUCTION PROCESS</th>
<th>IMPROVEMENT TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time saving</td>
<td>Integrate the Field Manager into the management process</td>
<td>Predictability</td>
</tr>
<tr>
<td>Cost tracking</td>
<td>Centralize the data of the project on a unique database</td>
<td>Productivity</td>
</tr>
<tr>
<td>Quality monitoring</td>
<td>Use the technology to automate the collection and the management of data</td>
<td>Construction time</td>
</tr>
<tr>
<td>Project management</td>
<td>Define a sequence of operations unified through all the company involve</td>
<td>Information exchange</td>
</tr>
<tr>
<td>Personnal performance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Identify benefits from the use of MOBILE TECHNOLOGIES AND CLOUD COMPUTING on the construction site

Figure adapted from *Egan* (2002). The potential of changes defined are aligned with the work of *Bowden* (2005), *Rivard* (2000) and *Ruwanpura* (2008).
PHASE 1 – EVALUATE MATURITY 2014
Uses of mobile technologies

Survey sample (700 responses)

- **39%**
 - Access to e-mail
- **29%**
 - Access to agenda
- **15%**
 - Updating To do list
- **9%**
 - Weather report
- **8%**
 - Notes, photos, etc.

Source: Forgues, Tahrani et Frenette 2014
http://www.cefrio.qc.ca/media/uploader Construction_20_final.pdf
ANALYSIS AND TOOLS

FRAMEWORK DEVELOPED AFTER THE PHASE 1 – 2014

How to assess the maturity level of companies using mobile IT?

PASSIVE MODE
Minor incidence

TRANSITION MODE
Moderate incidence

ACTIVE MODE
Major incidence

Accessing documents → Sharing documents → Communication and conferencing → Project management

Level of maturity with Mobile Technologies

ANALYSIS AND TOOLS

FRAMEWORK DEVELOPED AFTER THE PHASE 1 – 2014

How to assess the maturity level of companies using mobile IT?

<table>
<thead>
<tr>
<th>Level of maturity with Mobile Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Accessing documents</td>
</tr>
</tbody>
</table>

PASSIVE MODE
Minor incidence

TRANSITION MODE
Moderate incidence

ACTIVE MODE
Major incidence

ANALYSIS AND TOOLS

PHASE 2 – TECHNOLOGIES USED IN THE CASE STUDIES

CASE STUDY A
General Contractor

- **Smart Use**
- **Level of maturity**: 3
- **Communication and conferencing**
- **Main functions**: Annotation layer per user and Overlay Plans

CASE STUDY B
Consortium General Contractors

- **LATÍSTA**
- **Level of maturity**: 4
- **Project Management**
- **Main functions**: Set up workflow between entreprises involved

CASE STUDY C
Owner

- **RÉTROACTION DE CHANTIER**
- **Level of maturity**: 4
- **Project Management**
- **Main functions**: Automatisation of daily reports

Important: The list of features presented above is not exhaustive.
RESULTS – TIME SAVING

CASE STUDY A
General contractor
SMART-USE

- Improve access to site information: 3.33
- Improve acquisition of information in real time: 3.33
- Optimizing my work efficiency: 2.61

CASE STUDY B
Consortium
LATISTA

- Improve information sharing: 3.56
- Problems identification on site: 3.33
- Information collect in real time: 3.22

CASE STUDY C
OWNER
RÉTROACTION

- Information collect in real time: 3.25
- Improve access to site information: 3.25
- Writing daily reports: 2.88

LEGENDE
0 – NO IMPACT
1 – MINOR IMPACT
2 – MODERATE IMPACT
3 – IMPORTANT IMPACT
4 – MAJOR IMPACT
RESULTS – COST TRACKING

CASE STUDY A
General contractor
SMART-USE

<table>
<thead>
<tr>
<th></th>
<th>Impact Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>On site Troubleshooting</td>
<td>2,39</td>
</tr>
<tr>
<td>Reduced rework</td>
<td>1,61</td>
</tr>
<tr>
<td>Predictability</td>
<td>1</td>
</tr>
</tbody>
</table>

CASE STUDY B
Consortium
LATISTA

<table>
<thead>
<tr>
<th></th>
<th>Impact Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>On site Troubleshooting</td>
<td>2,56</td>
</tr>
<tr>
<td>Reduced rework</td>
<td>2,22</td>
</tr>
<tr>
<td>Establishing performance indicators</td>
<td>1,78</td>
</tr>
</tbody>
</table>

CASE STUDY C
OWNER
RÉTROACTION

<table>
<thead>
<tr>
<th></th>
<th>Impact Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>On site Troubleshooting</td>
<td>1,88</td>
</tr>
<tr>
<td>Reduced rework</td>
<td>1,88</td>
</tr>
<tr>
<td>Establishing performance indicators</td>
<td>1,63</td>
</tr>
</tbody>
</table>

LEGENDE
0 – NO IMPACT 1 – MINOR IMPACT 2 – MODERATE IMPACT 3 – IMPORTANT IMPACT 4 – MAJOR IMPACT

GEN - 346
RESULTS – QUALITY MONITORING

CASE STUDY A
General contractor
SMART-USE
Information Standardization
Collecting Information on site
Project Quality Control

CASE STUDY B
Consortium
LATISTA
Tracking site events
Quality Control
Information Standardization

CASE STUDY C
OWNER
RÉTROACTION
Information Standardization
Collecting Information on the site
Tracking site events

LEGENDE
0 – NO IMPACT
1 – MINOR IMPACT
2 – MODERATE IMPACT
3 – IMPORTANT IMPACT
4 – MAJOR IMPACT

GEN - 346
RESULTS – PROJECT MANAGEMENT

CASE STUDY A
General contractor
SMART-USE

Project documents sharing: 3.17
Communication with my team: 2.56
Coordination with the others Entreprises: 2.06

CASE STUDY B
Consortium
LATISTA

Research and information control: 3.33
Sharing information with enterprises: 3.33
Project documents sharing: 2.89

CASE STUDY C
OWNER
RÉTROACTION

Monitoring materials/machinery: 3.13
Research and information control: 2.88
Monitoring site tasks: 2.63

LEGEND
0 – NO IMPACT
1 – MINOR IMPACT
2 – MODERATE IMPACT
3 – IMPORTANT IMPACT
4 – MAJOR IMPACT
ANALYSIS RESULTS

CASE STUDY A
General contractor

CASE STUDY B
Consortium

CASE STUDY C
Owner

LEGEND

0 – NO IMPACT
1 – MINOR IMPACT
2 – MODERATE IMPACT
3 – IMPORTANT IMPACT
4 – MAJOR IMPACT
PREVIOUSLY

BEFORE

THE USE OF MOBILE TECHNOLOGIES

AND CLOUD COMPUTING
ANALYSIS RESULTS
ANALYSIS RESULTS

SPLIT BETWEEN

FIELD & MANAGEMENT TEAM

QUALITY MANAGER

QUALITY CONTROLLER

MANAGER

FIELD STAFF

GEN - 346
ANALYSIS RESULTS

AFTER

PROPOSITION FOR THE USE OF
MOBILE TECHNOLOGIES
AND CLOUD COMPUTING
ANALYSIS RESULTS
CONCLUSION

THE MAJOR POTENTIALS

- TIME SAVING
- QUALITY MONITORING

THE KEY BENEFITS FROM THE USERS

- The information sharing is **FASTER**
- The information **SHARING** between site stakeholders are **IMPROVED**
- The **IDENTIFICATION** of problems on site is **FASTER** and **ACCURATE**
- The data acquisition is in **REAL TIME**

Photos: These photos are the property of GRIDD.
Thank You - Merci

DANIEL FORGUES
Arch., Ph.D. Professor
Research Director
GRIDD, ETS, Québec

SOUHA TAHRANI
Arch. Ph.D.
Research Associate
GRIDD, ETS, Québec

SÉBASTIEN FRENETTE
B.Eng., M.Sc.A.
Research Assistant
GRIDD, ETS, Québec

Email: sebastien.frenette.2@ens.etsmtl.ca

AUTHORS
Daniel Forgues PhD., Souha Tahrani PhD., Sébastien Frenette, Master Student
GEN-346
Thank You - Merci

DANIEL FORGUES
Arch., Ph.D. Professor
Research Director
GRIDD, ETS, Québec

SOUHA TAHRANI
Arch. Ph.D.
Research Associate
GRIDD, ETS, Québec

SÉBASTIEN FRENETTE
B.Eng., M.Sc.A.
Research Assistant
GRIDD, ETS, Québec

Email: sebastien.frenette.2@ens.etsmtl.ca

AUTHORS
Daniel Forgues PhD., Souha Tahrani PhD., Sébastien Frenette, Master Student
GEN-346