IOWA STATE UNIVERSITY College of Engineering

BrlM implementation for documentation of bridge condition for inspection

Firas Shalabi, Yelda Turkan Ph.D, Simon Laflamme Ph.D

Outline

- Inspection Background
- BrIM
- Sought benefits of BrIM for Inspection
- Studied bridge
- Modelling
- Framework
- BrIM inspection process
- Suvey
- Challeges
- Conclusions

Inspection background

- FHWA requires DOTs to perform a biennial inspection
- Current inspection relies on reiterative process of manual data entry.
- This process is error prone and time consuming.
- This data is the foundation for any rehabilitation or maintenance actions.

BrIM background

- Proved benefits during construction in cost and time savings.
- Enables storing all bridge data.
- Can be accessed from multiple locations.
- Uncertain benefits for operation and inspection

Sought benefits for brIM

- Elimination of repetitive manual data entry
- Improved data quality and speed of inspection
- Improved access to safety data
- Improved communication between inspection key players
- Cost effective life cycle management

Studied bridge

- Existing steel bridge on highway US 30.
- 2D plans were converted to 3D models by the research team.

Modelling

- 3D BrIM was modelled and grouped to mimic the traditional way of inspection.
- Groups were: deck, super structure, sub structure, channel and piers.
- Details were pinned to each element
- Model was uploaded to the cloud and then to the tablet

Framework

BrIM inspection Process

DOTs survey

- Web based survey using Qualtrics.
- Eight DOTs including: Iowa, New York, Pennsylvania, Wisconsin, Illinois, Missouri, Kansas and Wyoming.
- Feedback on implementing BrIM for bridge inspection and maintenance.

Survey's key aspects

- Experience on using BrIM technology
- Problems with the current practice
- Potential of the proposed BrIM framework.

Key Findings

- 71% use Paper based method 29% computer technologies
- 50% use 3D models during design and construction
- Surveyed DOTs think BrIM is beneficial for bridge inspection
- While testing the framework with Iowa DOT, time needed for inspection was reduced significantly.
- 60% are facing challenges with the current practice
- Aging or inadequate staff

Challenges of BrIM implementation

- Portable electronic devices damage
- Cell phones signals in rural areas and under bridges.
- Initial cost of implementing the technology
- Human factor such as education and training
- Digital signature concern
- Integrity of data, security and confidentiality
- Lack of knowledge in using BrIM

Conclusions

- the traditional way of inspection is time consuming, redundant and error prone.
- BrIM benefits can be extended to bridge inspection
- BrIM inspection can eliminate redundant data collection, data re-entry and minimize possible errors for personal judgment.
- Improve inspection quality and time needed.

Conclusions

- Bringing mobile devices and BrIM to the bridge management practice is applicable.
- Improve the way sketches are drawn on site.
- BrIM benefits need to be validated in order to be widely used.

THANK YOU

References:

- AGC (2006), The Contractors' Guide to BIM, Associated General Contractors (AGC) of America, available at: www.agc.org (accessed April 15 2014).
- Agrawal, A. K., Kawaguchi, A., and Chen, Z. (2009). "Bridge element deterioration rates." New York State Department of Transportation.
- Carmona, J., and Irwin, K. (2007). "BIM: who, what, how and why." Facilities Net,< www. facilitiesnet. com/software/article/BIM-who-what-how-and-why--7546#>(Accessed July 15, 2012).
- Chen, S. S., and Shirolé, A. M. (2006). "Integration of information and automation technologies in bridge engineering and management: Extending the state of the art." *Transportation Research Record: Journal of the Transportation Research Board*, 1976(1), 3-12.
- Chen, S. S., and Shirolé, A. M. (2007). "Parametric 3D Design and Construction of Steel Bridges." World Steel Bridge Symposium, National Steel Bridge Alliance, New Orleans, LA.
- Chen, Y., and Kamara, J. M. (2008). "Using mobile computing for construction site information management." *Engineering, construction and architectural management*, 15(1), 7-20.
- Cox, S., Perdomo, J., and Thabet, W. "Construction field data inspection using pocket PC technology." *Proc., International Council for Research and Innovation in Building and Construction, CIB w78 conference.*
- Cylwik, E., and Dwyer, K. (2012). "Virtual Design and Construction in Horizontal Infrastructure Projects.", http://enr.construction.com/engineering/pdf/News/Virtual%20Design%20and%20Construction%20in%20Horizontal%20Construction-05-03-12.pdf> Engineering News-Record.
- Eastman, C., Teicholz, P., Sacks, R., and Liston, K. (2008). BIM handbook, John Wiley and Sons, Hoboken, NJ.
- Elbehairy, H. (2007). "Bridge management system with integrated life cycle cost optimization."
- Howard, R., and Björk, B.-C. (2008). "Building information modelling

 –Experts' views on standardisation and industry deployment."

 Advanced Engineering Informatics, 22(2), 271-280.
- Lee, J., Sanmugarasa, K., Blumenstein, M., and Loo, Y.-C. (2008). "Improving the reliability of a bridge management system (BMS) using an ANN-based backward prediction model (BPM)." *Automation in Construction*, 17(6), 758-772.

- Marzouk, M., and Hisham, M. "Bridge information modeling in sustainable bridge management." *Proc., Proc. International Conference on Sustainable Design & Construction*.
- Shirole, A. M., Riordan, T. J., Chen, S. S., Gao, Q., Hu, H., and Puckett, J. A. (2009). "BrIM for project delivery and the life-cycle: state of the art." *Bridge Structures*, 5(4), 173-187.
- Shirolé, A. M. (2010). "Bridge management to the year 2020 and beyond." *Transportation research record: Journal of the transportation research board*, 2202(1), 159-164.
- Tsai, Y.-H., Hsieh, S.-H., and Kang, S.-C. "A BIM-Enabled Approach for Construction Inspection." *Proc., Computing in Civil and Building Engineering (2014)*, ASCE, 721-728.
- Zhang, X., Arayici, Y., Wu, S., Abbott, C., and Aouad, G. (2009). "Integrating BIM and GIS for large-scale facilities asset management: a critical review."