ENERGY STAR WINDOWS' PERFORMANCE AND ORIENTATION

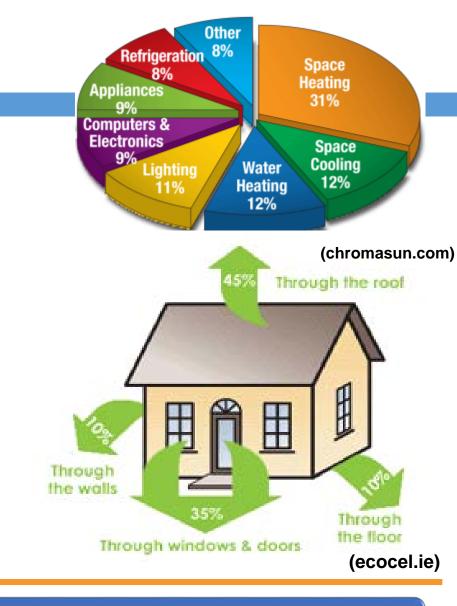
Authors:

ICSC15

Maral Jalili, Colorado State University, USA **Caroline M. Clevenger**, University of Colorado at Denver, USA Mehmet E. Ozbek, Colorado State University, USA **Moatassem A. Abdallah**, University of Colorado at Denver, USA

June 8, 2015

Presenter: Caroline M. Clevenger, PhD



- Methodology
- Analysis & Discussion
- Future Research
- Conclusions

Introduction

3

- In United states in 2010, residential and commercial building sectors use 41% of nation's primary energy
- Residential buildings use 43% for space heating and cooling.
- Building Energy Data Book states 25% to 35% energy loss through inefficient windows.

ENERGY STAR Federal Tax Credits

- ENERGY STAR provides incentives for technologies that lower energy bills.
- Biomass stoves
- Heating, Ventilation, Air Conditioning (HVAC)

Methodology

- Insulation
- Roofs
- Water Heaters

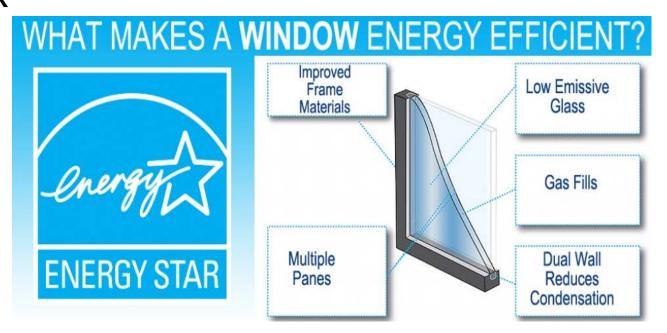
Introduction

- Windows and Doors
- Geothermal Heat pumps
- Small Wind Turbines
- Solar Energy Systems

Future Research

□ Fuel cells

Analysis & Discussion

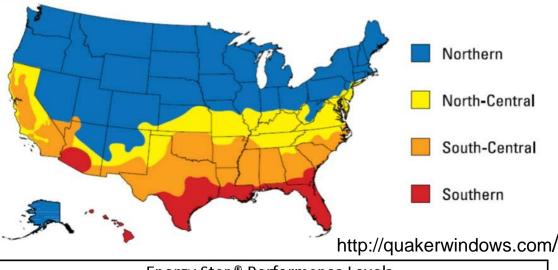


Conclusion

ENERGY STAR Tax Credits for Windows

- 5
- Windows to qualify as ENERGY STAR certified, should meet three criteria:
- Manufactured by an ENERGY STAR partner
- Tested and certified by National Fenestration Rating Council (NFRC)
- Meets US DOE guidelines
- Credit: 10% of the cost, up to
 \$200

airtightsidingandwindows.com



ENERGY STAR Climate Zones

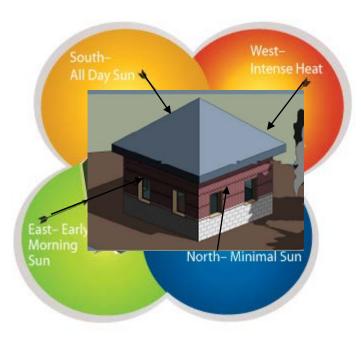
- U-Factor Heat transfer per unit of time per area and per degree of temperature difference.
- Solar Heat Gain Coefficient (SHGC) – The fraction of incident solar radiation entering the space through window.

ENERGY STAR® for Windows, Doors, and Skylights
CLIMATE ZONE MAP

Energy Star [®] Performance Levels							
Climate Zone	U-Value	SHGC					
N=Northern	0.30 and below	any					
Northern alternative criteria #1	0.31	0.35 and below					
Northern alternative criteria #2	0.32	0.40 and below					
NC=North/Central	0.32 and below	0.40 and below					
SC=South/Central	0.35 and below	0.30 and below					
S=Sourthern	0.60 and below	0.27 and below					

ENERGY STAR qualification criteria for residential windows (EnergyStar, 2014c)

Conclusion



Energy Model

7

Square single story 25 m² (269 SF) model with total 15 m² (161 SF) glazing was simulated for the four ENERGY STAR climate zones.

- In baseline model glazing distributed equally on all facades.
- Four alternative models glazing placed exclusively on North, South, East or West facades

Inputs

8

TRNSYS energy modeling software

- Assumptions
 - Existing Energy Modeling research
 ASHARE 2010
 - One year simulation set time
- Windows library Creation
 - Lawrence Berkeley National Labs
 - **ASHARE 90.1.99**
 - ASHARE Standard 140
 - Building Energy Simulation Test (BESTEST) Standard

Climate Zone	Representative City			SHGC
Northern	Denver, CO	Α	0.32	0.614
North- Central	Albuquerque, NM	В	0.28	0.392
South- Central	Atlanta, GA	С	0.17	0.230
Southern	Miami, FL	D	0.44	0.196

Selected (ENERGY STAR eligible) window performance criteria per climate zone

Introduction

Methodology

Analysis & Discussion

Future Research

Conclusion

Potential Cost Impacts

Climate Zone	City, State	Average Annual Electricity Bill by State	Potential Cost Variation per year (Electricity only)
Northern	Denver, CO	\$971	\$87 (9%)
North-Central	Albuquerque, NM	\$895	\$125 (14%)
South-Central	Atlanta, GA	\$1473	\$132 (9%)
Southern	Miami, FL	\$1481	\$15 (1%)

Potential cost Impacts of energy performance differences by climate zone

Performance Analysis

10

Location		Basel	ine	Sout	h	Wes	st	Nort	h	Eas	t	
Climate	City	Energy $(\frac{kWh}{m^2})$	% Diff	Total Delta								
Northern	Denver, CO	479	N/A	468	2%	510	-7%	505	-5%	498	-4%	9%
North- Central	Albuquerque, NM	388	N/A	362	7%	413	-7%	406	-5%	413	-7%	14%
South- Central	Atlanta, GA	304	N/A	289	5%	316	-4%	305	0	306	-1%	9%
Southern	Miami, FL	198	N/A	197	1%	198	0	173	13%	197	1%	1%

Estimated energy consumption $\left(\frac{kWh}{m^2}\right)$ and percentage differences by orientations

Introduction

Analysis & Discussion

Conclusions

Solar Irradiance

11

Location	Average Vertical Surface Irradiance $\left(\frac{kWh}{m^2}\right)$	South $(\frac{kWh}{m^2})$	% Diff	West ($\frac{kWh}{m^2}$)	% Diff	North $(\frac{kWh}{m^2})$	% Diff	East ($\frac{kWh}{m^2}$)	% Diff
Denver, CO	971.35	1331	37%	1064	10%	426	-56%	1064	10%
Albuquerque, NM	994.93	1354	36%	1083	9%	460	-54%	1083	9%
Atlanta, GA	805.34	1062	32%	850	6%	459	-43%	850	6%
Miami, FL	813.64	1061	30%	849	4%	495	-39%	849	4%

Average annual solar irradiance (kWh/m^2) on vertical surfaces

Introduction

Analysis & Discussion

Conclusions

Energy vs. Irradiance

12

Location	So	outh	West		Ν	orth	East		
City	Energy (^{kWh} /m ²)	Average Vertical Surface Irradiance $\binom{kWh}{m^2}$	Energy (^{kWh} /m ²)	Average Vertical Surface Irradiance $\left(\frac{kWh}{m^2}\right)$	Energy (^{kWh} / _{m²})	Average Vertical Surface Irradiance $\binom{kWh}{m^2}$	Energy (^{kWh} / _{m²})	Average Vertical Surface Irradiance $\binom{kWh}{m^2}$	
Denver, CO	2%	37%	-7%	10%	-5%	-56%	-4%	10%	
Albuquerque, NM	7%	36%	-7%	9%	-5%	-54%	-7%	9%	
Atlanta, GA	5%	32%	-4%	6%	0	-43%	-1%	6%	
Miami, FL	1%	30%	0	4%	13%	-39%	1%	4%	

Introduction

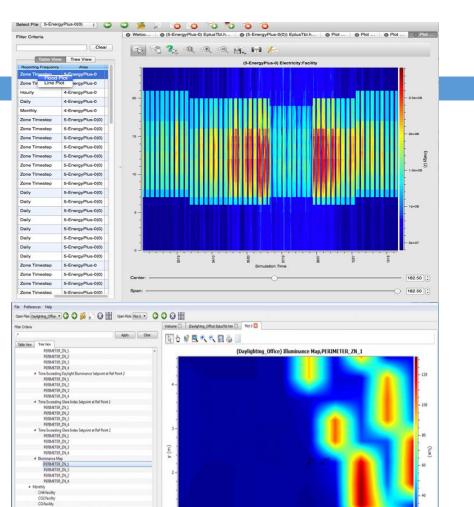
Conclusions

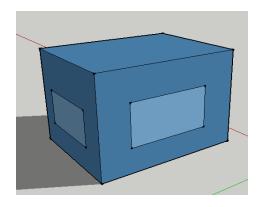
Observations & Recommendations

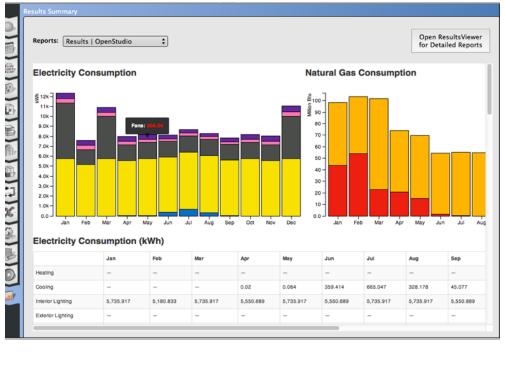
13

- Annual energy consumption of buildings could vary up to 14% depending on placement of Energy STAR windows.
- Annual cost impact can vary from \$15 (Southern) to \$132 (South-Central) annually.

- Placement of ENERGY STAR windows on the south façade improves performance in all climate zones.
- Placement of ENERGY STAR windows on all other orientations worsens building energy performance on all other orientation except in the Southern climate.


OpenStudio


- OpenStudio is a cross platform collection of software tools developed by National Renewable Energy Laboratory (NREL).
- It is a whole building energy modeling software using EnergyPlus and advanced daylight analysis using Radiance.
- The software handles the building geometry, building envelope, plug loads, people and daylighting, along with many other inputs.



Optimization Studies

Introduction

Methodology

Analysis & Discussion

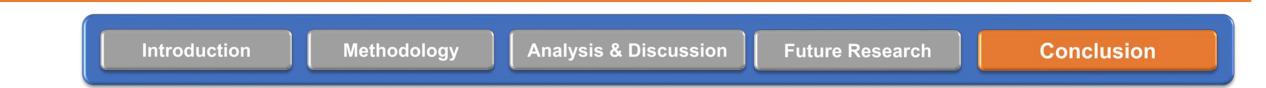
Future Research

Center:

Carbon Equivalent Facili Dectricity/Facility Gesfacility Hg/Facility NEC/Facility NEC/Facility NEC/Facility NEC/Facility Nuclear High-Facility Nuclear Low/Facility Nuclear Low/Facility

PMID Fecility

Conclusion


01/01/08/00:00

x (m)

15

Conclusions and Policy Implications

- 16
- The cost effectiveness of the ENERGY STAR Tax Credit program for windows will vary based on the performance characteristics of products, and orientation of installation.
- The energy usage performance varies up to 14%, although accurate estimates require detailed, custom energy modeling.
- Complex energy modeling is required to assess the impact of window orientation

References

17

- ASHRAE. (2010). Energy standard for buildings except low-rise residential buildings 90.1 Building Envelope.
- BEDB. (2012). 2011 Building Energy Data Book Building Technologies Program, Energy Efficiency and Renewable Energy, US Department of Energy: D&R International. Ltd.
- Clevenger, C. M., Haymaker, J. R., & Jalili, M. (2014). Demonstrating the impact of the occupant on building performance. Journal of Computing in Civil Engineering, 28(1), 99-102.
- DOE. (2014b). 179D DOE Tax Calculator Retrieved April 4th, 2014
- EERE. (2014a). Windows and building envelope research and development: Roadmap for emerging technologies Windows and Building Envelope Research and Development Emerging Technologies Program: Building Technologies Office, Office of Energy Efficiency and Renewable Energy, US Department of Energy.
- EERE. (2014b). Summary of 179D Tax Deductions Retrieved April 4th, 2014
- EnergyStar. (2013). Is there tax credit for windows, doors and skylights? Retrieved April 7th, 2014
- EnergyStar. (2014a). Federal tax credits for consumer energy efficiency Retrieved April 4th, 2014,
- EnergyStar. (2014b). About Energy Star Retrieved May 2nd, 2014
- □ EnergyStar. (2014c). What makes it ENERGY STAR? Retrieved April 7th, 2014
- EnergyStar. (2014d). Climate Zone Map Retrieved April 7th, 2014
- Eskin, N., & Türkmen, H. (2008). Analysis of annual heating and cooling energy requirements for office buildins in different climates in Turkey. Energy and Buildings, 40(5), 763-773.
- Gasparella, A., Pernigotto, G., Cappelletti, F., Romagnoni, P., & Baggio, P. (2011). Analysis and modelling of window and glazing systems energy performance for a well insulated residential building. Energy and Buildings, 43(4), 1030-1037.

- Greenstream. (2014). Solar Irradiance Handbook 2014 Edition Retrieved April 7th, 2014
- Bassouneh, K., Alshboul, A., & Al-Salaymeh, A. (2010). Influence of windows on the energy balance of apartment buildings in Amman. Energy Conversion and Management, 51(8), 1583-1591.
- Johnson, R., Selkowitz, S., & Sullivan, R. (1984, March 19-21). How fenestration can significantly
 affect energy use in commercial buildings. Paper presented at the Proceedings of the 11th Energy
 Technology Conference, Washington, DC.
- Morrissey, J., Moore, T., & Horne, R. E. (2011). Affordable passive solar design in a temperate climate: An experiment in residential building orientation. Renewable Energy, 36(2), 568-577.
- NREL. (2014). Solar Radiation Data Manual for Buildings Retrieved April 30th, 2014
- Persson, M. L., Roos, A., & Wall, M. (2006). Influence of window size on the energy balance of low energy houses. Energy and Buildings, 38(3), 181-188.
- Poirazis, H., Blomsterberg, Å., & Wall, M. (2008). Energy simulations for glazed office buildings in Sweden. Energy and Buildings, 40(7), 1161-1170.
- Saeli, M., Piccirillo, C., Parkin, I. P., Binions, R., & Ridley, I. (2010). Energy modelling studies of thermochromic glazing. Energy and Buildings, 42(10), 1666-1673.
- Tahmasebi, M., Banihashemi, S., & Shakourihassanabadi, M. (2011). Assessment of the variation impacts of window on energy consumption and carbon footprint. Procedia Engineering, 2011 International Conference on Green Buildings and Sustainable Cities, 21(2011), 820-828. doi: 10.1016/j.proeng.2011.11.2083
- TRNSYS. (2013). <u>A TRaNsient SYstems Simulation Program Retrieved May 7th, 2014</u>
- Wall, M. (2006). Energy-efficient terrace houses in Sweden: Simulations and measurements. Energy and Buildings, 38(6), 627-634.

.

