
5th International/11th Construction Specialty Conference 
5e International/11e Conférence spécialisée sur la construction 

 

 

 
Vancouver, British Columbia 

June 8 to June 10, 2015 / 8 juin au 10 juin 2015  

 

ONE RELATION TO RULE THEM ALL: THE POINT-TO-POINT 
PRECEDENCE RELATION THAT SUBSTITUTES THE EXISTING ONES 

Miklos Hajdu1,2,3  
1 Ybl Miklos Faculty of Architecture and Civil Engineering, Szent István University, Hungary 
2 Faculty of Architecture, Budapest University of Technology and Economics, Hungary 
3 miklos.hajdu63@gmail.com 

Abstract: Precedence Diagram Method (PDM) has gained the widest acceptance in the scheduling 
practice in the last decades due to its modeling flexibility over other existing techniques, and to the 
relative simplicity of its mathematical background. The four basic precedence relationships have been 
serving planners for more than half a century. However, even this model is not flexible enough; proper 
modeling of overlapped activities seems to be a never-ending debate. Different practical and theoretical 
solutions have been proposed during the years for better modeling overlapped activities. The most 
promising among them is the development of a new type of relation that can connect any two arbitrary 
points of the related activities. These relations can be called point-to-point relations. Different authors in 
various ways have proposed similar solutions. To the best of our knowledge, the literature on the 
mathematical model of PDM using this new relation is lacking. Main results of the paper are: 1) 
standardized discussion of the different approaches to point-to-point relations; 2) proper mathematical 
model of PDM with point-to-point relations; 3) introduction of the algorithm that can handle point-to-point 
relations with both minimal and maximal lag to define the earliest and latest feasible time policy. 

1 INTRODUCTION AND LITERATURE REVIEW 

Widely used network techniques are more than half a century old. The results of Fondahl, (Fondahl 
1961), Roy (Roy 1959), (Roy 1960), IBM (IBM 1964) and many others have led to the present form of the 
Precedence Diagram Method, the prevailing network technique of our times. PDM has hardly changed 
during the decades in spite of the critiques it has received about its modeling capabilities. Proper 
modeling of overlapping activities seems to be a never-ending debate when traditional precedence 
relations are used, (Douglas et al. 2006) because traditional endpoint relations are simply not suitable for 
describing this kind of logic. Different solutions have been proposed using the traditional precedence 
relations; but fragmentation of activities and developments based on this idea (Tarek & Menesi 2010) 
seem to be the best theoretical solution despite the arising practical problems, namely the multiplication 
of the number of activities and precedence relations.  Probably the fragmentation technique has given the 
idea of connecting the inner points of the activities, which will be discussed in this paper. These point-to-
point relations connecting the internal points of the activities seem to be theoretically more suitable for 
modeling overlapping activities – especially if continuous activities are assumed - as multiple relations are 
allowed between the activities. To the best of our knowledge four partly parallel works regarding point-to-
point relations can be found:  Kim (Kim 2010, 2012) calls his new relations bee-line relations and the 
graphical representation Bee-line Diagram (BDM), while Francis and Miresco (Francis & Mireco 2000, 
2002) call their new relations temporal functions and they call their graphical representation method 

340-1 

mailto:miklos.hajdu63@gmail.com


chronographic approach. Plotnick (Plotnick 2004) calls his method Relationship Diagramming method 
(RDM) using the term of ‘event’ for the internal points. Ponce de Leon (Ponce de Leon 2010) uses the 
term Graphical Diagramming Method (GDM) and connected internal points are called embedded nodes. 
Despite the differences in terminology and definitions, e.g. bee-line and RDM relation does not allow a lag 
between the connected inner points, maximal lags are defined only in the work of Francis and Miresco, 
the concept behind all these works is the same. All these improvements regarding the relationships can 
be seen as a new type of precedence relation that can substitute all traditional precedence relations, as it 
will be shown later. The goal of this paper is twofold: firstly, to remedy a common shortcoming of these 
works (authors have failed to present the mathematical model); secondly, to show that traditional 
precedence relationships can be derived from the general point-to-point relations discussed in this 
paper. A proper mathematical model and the algorithm will be introduced using standardized technical 
terminology. The new point-to-point relation can be seen as a generalization of traditional precedence 
relations. It will be shown that the existing traditional precedence relations are special cases of the point-
to-point relations; they connect the endpoints of the activities instead of the internal points.  

2 THE MATHEMATICAL MODEL 

2.1 Notations 

Let a directed acyclic graph be given with one start (s) and one finish node (f). Let N = {1,2,…i…j…n} 
stand for the set of nodes also called activities.  A will define the set of arcs, also called precedence 
relations. The ‘super’ relation defined later can have minimal or maximal lags, therefore Amin and Amax 
subsets are introduced for differentiating relations with minimal and maximal lags. In the algorithm, 
relations with maximal lags will be transformed into relations with minimal lags. In this case A* denotes  
the set of relations . An activity i is defined by its start and finish points Pi

s, Pi
F, shortly Si or Fi, or by any 

of the two aforementioned points and its duration di. Additional points of the activities can also be defined. 
Pi

k stands for the kth point of activity i. The relative place of the kth point of activity i is defined by the time 
span (ti k) from the start point of activity i (Pi

S). A relation can be defined between any lth internal point of 
activity j and any kth internal point of activity i by defining the time that must elapse between the two points 
(zi

k
j
l). Therefore this ‘super’ precedence relation can be defined either by the points and the lag as (Pik;Pj

l, 
zi

k
jl) or by the relative positions of the points and the lag (ti k; tj l , zi

k
j
l). Explanation can be seen in Fig. 1. 

Lags can be defined using production volumes as well. 

 

Figure 1: Explanation of notations and the the ‘super’ precedence relation. (t ik ; t j l ; zi
k

j
l) 
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Let the time when a point is accomplished be called point or event time and denoted by Ti
k. This way Ti

S 
stands for the start, and Ti

F stands for the finish of activity i. Table 1 shows how the traditional relations 
and bee-line relations can be derived from the new ‘super’ relation. Transformation of temporal functions 
(Francis & Miresco 2002) and RDM relations is obvious so this is not presented here. If instead of time, 
the names of the points of the activities are used for describing the relation, then even the same notation 
can be used. (e.g. instead of SS100 days (S; S; 100 days) can be used.) Based on the above notations 
the following model can be defined. 

Table 1: ‘Super’ relation can be used instead of traditional and bee-line precedence relations  

 Known precedence relations Equivalent point-to-point relation 
PDM Start-to-Start zi j ( 0 ; 0; zi

S
j
S )   or ( S; S; zi

S
j
S) 

 Finish-to-Start zi j ( d i ; 0; zi
F

j
S )   or ( F; S; zi

F
j
S) 

 Finish-to-Finish zi j ( d i ; d j; zi
F

j
S )   or ( F; F; zi

F
j
F) 

 Start-to-Finish zi j ( 0 ; d j; zi
S

j
S )   or ( S; F; zi

S
j
F) 

BDM (t ik, t j l) (t ik; t j l  ; 0) 

2.2 The model 

The first two conditions tell that all precedence relations must be satisfied. [1] describes the precedence 
relations with minimal lags, while [2] describes the precedence relations with maximal lags. 

[1]    Tj
l –Ti

k ≥ zi
k

j
l            ∀ (Pi

k;P
j
l)  ∈ Amin    

[2]    Tj
l –Ti

k ≤ zi
k

j
l            ∀ (Pi

k;P
j
l)  ∈ Amax     

By definition Ti
k  = Ti

S+tik and  Tj
l  = Tj

S+tj l   therefore [1] and [2] can be modified as:  

[1*]    Tj
S – Ti

S ≥ zi
k

j
l  – tj l   + tik     ∀ (Pi

k;P
j
l)  ∈ Amin    

[2*]    Tj
S – Ti

S ≤ zi
k

j
l  – tj l  +tik       ∀ (Pi

k;P
j
l)  ∈ Amax   

The finish of the activities can be calculated according to [3]. Activities are assumed to be continuous [4]. 
Let’s set the start of the project to zero. [5]   

[3]    Ti
S  +di = Ti

F     ∀ i  ∈ N     

[4]    Ti
k  - tik = Ti

S     ∀ i  ∈ N    and  ∃ Pi
k   (Pi

k exist) 

[5]    Ts
S  = 0      

The T policy that satisfies [1*], [2*], [3], [4], and [5] is called a feasible time policy. An infinite number of 
feasible time policies exist, but the objective of the model is to find that/those time policy/policies where 
the project duration is the minimum, that is 

 [6]   Tf
F  − Ts

S → min    that is      Tf
F  − 0 → min    that is Tf

F   → min     

This model is an LP model, so any LP solver can be used for solving it, furthermore, based on the 
simplistic structure of this LP problem different efficient primal dual algorithms can be developed. The 
solution shown below is based on the modification of the simplistic and widely used CPM/PDM time 
analysis. This approach is probably the easiest to digest for planning engineers.  
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3 ALGORITHMS 

3.1 Point-to-point relations with minimal lag 

The goal of the algorithm is to find the optimal time policy, the earliest and the latest out of the existing –   
sometimes millions of – optimal time policies. The earliest optimal time policy is denoted by Ei

S and Ei
F. 

The latest optimal policy is denoted by Li
S and Li

F. The applied algorithm has two phases. The result of 
the first phase is the earliest optimal time policy, while the result of the second phase is the latest optimal 
time policy.  

Let’s suppose for the sake of simplicity that only relations with minimal lags are allowed in the network. In 
this case, the earliest start and finish of an activity j can only be calculated, if the earliest start dates for all 
its predecessors are known. As all precedence relations must be satisfied, the early start of a given j can 
be defined by the maximum of the shifts caused by the preceding relations of activity j, that is:  

[7]   Ej
S =  max   {   Ei

S + t ik + zi
k

j
l – t j l       ∀ (Pi

k;P
j
l)  ∈ Amin } 

 
To start, an activity with known predecessors has to be found. In the beginning, only the start activity 
satisfies this condition: all of its predecessors are known because it does not have any. After these 
introductory thoughts, the steps of the first phase, that is the steps aiming to find the earliest time policy, 
can be summarized as follows: 
 
Step 1 

Let Ei
S= -∞ and Ei

F=-∞  ∀ i ∈ N;  Let ESS=0 Let g:=1 
Step 2 
 REPEAT 
  g:=g+1 
  Choose an activity j from the unknowns (Ei

S=-∞) with known predecessors only. 
  IF there is no such activity then GO TO Step 3 

   Ej
S =  max   {   Ei

S + t ik + zi
k

j
l – t j l       ∀ (Pi

k;P
j
l)  ∈ Amin };     Ej

F=Ej
S+d j 

UNTIL  g=n 
Step 3 
 IF g<n  
                  THEN  

      STOP (There is a loop in the network.) 
ELSE 
       p=Ef

F  (Project duration is the same as the early finish of the finish activity.) 

During the backward pass, the latest optimal time policy will be defined. It is completed by working from 
the terminal activity to the initial activity in reverse direction of the arrows. It is based on the observation 
that the late activity times of an activity can only be calculated, if these dates are known for all of its 
successors.  As all successor relations must be satisfied, the late start of a given i can be defined by the 
maximum of the shifts caused by the succeeding relations of activity i, that is:  

[8]   Li
S =  min   {   Lj

S + t jk - zi
k

j
l – t i l       ∀ (Pi

k;P
j
l)  ∈ Amin } 

 
The rules of the backward pass can be summarized as follows: 
Step 1 

Let Li
S= ∞ and Li

F= ∞  ∀ i ∈ N;  Let Li=F
S=p- df ; Let g:=1 

Step 2 
 REPEAT 
  g:=g+1 
  Choose an activity i from the unknowns (Li

S=∞) with known successors only. 
  Li

S =  min   {   Lj
S + t jk - zi

k
j
l – t i l       ∀ (Pi

k;P
j
l)  ∈ Amin } ;       Li

F=Li
S+d i 

UNTIL  g=n 
(Note: Loop detection is not necessary during the backward pass.) 
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3.2 Point-to-point relations with mixed lags 

Calculations with mixed lags require more computational steps. Maximal relations have to be transformed 
into minimal relations first. Comparing conditions [1] and [2], it can be seen that the difference between a 
relation with minimal or maximal lags lies in the direction of the operand. Transforming a relation with 
maximal lag into a relation with minimal lag requires a simple multiplication by -1.  

[2]    Tj
l –Ti

k ≤ zi
k

j
l            ∀ (Pi

k;P
j
l)  ∈ Amax      /    *(-1) 

[9]    Ti
k –Tj

l ≤ - zj
l
i
k          ∀ (Pi

k;P
j
l)  ∈ Amax      

This is nothing else but a relation from j to i with a negative minimal lag (see Fig. 2).  

Figure 2: Point-to-point relation with maximal lag a) and its minimal equivalent b)  
 
Traditional precedence relations with maximal lags, and their transformed equivalent minimal lags can be 
found in Table 2. 

Table 2: Traditional precedence relations and their equivalent minimal versions.  

Traditional 
precedence relations 

with maximal lag 

Equivalent  
point-to-point relation 

with maximal lag 

Transformed equivalent 
precedence relations 

with minimal lag* 

Transformed equivalent  
point-to-point relation 

with minimal lag* 
maxSSz max(0; 0; z) SS-z (0; 0; -z) 
maxFSz max(di; 0; z) SF-z (0, dj; -z) 
maxFFz max(di; dj; z) FF-z (di; dj; -z) 
maxSFz max(0, dj; z) FS-z (di; 0; -z) 

* Transformed equivalents go in the opposite direction 

However, converting relations with maximal lags into their equivalent minimal relations can result in so-
called transformation loops. In Fig. 3 it can be seen that there is a loop between B and C.   

The simple time analysis presented in 3.1 cannot be used in case of loops. One can easily check it by 
selecting the activities. E.g. during the forward pass activity A has to be chosen first. After that none of the 
activities can be selected, B has two predecessors but only A is known and C is not; C has two 
predecessors but only A is known and B is not, so the algorithm will stop here. 
In case of loops, different algorithms exist to find the longest path. We will use the modified version of the 
algorithm developed by Bellman (Bellman, 1958) and Ford (1956) for finding the shortest path between 
any two points of a cyclic graph. The algorithm is based on the idea that during the forward pass all 
activities are calculated using the dates of their predecessors even if those have not taken their final 
dates yet. When all activities have been calculated this way, it has to be checked whether there have 
been changes in activity dates or not. If the answer is yes, then the entire calculation must be repeated 
again and again, until we come to the results we had in the previous iteration. In every iteration, at least 
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one activity takes its final value, so after maximum n iterations we get the results. Usually much fewer 
iterations are necessary. If the nth iteration still brings changes, then the network cannot be solved due to 
the maximal relations that probably impose logic on the network, which contradicts the minimal or other 
maximal lags. E.g. imagine that B can start minimum five days after the finish of A (F;S; 5) point-to-point 
relation but another relation describes that B should start maximum 4 days after the finish of A 
(F;S;max4). 
 

Figure 3: Transformation of relations with maximal lag into their minimal equivalent can result in loops.   

This definite contradiction cannot be solved. In this case, the value of the transformation loop will be 
positive, and the result for the project duration will increase by at least this value in every iteration even 
after the nth iteration. The steps below summarize the forward pass: 
 
Step 1 

Let Ei
S= -∞ and OLD_Ei

S= -∞   ∀ i ∈ N;  Let  Ej=S
S=0 and  OLD_Ej=S

S=0; Let h=0;  Let 
No_of_Iter=0 
Step 2 
 REPEAT 
  There_were_changes:=FALSE; No_of_Iter:= No_of_Iter+1 
  REPEAT 
   h:=h+1 
   Select any j activity that has not been selected in this iteration yet  

                Ej
S =  max   { OLD_Ej

s;  (Ei
S + t ik + zi

k
j
l – t j l       ∀ (Pi

k;P
j
l)  ∈ A*) };  Ej

F=Ej
S+d j 

IF Ej
S> OLD_Ej

S THEN There_were_changes:=TRUE 
UNTIL  h=n 
Let OLD_Ei

S=Ei
s ∀ i ∈ N 

UNTIL No_of_iter>n or There_were_changes:=FALSE 
Step 3 
 IF No_of_Iter>n THEN There is no solution. (There is a loop with positive value.) 
             IF There_were_changes:=FALSE THEN we arrived to a feasible optimal time policy (All            

activity dates remained unchanged after two iterations.) 
 

The rules of backward pass can be summarized as follows: 
Step 1 

Let Li
S= -∞ and OLD_Li

S= -∞   ∀ i ∈ N;  Let  Lj=S
S=Ej=s

S and  OLD_Lj=S
S= Lj=S

S; Let h=n;   
Step 2 
 REPEAT 
              There_were_changes:=FALSE;  
  REPEAT 
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   Select any i activity that has not been selected in this iteration yet  
                Li

S =  min   { OLD_Li
S;  (Lj

S + t jk - zi
k

j
l – t i l       ∀ (Pi

k;P
j
l)  ∈ A*) }; Li

F=Li
S+d i 

                 IF Li
S> OLD_Li

S THEN There_were_changes:=TRUE 

                     h:=h-1 
UNTIL  h=0 
Let OLD_Li

S=Li
s ∀ i ∈ N 

UNTIL There_were_changes:=FALSE 
 
Notes to the algorithm: 

• Loop detection was done during the forward pass, so there is no need for that during the 
backward pass. 

• Any order of activities can be used during the algorithm, which can largely modify the number of 
iterations. Here we used the ascending order of activities during the forward pass and the 
descending order during the backward pass. In the optimal case, the first iteration presents the 
results and the second iteration will validate this, in the pessimistic case, n+1 iterations are 
necessary.  

• Following the optimal order of the forward pass will be the worst during the backward pass, and 
vice versa.   

4 SAMPLE PROJECT 

4.1 Sample project: only minimal lags are allowed 

A small sample project is shown in Fig. 4 a) consisting only of relations with minimal lags. Results can be 
seen in Figure 4b), calculations can be tracked below. 

Forward pass: 
Only activity A can be selected.  EA

S=0; EA
F=EA

S+dA=0+6=6 
Only activity B can be selected. EB

S =  {(EA
S +t Ak + zA

3
B

0 – t B0) }={(0+3+0-0)}=3;    EB
F=EB

S+dB=3+6=9 
Only activity C can be selected. EC

S=max{(EA
S+tA6+zA

6
C

0–tC0);(EB
S+tB2+zB

2
C

0–tC0)}={(0+6+4-0);(3+2+2-
0)}= 10; EC

F=EC
S+dC=15 

Only activity D can be selected. ED
S=max{(EB

S+tB6+zB
6

D
0–tD0);(EC

S+tC3+zC
3

D
0–tD0);(EC

S+tC4+zC
4

D
1–tD1); 

(EC
S+tC5+zC

5
D

2–tD2)}={(3+6+3-0);(10+3+0–0);(10+4+0–1);(10+5+0–2)}={12;13;13;13}=13;  
ED

F=ED
S+dD=17 

Early dates for all activities have been calculated, the forward pass is finished. (See Fig. 4) 

 

340-7 



Figure 4a) Sample project with minimal lags.                          Figure 4b) Results of the calculations.   

Backward pass: 

Only activity D can be selected. LD
F=17; LD

S=LD
F-dD=17-4=13 

Only activity C can be selected. LC
S =min{(LD

S+tD2 –zC
5

D
2 –tC5); (LD

S+tD1 –zC
4

D
1 –tC4); (LD

S+tD0 –zC
3

D
0 –

tC3)}= min{(13+2-0-5);(13+1-0-4);(13+0-0-3)}=min{(10;10;10)}=10       LC
F=LC

S+dc=10+5=15 

Only activity B can be selected. LB
S =min{(LD

S+tD0 –zC
6

D
0 –tC6);(LC

S+tC0 –zB
2

C
0 –tB2)= min{(13+0-3-

6);(10+0-2-2)}=min{(4;6)}=4       LB
F=LB

S+dB=4+6=10 

Only activity A can be selected. LA
S=min{(LB

S+tB0–zA
3

B
0 –tA3);(LC

S+tC0 –zA
6

C
0-tA6)=min{(4+0-0-3);(10+0-4-

6)} =min{(1;0)}=0       LA
F=LA

S+dA=0+6=6 

Late dates for all activities have been calculated, the backward pass is finished. (See Fig. 4) 

4.2 Sample project: both minimal and maximal lags are allowed 

A small sample project is shown on Fig. 5a) consisting of relations with minimal and maximal lags. The 
network with the transformed maximal relation and with the results is shown in Fig. 5b). Due to the 
transformation loop, the iterative algorithm has to be used.  

Any order of the activities can be used. Here we use the A;B;D;C order for the forward pass. The 
calculations can be followed in Figure 6. Boxes of those activities that have been changed during the 
iteration are filled with grey. 

Iteration #1 

EA
S= max  { OLD_EA

s }=0; EA
F=EA

S+dA=0+6=6 

EB
S=max{OLD_EB

S;(EA
S+tA3+zA

3
B

0-tB0);(EC
S+tC0+zC

0
B

2-tB2)}={-∞;(0+3+0-0};(-∞+0-2-2)}=3    
EB

F=EB
S+dB=9 

ED
S=max{OLD_ED

S;(EB
S+tB6+zB

6
D

0-tD0);(EC
S+tC3+zC

3
D

0-tD0);(EC
S+tC4+zC

4
D

1-tD1)(EC
S+tC5+zC

5
D

2-tD2)}={-
∞; (3+6+3-0}; (-∞+3+0-0); (-∞+4+0-1); (-∞+5+0-2)}=12          ED

F=ED
S+dD=16 

EC
S=max{OLD_EC

S;(EB
S+tB2+zB

2
C

0-tC0);(EA
S+tA6+zA

6
C

0-tC0)={-∞;(3+2+2-0};(0+6+4-0)}=10    
EC

F=EC
S+dC=15 

 

Figure 5a) Sample project with mixed lags.                      Figure 5b) Transformed network with the results  
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Iteration #2 

EA
S= max  { OLD_EA

s }=0; EA
F=EA

S+dA=0+6=6 

EB
S=max{OLD_EB

S;(EA
S+tA3+zA

3
B

0-tB0);(EC
S+tC0+zC

0
B

2-tB2)}={3;(0+3+0-0};(10+0-2-2)}=6    
EB

F=EB
S+dB=12 

ED
S=max{OLD_ED

S;(EB
S+tB6+zB

6
D

0-tD0);(EC
S+tC3+zC

3
D

0-tD0);(EC
S+tC4+zC

4
D

1-tD1)(EC
S+tC5+zC

5
D

2-
tD2)}={12; (6+6+3-0}; (10+3+0-0); (10+4+0-1); (10+5+0-2)}=15          ED

F=ED
S+dD=19 

EC
S=max{OLD_EC

S;(EB
S+tB2+zB

2
C

0-tC0);(EA
S+tA6+zA

6
C

0-tC0)={10;(6+2+2-0};(0+6+4-0)}=10    
EC

F=EC
S+dC=15 

Iteration #3 

EA
S= max  { OLD_EA

s }=0; EA
F=EA

S+dA=0+6=6 

EB
S=max{OLD_EB

S;(EA
S+tA3+zA

3
B

0-tB0);(EC
S+tC0+zC

0
B

2-tB2)}={3;(0+3+0-0};(10+0-2-2)}=6    
EB

F=EB
S+dB=12 

ED
S=max{OLD_ED

S;(EB
S+tB6+zB

6
D

0-tD0);(EC
S+tC3+zC

3
D

0-tD0);(EC
S+tC4+zC

4
D

1-tD1)(EC
S+tC5+zC

5
D

2-
tD2)}={12; (6+6+3-0}; (10+3+0-0); (10+4+0-1); (10+5+0-2)}=15          ED

F=ED
S+dD=19 

EC
S=max{OLD_EC

S;(EB
S+tB2+zB

2
C

0-tC0);(EA
S+tA6+zA

6
C

0-tC0)={10;(6+2+2-0};(0+6+4-0)}=10    
EC

F=EC
S+dC=15 

 

Figure 6: Forward pass computation. 

No activity dates have changed in the course of iteration #3; therefore the forward pass is finished. For 
the backward pass the D; B; C; A sequence is selected. Calculations can be followed below. 

Iteration #1 

LD
S= min{OLD_LD

S; (nil) }=15;    LD
F=LD

S+dD=19 

LB
S=min{OLD_LB

S;(LD
S+tD0-zB

6
D

0-tB6);(LC
S+tC0-zB

2
C

0-tB2)}=min{∞;(15+0-3-6);( ∞+0-2-2)}=6   
LB

F=LB
S+tB=12 

LC
S=min{OLD_LC

S;(LB
S+tB2-zC

0
B

2-tC0);(LD
S+tD0-zB

3
D

0-tB3); (LD
S+tD1-zB

4
D

2-tB4) (LD
S+tD2-zB

5
D

2-
tB5)}=min{∞;(6+2-(-2)-0);(15+0-0-3);(15+1-0-4);(15+2-0-5)}=10        LC

F=LC
S+tC=15 

LA
S=min{OLD_LA

S;(LC
S+tC0-zA

6
C

0-tA6);(LB
S+tB0-zA

3
B

0-tA3)}=min{∞;(10+0-4-6);(6+0-0-3)}=0   LA
F=LA

S+tA=6 

Iteration #2 
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LD
S= min{OLD_LD

S; (nil) }=15;    LD
F=LD

S+dD=19 

LB
S=min{OLD_LB

S;(LD
S+tD0-zB

6
D

0-tB6);(LC
S+tC0-zB

2
C

0-tB2)}=min{6;(15+0-3-6);(10+0-2-2)}=6   
LB

F=LB
S+tB=12 

LC
S=min{OLD_LC

S;(LB
S+tB2-zC

0
B

2-tC0);(LD
S+tD0-zB

3
D

0-tB3); (LD
S+tD1-zB

4
D

2-tB4) (LD
S+tD2-zB

5
D

2-
tB5)}=min{10;(6+2-(-2)-0);(15+0-0-3);(15+1-0-4);(15+2-0-5)}=10        LC

F=LC
S+tC=15 

LA
S=min{OLD_LA

S;(LC
S+tC0-zA

6
C

0-tA6);(LB
S+tB0-zA

3
B

0-tA3)}=min{0;(10+0-4-6);(6+0-0-3)}=0   LA
F=LA

S+tA=6 

Activity dates have not changed during the iteration. Calculations are finished. Results of the backward 
pass (and the forward’s as well) can be seen in Fig. 5b.  

5 DISCUSSIONS AND FURTHER RESEARCH 

A new ‘super’ precedence relationship based on the results of Francis & Mireco and Kim has been 
discussed in the paper. It has been shown that the traditional precedence relations (SS, SF, FS and FF 
with either minimal or maximal lags) could be derived from the new relation. It has also been shown that 
different results of parallel works e.g. bee-line relations can also be derived from this new ‘super’ relation; 
therefore claiming these results as a new technique is a wrong approach. This new relation forms a 
connection between two arbitrary points of two activities; therefore the name point-to-point relation fully 
describes the nature of this new relation. Following this logic, the traditional precedence relations, which 
could be called endpoint relations, form a subset of point-to-point relations as they connect the endpoints 
of the activities.  Point-to-point relations affect the very fundaments of network techniques, therefore all 
definitions, generalizations, problems based on the ‘old’ precedence relations must be checked and 
modified accordingly, if necessary, including the definitions and calculations of floats, the definition of  the 
critical path, the classification of critical activities (Weist 1981) (Hajdu 1996) (Walls & Lino 2001), the 
algorithms for resource optimization etc. To our best knowledge, this work has not been done yet. 

References 

Bellman, R.E. 1958 On a Routing Problem. Quarterly of Applied Mathematics 16 1959. 87-90 
Douglas, E.E.; Calvery T. T. McDonald, D.F.; Winter, R.M. 2006. The Great Negative Lag Debate. 2006 

AACE International Transactions PS 02.01.- PS 02.07 
Fondahl, J.W 1961. A non-computer approach to the critical path method for the construction industry. 

Technical Report #9 The Construction Institute, Department of Civil Engineering, Stanford University, 
Stanford California 

Ford, L.R. 1956. Network Flow Theory. The Rand Corporation 1956. 
Francis, A., Miresco, E.T. 2000. Decision Support for Project Management Using a Chronographic 

Approach. Proceedings of the 2nd International Conference on Decision Making in Urban and Civil 
Engineering, 2000 Lyon, France, 845-856. 

Francis, A., Miresco, E.T. 2002. Decision Support for Project Management Using a Chronographic 
Approach. Journal of Decision Systems, Special issue JDS-DM in UCE: Decision Making in Urban and 
Civil Engineering, 11(3-4): 383-404.  

Hajdu, M. 1996.  Network Scheduling Techniques For Construction Project Management. Kluwer 
Academic Publishers, ISBN 0-7923-4309-3 

Hegazy, T & Menesi, W. 2010 Critical Path Segments Scheduling Technique. Journal of Construction 
Engineering and Management, 136(10): 1078-1085 

IBM 1964. Users Manual for IBM 1440 Project Control System (PCS). 1964 
Kim, S. 2010. Advanced Networking Technique Kimoondang, South Korea 2010 
Kim, S. 2012. CPM Schedule Summarizing Function of the Beeline Diagramming Method. Journal of 

Asian Architecture and Building Engineering, 11(2) November 2012; 367-374 
Plotnick FL, 2004 Introduction to Modified Sequence Logic, Conference Proceedings, PMICOS (first 

annual) Conference, April 25, 2004, Montreal, Canada  
Ponce de Leon, G. 2008 Graphical Planning method. PMICOS Annual Conference, Chicago, IL, 2008 

340-10 



Roy, G.B., 1959 Théorie des Graphes: Contribution  de la théorie des graphes á l1 étude de certains 
problémes linéaries, Comptes rendus des Séances de l1 Acedémie des Sciences. séence du Avril 
1959, s2437-2449, 1959 

Roy, G.B. 1960. Contribution de la théorie des graphes à l’étude de certains problems 
d’ordonnancement",  Comptes rendus de la 2ème conférence internationale sur la recherché 
opérationnelle, Aix-en-Provence, English Universities Press, Londres 171-185. 

Valls, V and Lino, 2001. Criticality Analysis in Activity-on-Node Networks with Minimal Time Lags. Annals 
of Operations Research, 102(1-4) 17-37 

Wiest, J.D. 1981 Precedence diagramming method: Some unusual characteristics and their implications 
for project managers, Journal of Operations management, Volume 1/3 Feb. 1981. 121-130 

340-11 


	One relation to rule them all: the Point-to-Point Precedence relation that substitutes the existing ones
	1 Introduction and Literature review
	2 The Mathematical model
	2.1 Notations
	2.2 The model

	3 AlgorithmS
	3.1 Point-to-point relations with minimal lag
	3.2 Point-to-point relations with mixed lags

	4 Sample project
	4.1 Sample project: only minimal lags are allowed
	4.2 Sample project: both minimal and maximal lags are allowed

	5 Discussions and further research
	References

