

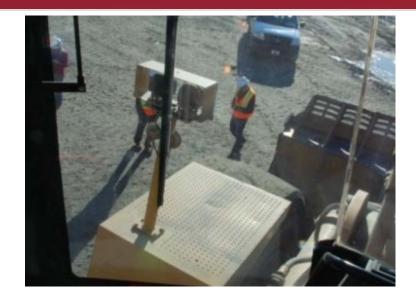
Hazard Proximity Zone Design for Heavy Construction Equipment

Ibukun Awolusi Eric Marks, P.E., Ph.D.

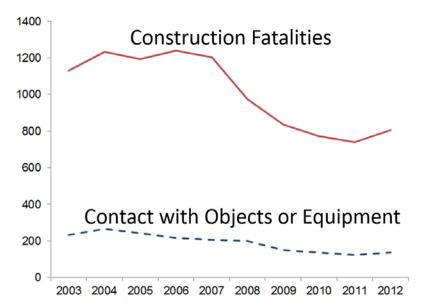
Department of Civil, Construction and Environmental Engineering University of Alabama

June 9, 2015

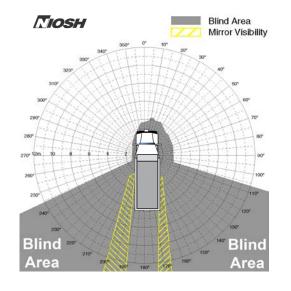
Outline


- Proximity problem in construction
- Current methods of mitigating human-equipment interaction
- Hazard zone creation and testing
- Results of implementation
- Conclusion and future research

Equipment-Worker Proximity Problem


Construction Site Conditions

- Vary in size and scope
- Multiple resources involved in dynamic work tasks
- Outdoor environment: day/night, noise, dust/dirt, weather conditions


Workers Struck by an Object or Construction Equipment (BLS 2015)

Year	Fatalities
2013	140 (17%)
2012	136 (17%)
2011	122 (17%)

Current Practices

1) Rear-view mirrors

4) Back-up alarm

2) Flagger

5) Back-up camera

3) Field modification

6) Proximity sensing

Research Objective and Scope

Objective: Create a tool to automatically design a

hazard zone around a piece of construction equipment

Scope:

- Construction sites and equipment at a horizontal grade

Hazardous situations between heavy construction equipment and pedestrian workers

Equipment Footprint

Initial Safety Boundary

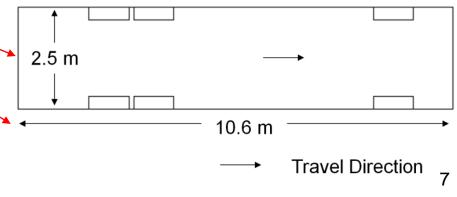
Equipment Function

Operator Reaction Time Equipment
Braking
Distance

Hazard Zone Boundary

Step 1: Equipment Information

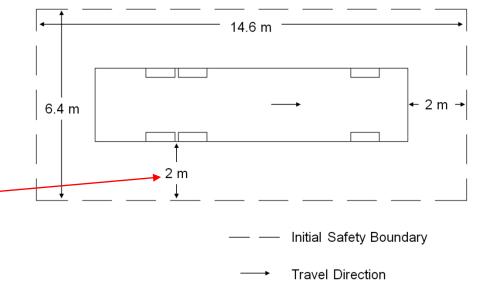
Equipment specifications


MAKE		Eaton Fuller
MODEL	FR-13210B 10-speed	
NUMBER OF FORWARD GEARS	10	
HIGH GEAR RATIO		
LOW GEAR RATIO		
Wheelbase Option (CCT) 1		
WHEELBASE	139 in	3531 mm
OVERALL LENGTH	19.2 ft in	5852 mm
LENGTH FROM BACK OF CAB TO END OF FRAME	117 in	2972 mm
LENGTH FROM CENTER OF REAR AXLE(S) TO END OF FRAME	41 in	1041 mm
TOTAL CHASSIS WEIGHT	11678 lb	5297.1 kg
Dimensions		
OVERALL WIDTH	7.9 ft in	2410 mm
HEIGHT TO TOP OF CAB	9.4 ft in	2857 mm
NUMBER OF REAR AXLES		1
TIRE SIZE		295/75R22.5

User-interface

Construction Equipment Hazard Zone

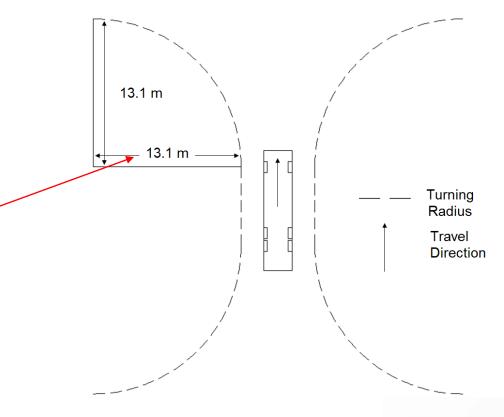
Equipment type	dump truck
Overall width (m)	2.5
Overall length (m)	10.6
Maximum turning radius (m)	13.1
0 ()	
Safety boundary (m)	2
Estimated valuaity (m/s)	7
Estimated velocity (m/s)	/
Operator reaction time (s)	2.5
Operator reaction time (s)	2.5


Equipment footprint

Step 2: Initial Safety Boundary

User-interface

Construction Equipment Hazard Zone			
Equipment type	dump truck		
Overall width (m)	2.5		
Overall length (m)	10.6		
Maximum turning radius (m)	13.1		
Safety boundary (m)	2	_	
Estimated velocity (m/s)	7		
Operator reaction time (s)	2.5		

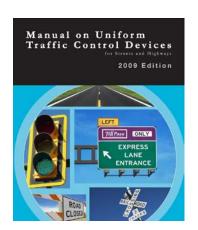


Step 3: Equipment Function

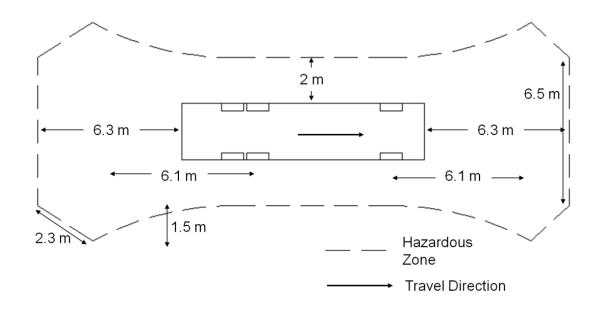
User-interface

Construction Equipment Hazard Zone

Equipment type	dump truck
Overall width (m)	2.5
Overall length (m)	10.6
Maximum turning radius (m)	13.1
Cafata hassa da ma (ma)	0
Safety boundary (m)	2
Estimated valosity (m/s)	7
Estimated velocity (m/s)	/
Operator reaction time (s)	2.5
Sperator reastion time (o)	2.0

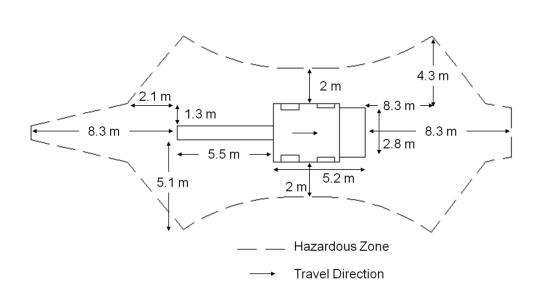


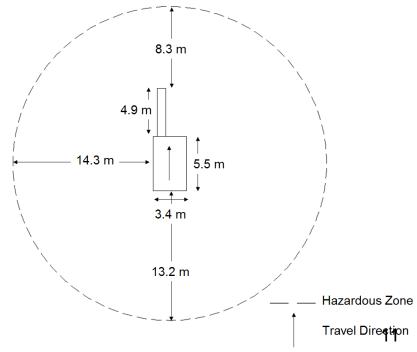
Step 4-5: Finalize Hazard Zone


User-interface

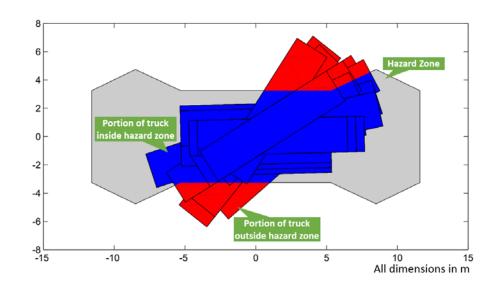
Construction Equipment Hazard Zone					
Equipment type	dump truck				
Overall width (m)	2.5				
Overall length (m)	10.6				
Maximum turning radius (m)	13.1				
Safety boundary (m)	2				
	/	//			
Estimated velocity (m/s)	7				
	0.5				
Operator reaction time (s)	2.5				

Step 4: Operator Reaction Distance


Step 5: Equipment Braking Distance



Equipment Hazard Zones



Hazard Zone Implementation

- 2/3 of truck movements were in hazard zone
- Sharp right turns at minimum speed were not captured

Conclusions and Future Research

Conclusions

- Current safety practices are inadequate
- Hazard zones identify areas that have a higher potential for injury and should be avoided
- Created hazard zones can be used in site planning and safety education for construction workers

Future Research

- Implementation of hazard zone information
- Equipment malfunction and environmental conditions

Contact Information

Eric Marks, Ph.D., P.E.
University of Alabama
Department of Civil, Construction
and Environmental Engineering
E-mail: eric.marks@eng.ua.edu

Ibukun Awolusi
University of Alabama
Department of Civil, Construction and
Environmental Engineering
E-mail: igawolusi@crimson.ua.edu

Nipesh Pradhananga, Ph.D.
Florida International University
College of Engineering and Computing
E-mail: npradhan@fiu.edu

Tao Cheng, Ph.D.ExxonMobil Upstream Research Company
Senior Research Engineer

