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Abstract: To improve the performance of the increasingly deteriorating infrastructure, effective strategic 
policies must be combined with optimum tactical rehabilitation plans. In the literature, limited efforts have 
focused on strategic policy analysis and its integration with tactical/operational planning. This paper; 
therefore, presents a framework that combines the strategic and tactical dimensions of infrastructure 
rehabilitation. At the strategic level, the System Dynamics (SD) modeling technique has been used to 
simulate the long-term effect of different policy scenarios on physical performance and backlog 
accumulation. The optimum policies are then used as inputs to a detailed tactical planning model. The 
objective of such model is to provide detailed fund allocation plans for the assets that need rehabilitation 
on a yearly basis. The proposed tactical model deals with large number of asset components over a 5-
year plan to determine the best possible combination of repair types and timings. The paper compares 
the processing time and solution quality of three models that use different optimization approaches: 
Genetic Algorithms (GA); mathematical mixed integer programming; and Microeconomic-based 
heuristics. The paper discusses the conceptual formulation of the proposed integrated framework, the 
developments made so far, present limitations, and future enhancements. 

1 INTRODUCTION 

A major challenge for asset managers is to determine the appropriate actions needed to preserve the 
performance of rapidly deteriorating civil infrastructure, over a long service life. Adequately budgeting and 
planning of infrastructure rehabilitation programs is of extreme importance in achieving this objective 
(Hudson et al. 1997). Budgeting and planning, however, are complex tasks that require many details 
about each asset, including present condition, multi-criteria performance, deterioration pattern, possible 
rehabilitation actions, and rehabilitation impacts. All these are then used to formulate a detailed life cycle 
cost analysis (LCCA) model of the whole network of assets to facilitate the appropriate allocation of 
limited rehabilitation funds among the assets (Frangopol et al., 2012). In the literature, infrastructure 
rehabilitation has been extensively studied and a number of life cycle optimization models have been 
introduced for different asset domains. Examples are: pavements (De la Garza et al. 2011); water and 
sewer (Halfawy et al. 2008); bridges (Frangopol et al. 2012); buildings (Rashedi and Hegazy 2014). Most 
of the existing models, however, suffer from performance degradation when facing large-scale and 
complex life cycle optimization problems, yet the results are also difficult to explain or economically 
interpret (Rashedi and Hegazy 2014; Hegazy and Saad 2014).  

While existing efforts provide useful life cycle cost models, they do not provide an overall understanding 
of the rehabilitation dynamics in large networks of assets, over a long period of time. Some efforts 
focused on individual assets over a long period (more than 50 years) (e.g., Frangopol and Liu 2007) while 
others focused on a large number of assets over a short period (5 years) (e.g., Rashedi and Hegazy 
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2014). These efforts do not provide a comprehensive view that examines strategic decisions and their 
impact on the life cycle dynamics over a long span of time. Such a comprehensive view, however, is 
essential for strategic decision-making. This paper therefore attempts to combine the long-term strategic 
perspective that relates to the setting of budget policies with the short-term tactical perspective that 
relates to detailed allocation of a decided budget among asset components. The paper explores the 
potential of the system dynamics (SD) technique as an effective tool for modeling and analysis of the 
dynamic processes within infrastructure rehabilitation at the strategic level. Also it compares various 
optimization techniques that can be used to optimize tactical fund allocation decisions. The combination 
of the two levels of decisions creates a more comprehensive framework for analyzing infrastructure 
rehabilitation plans. 

2 PROPOSED FRAMEWORK FOR REHABILITATION PLANNING 

A proposed policy optimization framework is illustrated in Figure 1. The overall objective of this framework 
is to understand the dynamic interactions among different aspects of asset management, generate 
various ‘what-if’ scenarios, and optimize strategic policies. The framework’s initial inputs can be 
categorized into two groups: asset information and organizational information. Asset information is mainly 
determined using inspection and condition assessment methods. They include asset inventory data, 
current conditions, historical condition indices, deterioration rates, maintenance costs, and costs of 
rehabilitation alternatives. Organizational information, on the other hand, includes key performance 
indicators (KPIs), strategic objectives, and different policies such as budget allocation strategy. To 
develop the strategic and tactical models of this comprehensive framework, the asset inventory of the 
Toronto District School Board (TDSB), which administrates a network of more than 550 school buildings, 
has been used. Also, in this study the key strategic variables have been identified based on reviewing the 
literature, previous research on TDSB assets, and other guidelines obtained from the TDSB and the 
Ontario Ministry of Education (OME). The two main components of the proposed framework are as 
follows: 

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 1: Proposed framework for rehabilitation planning 

 

Strategic System Dynamics (SD) Model: The strategic SD model investigates the long-term 
organizational objectives and seeks to examine the impact of different strategic policies, such as 
rehabilitation budgeting, sustainability policy, or public private partnership (PPP), on asset performance 
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and backlog accumulation. As shown in the conceptual framework of Figure 1, the proposed SD model 
has four integrated modules: 1) the central policy analysis module; 2) physical condition; (3) backlog 
accumulation; and (4) sustainability performance. Accordingly, the SD model simulates the dynamic 
interactions within and among these modules, and can be used to provide policymakers with a clearer 
understanding of the long-term impact of their policies. 

Tactical Optimization Model: After performing the strategic SD analysis, the outputs of the model, such 
as budget policy, is used as an input to the tactical optimization model to perform a detailed fund 
allocation analysis over a tactical planning horizon. At the tactical level, three approaches: genetic 
algorithms (GA), mathematical optimization, and microeconomics-based heuristics are used to achieve 
the most optimum fund allocation plan. 

3 STRATEGIC SD MODEL 

System dynamics (SD) is perhaps one of the most promising simulation methods in the area of policy 
optimization and strategic decision-making (Forrester 1961). Sterman (2000) describes it as “a method to 
enhance learning in complex systems. Just as an airline uses flight simulators to help pilots learn, system 
dynamics is, partly, a method for developing management flight simulators, often computer simulation 
models, to help us learn about dynamic complexity, understand the sources of policy resistance, and 
design more effective policies.” SD has been applied to a variety of domains from construction to politics, 
HIV control, and even warfare. In all of its applications, SD has proved to be capable of capturing the 
dynamics and interactions within complex systems from a holistic perspective, thus making it effective for 
top-level management (Sterman 2000). In the asset management domain, Rehan at al. (2011) developed 
an SD model for estimating the financial sustainability of water and wastewater systems and the impact of 
pricing policies on users. In another effort, Xu and Coors (2012) combined SD with GIS and 3D 
visualization to examine the sustainability of urban residential development. Other applications have also 
established the significant potential of system dynamics with respect to the development of holistic 
models for macro-level management.  

To examine the dynamics within complex systems, SD models are developed through three main steps: 
(1) creating causal loop diagrams (CLDs) to capture the dynamic interactions among the key 
variables/parameters; (2) mapping the developed CLDs into stock-and-flow simulation components; and 
(3) running the simulation, testing the model, and analysing the long-term impact of various parameters. 
These steps, along with the proposed rehabilitation analysis model, are discussed in the next section. 

3.1 Casual Loop Diagramming  

The development of the proposed strategic SD model starts with identifying the interactions among four 
main groups of key strategic variables (as shown in Figure 1), related to: policy aspects of asset 
management, physical condition, backlog accumulation, and sustainability performance. Figure 2 depicts 
the proposed causal loop diagram (CLD) that captures the dynamic interactions among the key strategic 
variables. In system dynamics, Causal Loop Diagrams (CLDs) are tools for capturing SD hypotheses 
about the interactions among different variables/parameters, causes of dynamics, and determining the 
important feedbacks in the strategic model. A causal loop diagram consists of variables connected by 
links denoting the causal influences among them. Casual links show effects of variables on each other by 
link polarities. A positive link, i.e., (+) polarity, implies that the cause and effect are moving in the same 
direction meaning if a cause increases, the effect increases and if a cause decreases, the effect 
decreases. A negative link, i.e., (-) polarity, means if the cause increases, the effect decreases and vice 
versa (Sterman 2000). As and example, a CLD is highlighted in Figure 2 that involves two variables: 
“asset condition” and “asset deterioration”. In this CLD, “asset deterioration” is linked to “asset condition” 
by a negative link polarity, which models the fact that higher deterioration typically results in lower 
condition. Similarly, another negative link in the same loop represents the causal relationship in which 
higher condition leads to lower deterioration. The combination of these two links then creates a positive 
(or reinforcing) feedback loop as highlighted in Figure 2. This positive loop models the dynamic behavior 
of infrastructure deterioration in which growing deterioration rates results in decaying physical condition in 
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a continuous cycle. With time, such a reinforcing loop exhibits an accelerated rate of deterioration and 
lower condition indices, until other parameters take part to influence these dynamics.  

 

 

Figure 2: Causal loop diagram for the proposed SD model 

 

3.2 Stock-And-Flow Modeling 

After identifying the dynamic interactions among the parameters that are impacted by strategic policy, the 
developed causal loop diagram (CLD) has been mapped into a stock and flow simulation model. While 
the CLD shows the underlying feedback structure of the model, the stock and flow diagram captures the 
physical dynamic structure of the system. Stocks, represented by rectangles, are accumulations that 
characterize the state of key system variables over the simulation time. Flows, on the other hand, 
represent system variables that generate quantities accumulated into (inflows) or out of (outflows) the 
stocks over time. Figure 3 shows a partial screen capture of the SD simulation model, which has been 
developed in the VENSIM software. The model includes around 100 decision variables and equations 
including key and intermediate parameters. Developing the stock and flow diagram of Figure 3 and its 
underlying simulation model was a demanding process of translating all the loops in the CLD diagram one 
by one into stocks and flows and writing the related equations. This iterative process includes numerous 
rounds of modifications of the stock and flow diagram and performing various tests to verify model 
relationships and the accuracy of results.  
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Figure 3: Strategic SD Model in the VENSIM software 

3.3 Analyzing Budget Policy 

As an example to show the application of the proposed model in determining different strategic policies, a 
set of experiments was performed to investigate the effect of government investment on asset condition 
and backlog accumulation, to determine a proper annual budget level. Four scenarios have been 
generated based on different investment values. Scenario 1 allows assets to deteriorate over time without 
any rehabilitation (i.e., $0/year), and the next three scenarios (Scenario 2, 3, and 4) investigate the effect 
of increasing the annual government investment from 0 to $2, $3, and $4 million, respectively. Figure 4 
shows the backlog and condition results. As expected, the no rehabilitation scenario causes significant 
backlog accumulation (almost 7 times more than the $4 million/year scenario at year 50) and results in a 
decaying overall asset condition (Figure 4). Increasing government investment, as shown in Figure 4, can 
significantly reduce backlog accumulation and improve asset condition. Sustainable performance results 
also indicated that increasing the annual budget by only $1 million (e.g., form $3 to $4 million/year) can 
improve the sustainable performance by 39%. The positive effect of increasing investment on condition 
and backlog might be obvious, however, the presented analysis can be very useful for the TDSB 
administrators (or other asset owners) to justify the required budget and its impact on their inventory while 
negotiating with the ministry of education (or other authorities).  
 
 

 

Figure 4: Simulation results for different levels of annual rehabilitation budget 

CONDITION BACKLOG 
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4 TACTICAL OPTIMIZATION 

With a budget level imposed on a public agency as a constraint on rehabilitation work (as a result of 
strategic analysis), tactical decisions are concerned with determining the optimum rehabilitation type 
(project-level decisions) and rehabilitation timing within a planning horizon (network-level decisions). At 
the tactical level, this paper utilizes a fund allocation method that integrates both project and network 
levels of decision. The method is built upon the Multiple Optimization and Segmentation Technique 
(MOST) of Hegazy and Elhakeem (2011) that reduce problem size to handle large-scale problems. In the 
MOST technique, the project-level analysis is done first, one year at a time, to determine the most cost-
effective rehabilitation scenario (e.g., minor, major, or full replacement) for each asset that maximizes 
overall condition. This analysis provides a pool of best potential repair strategies, and their associated 
costs. This information is then used as a lookup input table to simplify the network-level analysis. At the 
network-level, the problem is segmented into yearly smaller-size optimizations to determine optimum 
renewal timings (facilitated only by the pre-analysis at the project level) using genetic algorithm (GA), as 
shown below in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Schematic of MOST and its adaptation to the network-level fund allocation model 
 

The performance of GAs, however, is highly sensitive to problem size, problem formulation and other 
operational parameters that govern the GA evolutionary process. As such, a steep degradation of solution 
quality has been noticed from experimenting with GA on larger problems (Rashedi and Hegazy 2014). 
Thus, at the network-level, this paper presents three different models to improve solution quality: 1) GA + 
Segmentation optimization, 2) Mathematical optimization, and 3) Microeconomic Enhanced benefit-cost 
analysis (EBCA) heuristic. To compare solution quality, the three models are applied to a base case 
involving 800 school building asset components. The models have a planning horizon of 5 years, an 
assumed $10M annual budget yielding from the strategic-level SD model, and the objective function of 
maximizing the overall network condition. 

4.1 GA + Segmentation Model 

To suit real-life problems that are much larger in size, a segmentation method by Hegazy and Rashedi 
(2013) has been applied to enhance the performance of GAs. The GA+Segmentation process divides the 
original network-level problem into smaller sub-problems (segments), handles them separately, and 
combines their results to produce the final solution. To implement the segmentation process within the 
tactical model, the available budget, decision variables and optimization constraints have been 
segmented, without compromising the integrity of the model. Also, the model has been modified to 
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accommodate the redistribution of unallocated (leftover) money from one segment to the next. 
Considering these aspects, the GA+Segmentation approach has been fully automated, which makes it 
practical for real-life applications. In the GA+Segmentation method, the budget is divided among 
segments (e.g., size of 200 assets) based on the relative criticality (RC) of each segment, which is 
calculated as a function of the relative importance and the deterioration behaviour of the components 
within each segment. Subsequently, the budget constraint in year j for the components within a segment 
is proportional to the segment’s RC value divided by the sum of RCs for all segments. Application of the 
GA+Segmentation model on the building case study showed significant improvement to solution quality in 
comparison to the traditional GAs (comparison is shown in Table 1), and effectiveness in handling large-
scale problems. The major drawback of this approach, however, was its processing time that showed 
exponential increase on larger size problems. 

 

Table 1: Comparison among tactical optimization approaches 

 

 

 

 

 
 

 

 
 
 
 

4.2 Mathematical Optimization Model 

To reduce processing time and to find globally optimum solutions, Rashedi and Hegazy (2014) developed 
a mathematical optimization model that utilizes an advanced mathematical optimization tool, General 
Algebraic Modeling System (GAMS), which consists of an array of integrated high-performance built-in 
solvers. The model uses CPLEX solver engine, a powerful mathematical optimization solver that uses 
advanced algorithms for variety of optimization problems, including mixed-integer programming. The 
optimization model is designed to be generic enough to accommodate any type of data. The model’s 
objective function is to maximize the assets’ overall network condition index, which is an aggregation of 
one or more performance parameters of all individual assets. Each asset can be selected in a year over 
the planning horizon using a binary decision variable (e.g., Xij). If Xij for a certain asset i and year j is 

equal to 1, then the asset is selected for rehabilitation at this year, and the associated rehabilitation cost 
and benefit would be retrieved from the appropriate lookup tables (value of zero represents no action). 
The Objective function is set to maximize the network overall condition index, which is the weighted sum 
of all assets’ condition, considering the relative importance factor of each asset. The total rehabilitation 
cost, which is the sum of all assets’ costs in any year j, is another constraint that is limited by the available 
budget for that year. Also, each asset can only be selected once for rehabilitation within the planning 
horizon to satisfy a single-visit criterion (Rashedi and Hegazy 2014). The GAMS/CPLEX model proves to 
be promising in terms of both solution quality and processing time and can be effectively used by asset 
mangers for tactical optimization solutions. Using this model a network of more than 50,000 asset 
components, that is close to the real size of the problem, has been optimized in a matter of minutes 
resulting in a close to global optimum network condition of 31.71 as shown in Table 1. 

Tactical Optimization Approach 
Network * 
Condition 

Comment 

No Rahabilitiaton 54.15  

Simple Ranking 44.89 Poor Solution Quality 

GA (Hegazy & ElHakeem 2011) 33.18 Limited to 800 assets 

GA+Segmentation (Hegazy & Rashedi 2013) 32.09 Applicable to large-scale; long processing 
tim; suitable for nonlinear problems 

GAMS/CPLEX (Rashedi & Hegazy 2014) 31.71 Applicable to large-scale; very fast; provides 
close to global optimum results 

EBCA Heuristic (Saad 2014) 31.79 Applicable to large-scale; high quality 
solutions; provides economic justifications  

 * Smaller is better 
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4.3 Microeconomic EBCA Heuristic Model 

While the previous two models are effective in handling large-scale tactical optimization problems, their 
development was not simple, thus it is difficult to provide an economical interpretation for the optimization 
results. The results are typically a set of decisions (usually binary, i.e., a combination of [0, 0, 1, 0, 0] 
represents a decision to repair an asset in year 3 of a 5-year plan). In case of thousands of assets, which 
is typical, the combination of zeroes and ones is not easy to interpret or justify economically. Several 
combinations of zeroes and ones might lead to close-to-optimum solutions, and thus it is not easy to 
determine the logic behind those solutions.  

To handle this issue, an Enhanced Benefit-Cost Analysis (EBCA) heuristic approach has been introduced 
that uses the microeconomic consumer theory of equal marginal utility per dollar, to arrive at near 
optimum balanced fund-allocation decisions in a structured way, while providing an economic justification 
behind decisions (Saad 2014). This theory of equal marginal utility per dollar has been proven, in the 
microeconomics literature (Chugh 2014), to arrive at optimum allocation of a limited fund by targeting 
equilibrium (equality) among the marginal utility per dollar spent on the different consumption categories, 
rather than the typical approach of maximizing benefits or minimizing costs. The basic premise of this 
approach is an analogy between a consumer who has a limited income to spend on various expenditure 
categories, and a public agency with a limited budget, from taxpayers’ money, to allocate to various 
rehabilitation expenditures. As such, optimum fund-allocation is represented by an equilibrium state at 
which the marginal utilities (benefits) per dollar (MU/$) associated with the rehabilitation of the last 
selected asset from each category (e.g., Architectural, Mechanical, etc.) are equal. This approach 
involves a five-step process that is applied one year (j) at a time to facilitate mapping the consumer case 
in each year in the planning horizon. To arrive at the optimum decision that maintains equilibrium state 
among the different asset categories the heuristic process is applied to the building case study as follows:  

1. For each year in the planning horizon group unfunded assets into their categories (Architectural, 
Mechanical, and Electrical); 

2. List the performance improvement and the renewal cost for each asset based on the LCCA 
calculations, assuming all assets will be funded this year;   

3. Compute the Marginal utility per dollar (MU/$) for each asset by dividing the performance 
improvement by the renewal cost; 

4. Sort the assets in a descending order, according to the MU/$; and 
5. Select assets for funding starting from the top of the sorted list in each category till the MU/$ value of 

the last selected asset in each category is almost equal, and the budget for this year is fully 
exhausted. Move unfunded assets beyond this equilibrium point to the next year in the planning 
horizon. 

 
 
 
 
 

 

 
 

 

 

 

 

 

Figure 6: Sample of selected assets in first year using EBCA approach 
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Figure 6 shows the application of the heuristic process steps to the school building case study in first 
year. The assets are grouped according to their system-level categories (Architectural, Mechanical, and 
Electrical), and sorted in a descending order according to their marginal utility per dollar values. The 
“Cum. Cost” column represents the total cumulative rehabilitation costs that correspond to a total number 
of allocated assets in each category. The shaded part shows the optimum (equilibrium) combination of 
assets for year 1, which is 124 architectural, 51 mechanical, and 43 electrical assets. The total cost 
associated with this combination is $9,994,640 ($4,509,670 + $3,415,870 + $2,069,100), which almost 
fully exhausts the available budget while maintaining an equilibrium state among the asset categories. 
The microeconomic EBCA approach can handle large-scale problems due to its formulation, and it is 
comparable to the mathematical model in terms of solution quality, yet with a structured strategy 
supported with economic justification. 

5 CONCLUDING REMARKS 

This paper discussed a comprehensive infrastructure rehabilitation framework that combines a strategic 
SD-based policy analysis model with tactical optimization to create detailed fund allocation plans. At the 
strategic level, the development of a holistic the SD model, including casual loop diagrams and stock-
and-flow simulation model, have been discussed. The model was experimented on a policy analysis 
example with regard to rehabilitation budgeting. Using an appropriate budget level, three tactical 
optimization models have been discussed, each with a particular advantage, to effectively allocate the 
selected rehabilitation budget.  The GA+Segmentation model can handle large-scale and nonlinear 
problems, but its processing time increased exponentially as problem size increased. The mathematical 
GAMS/CPLEX model had the highest solution quality and could optimize large-size problems within a 
very short processing time. The microeconomic-based enhanced benefit-cost analysis (EBCA) also 
results in high quality solution that can be economically interpreted, and can handle large-scale problems 
due to its formulation. The proposed framework of this paper can be applied to variety of asset types and 
can address the asset management needs at both strategic and tactical levels. This comprehensive 
model can be used to ultimately improve the economics of infrastructure rehabilitation by allowing asset 
owners to align all levels of decisions to maximize the impact on asset condition and backlog 
accumulation.  
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