

An Integrated Framework to Prevent Unsafe Proximity Hazards in Construction by Optimizing Spatio-Temporal Constrains

Nazila Roofigari¹, Jun Wang¹ and Saiedeh Razavi²

 ¹ Ph.D. Candidate, Dept. of Civil Engineering, McMaster University, Canada.
 ² Ph.D., Assist. Prof., Dept. of Civil Engineering, McMaster University, Canada.

Outline

- 1. Introduction
 - 2. Motivation and objectives
- 3. Methodology
- 4. **Potential contributions**
- 5. Concluding remarks

Introduction

Moving resources

Stationary resources/facilities

Introduction

• Manage project cost and schedule

space

> Not take the **planning stage** into account

> Neglected the **time factor** in both analysis and

visualization

> Neglected **direction/heading** of the entities' movement

□ Safety Areas

• R1: alert distance

→ regardless of its static or moving state

• R2: warning distance

→ equipment reaction distance + braking distance

Trajectory Optimization

Resource Locations and Safety Areas

Expected location of each resource:

 \rightarrow Pre-set time intervals to optimize the trajectory step by step

 \rightarrow The nature and the schedule of activities for each resource

Safety Area

• Construction equipment and workers-on-foot

 \rightarrow Alert and warning areas

- Temporary or permanent site facilities and obstacles
 - \rightarrow The area around them that other construction resources are not

allowed to be inside except by authorizations

Initialize the step-by-step optimization process

□ Initial Visualization

Location Optimization

- Assumptions:
 - The 2D intersection between circles is considered only at certain time intervals
 - Safety circles can intersect but only in warning areas
 - Safety area around obstacles is considered as cylinder

Location Optimization

• Purpose: to minimize the potential hazardous contacts between resources

$$\min \left[f(x,y) \downarrow t = \sum k = 1 \text{ fm} \right]$$

$$IA \downarrow i,j \downarrow t]$$

$$\begin{array}{l} m = C \downarrow 2 \uparrow n \downarrow t = n \downarrow t ! / 2 \times (n \downarrow t \\ -2)! \\ n = number \ of \ resources \ at \\ time \ t \\ D \geq R2 \downarrow i + R1 \downarrow j \\ R2 \downarrow i \geq R2 \downarrow j \end{array}$$

 $D = \sqrt{\left[x \downarrow i\left(t\right) - x \downarrow j\left(t\right)\right] \hat{1}^{2} + \left[y \downarrow i\left(t\right) - y \downarrow j\left(t\right)\right] \hat{1}^{2}}$

Location Optimization

- $\begin{array}{ll} 1. & D \ge R2 \downarrow i + R2 \downarrow j \rightarrow \\ & IA = 0 \end{array}$
- 2. $D \le R2 \downarrow i R2 \downarrow j$, $\rightarrow R2 \downarrow j \le R2 \downarrow i \rightarrow IA = \pi R2 \downarrow j \uparrow \uparrow 2$
- 3. $R2 \downarrow i R2 \downarrow j \le D \le R2 \downarrow i +$ $R2 \downarrow j$, → $IA = R2 \downarrow j \uparrow 2 \ cos \uparrow -1 \ (D \uparrow 2 + R2 \downarrow j \uparrow 2 - R2 \downarrow i \uparrow 2 \ /2 D R2 \downarrow j \)$ $+ R2 \downarrow i \uparrow 2 \ cos \uparrow -1 \ (D \uparrow 2 + R2 \downarrow i \uparrow 2 - R2 \downarrow j \uparrow 2 \ /2 D R2 \downarrow i \) 1/2 \ \sqrt{(-D+R2 \downarrow j + R2 \downarrow i \)(D+R2 \downarrow j - R2 \downarrow i \)(D-R2 \downarrow j + R2 \downarrow i \)(D+R2 \downarrow j + R2 \downarrow i \)}$

Optimum Trajectory Visualization

Resource	Time	X coordinate	Y coordinate	Warning distance	Alert distance
Equipment 1	1	0	0	10	2
	7	1	4	11	2
	14	2	3	14	2
	21	3	7	11	2
	28	2	0	11	2
Equipment 2	1	2	2	11	2
	7	5	3	9	2
	14	6	6	11	2
	21	5	7	13	2
	28	4	3	11	2
Equipment 3	5	8	10	9	2
	7	9	10	11	2
	14	7	9	9	2
	20	6	9	8	2

Optimum Trajectory Visualization

Potential Contributions

• Help contractors and project managers to better control the movements of the resources

• Help project participants in taking preventive actions instead of 'after the fact' remedies

Concluding Remarks

- Analyze and adjust the planned locations of construction resources on sites
- Prevent the hazards occuring due to an excessive proximity between different resources
- Reduce the complexity of resources' movements and increase their predictability

Thank you for your attention!

