

Optimizing Environmental Sustainability and Public Benefits of Transportation Network Programs

Charinee Limsawasd and Wallied Orabi

June 2015

2015

Introduction

Problem

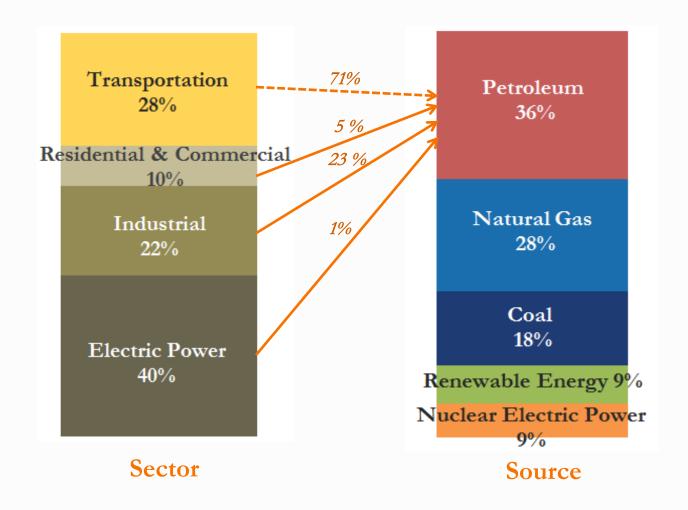
Background

Questions

Objectives

Methodology

Example


Conclusion

Future Work

June 7-10, 2015

Introduction

2015

Introduction

Problem

Background

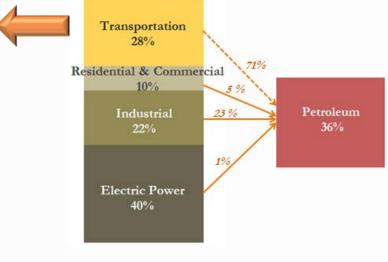
Questions

Objectives

Methodology

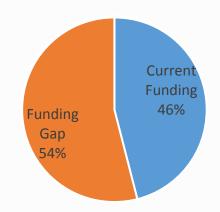
Example

Conclusion


Future Work

June 7-10, 2015

Introduction



Roads Grade

Introduction

Problem

Background

Questions

Objectives

Methodology

Example

Conclusion

Future Work

June 7-10, 2015

Examples of Current Funding Allocation Practices

What about Energy Performance of Rehabilitation Plans?

2015

Introduction

Problem

Background

Questions

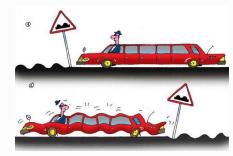
Objectives

Methodology

Example

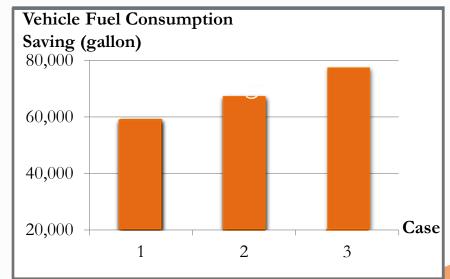
Conclusion

Future Work


June 7-10, 2015

Can the current practice be improved?

Case 1: Traffic Volume



Case 2: Pavement Conditions

Case 3: Fuel Consumption

Road Section	Traffic Volume (vehicle/day)	Pavement Roughness (m/km)	Length (km)
1	49,000	4.5	8.0
2	20,000	3	3.2
3	30,000	3.5	4.0
4	25,000	4.5	2.4
5	37,000	5	5.6
6	55,000	3.5	8.0
7	45,000	2	6.4
8	63,000	2	4.8
9	13,000	5	4.8
10	75,000	3	3.2

2015

Introduction

Problem

Background

Questions

Objectives

Methodology

Example

Conclusion

Future Work

June 7-10, 2015

Background

Optimization in Highway Rehabilitation

Single-Objective Optimization

Chan et al. 1994 – minimize cost

Ferreira et al. 2002 – minimize cost

Wang and Lui 1997 - maximize overall network performance

Multi-Objective Optimization

Zhang et al. 2012 – energy consumption + GHG emissions + construction costs

Mathew and Issac 2013 – minimize construction cost + maximize pavement performance

Orabi and El-Rayes 2011 – maximize net benefits + minimize network service disruption

Lidicker et al. 2012 – minimize construction costs and GHG emissions

2015

Introduction

Problem

Background

Questions

Objectives

Methodology

Example

Conclusion

Future Work

June 7-10, 2015

Research Questions

- What is the impact of decision making in highway rehabilitation efforts on total network fuel consumption and the expected public benefits?
- How can the total fuel consumption and expected public benefits for the entire network can be modeled?
- How can rehabilitation decisions be optimized in order to maximize public benefits and minimize energy consumption under budget constraints?

2015

Introduction

Problem

Background

Questions

Objectives

Methodology

Example

Conclusion

Future Work

June 7-10, 2015

Research Objectives

Fuel consumption in transportation networks

Estimate Cost of travel delays due to highway construction operations

Estimate Expected savings in road user costs due to completed rehabilitation projects

Public costs and benefits of highway rehabilitation efforts over time

Optimize Limited funding allocation to rehabilitation projects

2015

Introduction

Problem

Background

Questions

Objectives

Methodology

Example

Conclusion

Future Work

June 7-10, 2015

Multi-Objective Optimization Problem

(2) Travel-Delay Cost Estimating Module

(3) Road User Cost Savings
Estimating Module

(4) Public Cost and Benefit Estimating Module

(5) Multi-Objective Optimization Module

Decision Variables

Project Selection

Planning Objectives

Max. Net Public Benefits Min. Energy Consumption

Constraints

Limited Funding

2015

Introduction

Problem

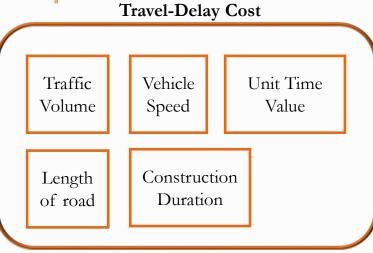
Background

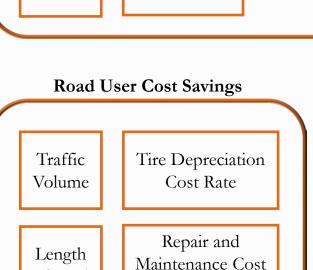
Questions

Objectives

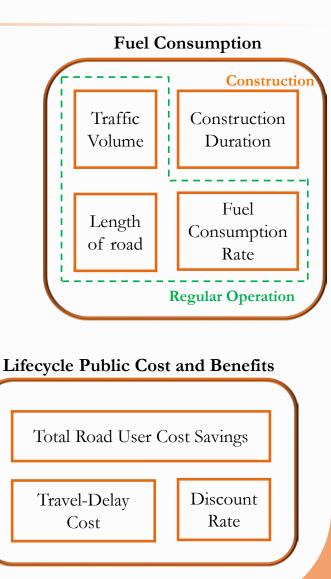
Methodology

Example


Conclusion


Future Work

June 7-10, 2015



Rate

of road

2015

Introduction

Problem

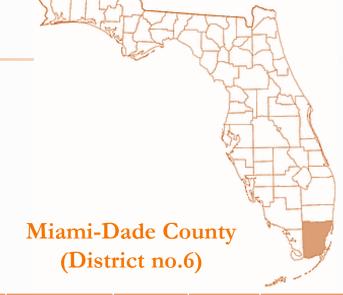
Background

Questions

Objectives

Methodology

Example


Conclusion

Future Work

June 7-10, 2015

Application Example

Project	IRI (m/km)	Traffic volume (veh/day)	Length (mile)	Free-flow speed (mph)	Work zone speed (mph)	Construction cost (million dollars)	Duration (week)	Number of lane	Total ESAL (million ESAL/lane)
1	4.50	45,500	2.87	40	25	9.17	46	4	0.3546
2	3.20	55,000	2.11	40	25	5.07	26	3	0.5715
3	2.80	37,500	4.05	40	25	6.48	33	2	0.5845
4	3.00	50,500	2.00	45	30	4.8	25	3	0.5247
5	4.00	35,000	2.04	35	20	3.26	17	2	0.5455
6	4.00	48,500	1.62	40	25	3.88	20	3	0.5039
7	3.80	33,500	1.69	45	30	4.06	21	3	0.3481
8	5.00	63,000	2.66	45	30	6.38	32	3	0.6546
9	4.00	13,000	1.74	40	25	1.39	7	1	0.4052
10	3.80	71,000	2.24	45	30	5.37	27	3	0.7377

2015

Introduction

Problem

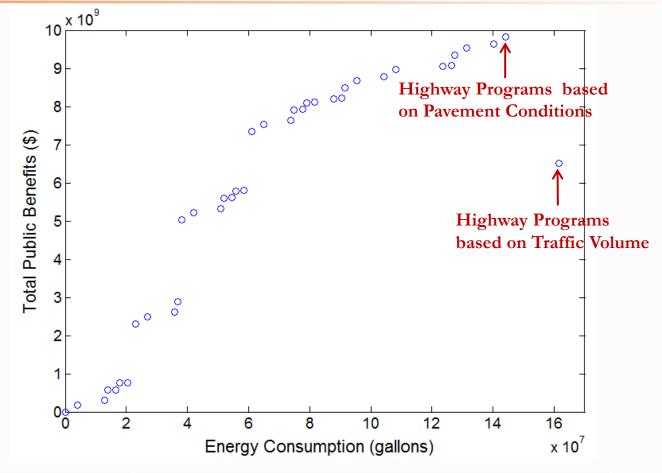
Background

Questions

Objectives

Methodology

Example


Conclusion

Future Work

June 7-10, 2015

Application Example

Alternative	Project									
	1	2	3	4	5	6	7	8	9	10
1	1				1	1	1	1	· ·	a C
2		√	3	1					1	1

2015

Introduction

Problem

Background

Questions

Objectives

Methodology

Example

Conclusion

Future Work

June 7-10, 2015

Conclusions

There is a trade-off between the expected public benefits and network energy consumption.

The model can provide decision makers with a wide range of optimal solutions that can be effectively selected to satisfy public expectations while minimizing energy consumption.

2015

Introduction

Problem

Background

Questions

Objectives

Methodology

Example

Conclusion

Future Work

June 7-10, 2015

Fu

Future Work

- Expand the optimization scope to be more practicable to transportation agencies' decision making processes.
- Expand the optimization module to include other types of decision variables
 - Prioritizing the competing highway projects
 - Identifying the impact of different rehabilitation methods on highway projects

2015

Introduction

Problem

Background

Questions

Objectives

Methodology

Example

Conclusion

Future Work

June 7-10, 2015

Thank you for your attention

