Multi-Perspective Assessment Method for Measuring Leading Indicators in Capital Project Benchmarking

Jiyong Choi, Sungmin Yun*, Stephen Mulva, Daniel Oliveira, and Youngcheol Kang

Sungmin Yun, Ph.D.

Construction Industry Institute
The University of Texas at Austin
Outline

• Introduction: CII’s 10-10 Program
 – Concept of Phase-Based Benchmarking
 – Multi-Perspective Assessment Framework

• Challenges

• Framework for Measuring Leading Indicators

• Conclusion and Path Forward
Introduction: CII’s 10-10 Program

Existing Benchmarking

FEP EPC SU OPS

10-10 Program

FEP E C SU OPS

New Project Benchmarking Platform

• Process
• Practices

• Organization
• Process
• Practices
10-10 Program: Phase-Based Benchmarking
10-10 Program: Multi-Perspective Assessment Framework

- **Phase-wide Assessment**
 - **Leading Indicators**
 - Industry Group
 - Infrastructure
 - Building
 - Industrial
 - **Phase-focused Assessment**
 - **Construction-Specific Functions**
 - **Basic Management Functions**
Challenges

- **Multiple Respondents and Various Data Types**
 - Type: Yes/No, single/multiple selections, numeric open-ended, and Likert scale
 - Subjective nature: questions are intentionally subjective by design. *(CII 2013)* (less effort in data entry rather than real data such as cost and duration)
 - Data entry from multiple respondents for the section. *(CII 2013, Kang et al. 2014)*: Reduce bias from respondents’ perceptions by collecting numerous responses

Data Entry in Survey Instrument

13. What percentage of Design was complete prior to the start of construction?

14. Was the construction manager involved during Design? **YES** | **NO**
 - If yes, in which aspects of Design was the construction manager involved?
 - Schematic Design (SD)
 - Design Development (DD)

15. Were multiple design offices involved on this project? **Yes** | **No**

16. The owner level of involvement was appropriate.

17. The project team members were familiar with the project execution plan (PEP) and they used it to manage their work.

Individual Input Measures

<table>
<thead>
<tr>
<th>No.</th>
<th>Statement</th>
<th>Mean</th>
<th>SD</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neutral</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Project management team members were clear about their roles and how to work with others on the project.</td>
<td>2.75</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>The project team including project manager(s) had skills and experiences with similar projects / processes.</td>
<td>3.00</td>
<td>1.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Leadership effectively communicated business objectives, priorities, and project goals.</td>
<td>3.75</td>
<td>1.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>The project management team was adequately staffed.</td>
<td>3.63</td>
<td>1.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>The project experienced a minimum number of project management team personnel changes.</td>
<td>3.63</td>
<td>1.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>The project’s work processes and systems (e.g., document management, project controls, business and financial systems) supported project success.</td>
<td>3.03</td>
<td>1.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>A formal Startup execution plan was developed which incorporated operations and maintenance philosophy.</td>
<td>2.80</td>
<td>1.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>The project’s Startup objectives were appropriately communicated to the relevant project team members.</td>
<td>2.05</td>
<td>1.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>The project team members attended sufficient professional training directly related to their work in Front End Planning.</td>
<td>2.63</td>
<td>1.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Project leaders recognized and rewarded outstanding personnel and results.</td>
<td>2.50</td>
<td>1.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Framework: Overview

- How to generate representative scores of 10 Leading Indicators for a project based on respondents’ answers on the 10-10, ?
- Then, how to provide the outcomes so that the project easily and reliably diagnose performance?

Taking Industrial FEP 10-10 Surveys
Framework: Quantification Process for Leading Indicators

Step 1: Scoring

$$\text{Sum of Point Values} \div \text{Number of Respondents} = \text{Individual Question Score}^*$$

(for individual question)

* Single numeric value is obtained from multiple respondents of a project

Step 2: Weighting

$$\text{Individual Question Score}^* \times \text{Weight}^* = \text{Weighted Individual Score}$$

(for individual question)

* Level of Influence on a leading indicator

Step 3: Aggregation

$$\text{Total Weighted Score}^*$$

(Sum of weighted individual scores mapped into certain leading indicator(s))

* All questions are grouped into at least one of leading indicators

Step 4: Normalization of Total Weighted Score

$$\frac{\text{Total Weighted Score}^*}{\text{Total Weights}} = \text{Normalized Input Measure Score}^*$$

* Weighted Scores are normalized to a total of 100
Framework: Reporting (Sample)
Conclusion: Application of Leading Indicators
Conclusions and Path Forward

• **Leading Indicators** measure project organization and practices implemented throughout capital project delivery
 – Help identify potential problems through Leading Indicators
 – Allow project teams to set up proactive strategies for subsequent project phases based on linkage of Leading Indicators with CII-Project Execution Knowledge Structure

• **Future Studies**
 – Relationship between Leading Indicators and Performance Metrics
 – Company-level dashboard for utilizing Leading Indicators for strategic planning
 – Data-driven modification of Leading Indicators, when database is matured.
Thank you!
Research Background: 10 Leading Indicators

• Are based on CII’s knowledge areas utilized during project planning and execution (the CII-Project Execution Knowledge Structure (C-PEKS))

1. **Planning**: The work a manager performs to predetermine a course of action. The function of planning includes the following activities: Forecasting, Objective Setting, Program Development, Scheduling, Budgeting, and Policies and Procedures Development.

2. **Organizing**: The work a manager performs to arrange and relate the work to be done so people can perform it most effectively. The function of organizing includes the following activities: Development of Organization Structure, Delegation of Responsibility and Authority, and Establishment of Relationships.

3. **Leading**: The work a manager performs to cause people to take effective action. The activities involved in the function of leading include: Decision-Making, Communications, Motivation, Selection of People, and Development of People.

4. **Controlling**: The work a manager performs to assess and regulate work in progress and completed. Management controls are achieved through the following activities: Establishment of Performance Standards, Measurement of Performance, Evaluation of Performance, and Correction of Performance.
5. **Design Efficiency**: Measures if the project team is exhausting all techniques to optimize the design in its use of material quantities to provide maximum capacity at minimum cost.

6. **Human Resources**: Examines if the project is staffed correctly, with a minimum amount of staff turnover and appropriate training. Measures if people are capable of achieving project goals.

7. **Quality**: Measures if the project team is strictly conforming to project requirements. Analyzes if programs are pursued to assure the delivery of material goods as intended.

8. **Sustainability**: Evaluates steps taken by the project team to reduce the environmental impact of the project during construction and operation.

9. **Supply Chain Management**: Examines the strategies used by the project team to promote enhanced working relationships amongst all project stakeholders including those in the project supply chain.

10. **Safety**: Measures the steps followed by the project team to eliminate any possibility of personal injury or property damage on the project.
Framework: Score Calculation

- Step 1: Score Calculation
 - Define point values for each question with regard to respondent’s answers
 - Tendency to choose “agree” or “yes” indicates high degree of effort or better implementation for all questions
 - Five Point Scales used for Likert-Scale questions (taking over 70%): penalty for negative answers

Scale	Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
Point	0	1	2	4	5

 - Other types: relative influence of statement in a given question. (max 5, min 0)
 - Not answered question: point value is recorded as zero (De Vaus 2001)
 - Project’s average score for a question

\[
\text{Sum Point Values} / \text{Number of Respondents} = \text{Individual Question Score}^* \\
\]

* Numeric value is obtained from multiple responses of a project
Framework: Weighting and Aggregation

• Question Mapping and Weighting: Grouping question into relevant LIs
 – CII’s event and activities held in 2013 and 2014 (e.g., Performance Assessment Workshop and Benchmarking training)
 – Each participant provide opinion regarding relationship between question and LI with relative strength of them (H, M, and L scales)
 – All questions are grouped into at least one of LIs

 \[\text{Individual Question Score} \times \text{Weight}^* = \text{Weighted Individual Score} \]

 * Level of Influence on the certain leading indicators

• Aggregation
 – Weighted individual scores are summed up to produce scores of LI (total weighted score)
 – Total weighted score (sum of weighted individual scores mapped into certain LI(s))
Framework: Normalized Scores and Report

• Normalized scores are needed
 – Different number of questions and weights were used for generating total weighted score of each LI.
 – Each LI has different scale by phase and industry group.
 – Weighted scores are normalized to a total of 100

\[
\text{Total Weighted Score} / \text{Total Weights} = \text{Normalized Input Measure Score}^*
\]

• Report
 – For benchmarking purpose, distribution of LI scores of similar projects is required
 – Comparisons are made at the same industry group and phase level by default
 – Difference in processes and characteristics of project and respondent types (appropriate grouping is crucial for performance comparison) (Hwang et al. 2007)
 – When necessary, further comparison is made by secondarily respondent and project type (e.g., within projects of natural gas processing projects executed by owner companies)