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Abstract: Interventions on infrastructure networks in municipalities cause disruptions to the service 
provided by the network that requires the intervention. They also cause disruptions to the service 
provided by other networks that have to be at least partially shut down so that the intervention can be 
executed. Due to these effects, there is substantial benefit to be obtained by grouping interventions on all 
networks that are spatially close to one another, i.e. work programs for spatially close networks should be 
developed together. This benefit is principally due to reduced interruption to services and reduced costs 
of intervention. The challenge of determining such combined optimal work programs is made more 
difficult as it requires quantification of the value of lost services, which depends on how different 
stakeholders value the services as well as how the services are interrupted. In this paper the difference 
between two methodologies to be used to develop work programs on spatially close infrastructure 
networks is shown: 1) a traditional methodology based on a grid-cell based grouping method, and 2) a 
methodology based on a combined topology / Voronoi cell / density based clustering of interventions. 
Both methodologies exploit recent developments in the area of critical infrastructures and GISs. The 
differences are illustrated by using both methodologies to determine combined work programs for five 
spatially close infrastructure networks (electricity, gas, water, sewage, roads) in a municipality with 
approximately 1'500 inhabitants. The advantages and disadvantages of each are discussed. 

1 INTRODUCTION  

Infrastructure networks (INs), such as electricity, gas, road, sewer, and water distribution networks are 
some of the main assets but also some of the main cost drivers of a municipality. Therefore, interventions 
on these networks should be carried out in a way that minimises the costs of intervention and the 
disruption of the service, i.e. an optimal work program (OWP) should be determined. Traditionally, the 
managers of each IN produce their own work programs. Example methodologies to find OWPs for single 
INs can be found in Fenner, Sweeting, and Marriott (2000), Miyamoto, Kawamura, and Nakamura (2000), 
Stillman (2003), Cardoso et al. (2004), Arthur et al. (2009), Dehghanian et al. (2013), Zayed and 
Mohamed (2013), Lethanh, Adey, and Sigrist (2014). These work programs are then discussed with those 
responsible for the other INs in order to reduce the impact on service disruption and costs by manually 
combining the work programs to create synergy effects.  In this paper a case study on a dynamic 
geographic intervention grouping method is presented. This method can be used to take into 
consideration the structural and functional differences, as well as the different ways that the networks are 
typically monitored, in an automated way. The resulting work program is compared with the work program 
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from a static geographic intervention grouping method presented in Kielhauser, Adey, and Lethanh 
(2014), herein referred to as the traditional methodology. 

2 METHODOLOGY 

The concept of the herein presented dynamic neighbourhood methodology (DNM) is based on the 
concept of neighbourhood. The neighbourhood of object A is defined as the region around object A, 
where object B would be considered close if it lies within that region. The basic process for the DNM 
follows 7 steps, which are explained in the following sections and shown in Fig. 1. 

 

Fig. 1: Methodology Flowchart 

2.1 Step 1: Determine Level 1 objects 

In this process, objects with high priority (level 1 objects) are determined. In this paper, level 1 objects are 
defined as follows:  

Level 1 objects are objects, which are in such a state (e.g. failure probability, condition, age, level of 
service) that an intervention on this object is justified on its own, i.e. the decision to do an intervention is 
independent from other objects.  

In the first step of this process, triggers for selecting an object as a level 1 object are defined. These 
triggers are thresholds of one value or a combination of values of the object attributes. The attribute can 
be of the object itself, denoted as   with the subscript  ( ) representing the object ID, and/or 
of the network, denoted as  with the subscript  ( ) representing the network ID. The 
superscript  denotes the level 1 objects. An example of the former is object condition. An example of the 
latter is change in network reliability. Then, objects are compared with the triggers by using a selector 
function . It is defined as a logical function, with  (true) when an object is selected, and 0 
otherwise. This selector function is applied to a set of all objects considered (based on the boundaries of 
the physical area to be analysed and the jurisdiction of the manager)  in order to obtain the logical 

selection vector for the level 1 objects : 

[1]  

with object vector consisting of all objects : . 
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2.2 Step 2: Calculate Neighbourhood 

This process is used to determine the neighbourhood of all level 1 objects being investigated. This is 
accomplished by determining the topological neighbourhood, the distance neighbourhood and the 
Voronoi neighbourhood. The first two of these neighbourhoods refer to objects in the same network, the 
last refers to objects that are in the spatial neighbourhood of the level 1 objects but are in different INs 
than the level 1 object. To better explain the used three different neighbourhoods, Fig. 2a shows an 
example network with 7 objects. Logical nodes (denoted with  ) are nodes that signify a join between 
two or more objects. Geometric nodes (denoted with  ) are used to detail the object shape in between 
the endpoints (logical nodes). Lines with the same number are used to denote one object. 

       

  (a) Example network  (b) Voronoi cells for (c) Voronoi region for (d) Voronoi region for  
          with objects 1-7     network nodes     network element 1    network element 5 

Figure 2: Network definitions 

2.2.1 Topological Neighbourhood 

The topological neighbourhood of an object is based on the topological distance, i.e. the number of 
objects between two logical nodes. In that sense, two objects are neighbours if the network distance 
between their closest logical nodes is below a certain threshold. For example, if the focus is on object 6 
and the distance threshold is 1, then objects 1, 2, 5, and 7 can be considered to be in the same 
neighbourhood, as at most 1 object (namely 5) has to be crossed to reach them. Mathematically, 
neighbouring objects can be found as follows: Starting from the incidence matrix  (i.e. a matrix 
describing which edges are connected to which nodes), all nodes reachable in a distance  can be 
calculated by: 

[2]  

with  Reachability matrix of network  for  steps. Each element from  shows if a 
node is reachable from another node with a maximum of  steps. Combining those reachability matrices 
to a grand matrix gives the topological neighbourhood matrix : 

[3]   

2.2.2 Distance Neighbourhood 

As the sizes of network objects can differ by orders of magnitudes (e.g. compare one valve with a 300m 
stretch of straight pipe), neighbourhoods can also be defined by distance along the network. This is an 
alternative neighbourhood definition, which only takes into account the physical distance of objects along 
the network. For this, an object is defined as a neighbour, if it can be reached within a certain distance 
along the network. For example, objects 3 and 5 are within a distance dtravel of each other, as shown in 
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Fig. 2a, as their closest nodes are within a distance of dtravel. Mathematically, the shortest path between 
all logical nodes q of all objects has to be calculated (or loaded from the database if available).    

[4]  

with all logical node pairs distance matrix for network m, all node pairs shortest path 
algorithm for networks as described in Johnson (1977). The minimal distance between all object pairs is 
then the minimum of the minimal distances between each objects' logical nodes:   

[5]   

with minimal distance matrix for all objects in network m, logical nodes of network m, and 
objects of network m. Comparing this minimal distance matrix with a distance threshold for 

each network m  gives the neighbourhood matrix : 

[6]   

Combining those distance matrices into a grand matrix gives the neighbourhood matrix : 

[7]    

2.2.3 Voronoi Neighbourhood 

Both topological and distance neighbourhood definitions have the prerequisite that all objects have to 
belong to the same network. To overcome this limitation, the neighbourhood can also be defined by 
Voronoi cells (Lejeune Dirichlet 1850). Figure 2b shows a Voronoi tessellation of the example network. 
Starting from a given set of core points  (in this case: all network nodes, both logical and geometric), 

Voronoi cells  consist of every point in space whose distance to  is less or equal to any other core 

point . A Voronoi region  for one object is then the set of all Voronoi cells emanating from the 

nodes of that object (Fig. 2c,d). Combining those regions gives the set of all Voronoi regions  for all 

objects . This can be used to define the neighbourhood as follows: objects A and B are neighbouring, 

if object B touches object A's Voronoi region. The neighbourhood can then be defined as: 

[8]     

with Voronoi regions of objects , neighbourhood matrix for Voronoi methodology and 

the dyadic geometric intersection between  and . 
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2.2.4 Neighbourhood combination 

In the last activity of the dynamic neighbourhood calculation, all neighbourhoods are combined to a grand 
neighbourhood by combining all neighbourhood matrices to the dynamic neighbourhood matrix : 

[9]  

with the symbol  denoting the logical “or”, which only returns a value of “1” if at least one input is “1”. In 
words, two objects are neighbours if they are either topological, distance or Voronoi neighbours. 

2.3 Step 3: Determine close objects 

As next step, the so-called close objects are determined. Those objects are objects that are located in the 
neighbourhood which is defined by the dynamic neighbourhood matrix . This process ensures that 
only close objects, i.e. objects that are sufficiently near to level 1 objects are considered as level 2 objects 
in the next step, where the object condition is compared against a threshold likewise to the determination 
of level 1 objects. Mathematically, the whole process can be expressed in one equation: 

[10]  

with binary variable vector indicating if object  is part of the close object set. The superscript 

 denotes the close objects, the superscript  denotes the DNM, and the symbol  denotes the 
material non-implication, which is an operator that only returns a value of “1” if the first input is “1” and the 
second input is “0”. In this case: an object is only a close object for the DNM if the object is within the 
same neighbourhood as a level 1 object  but has not been already selected as a level 1 object. 

2.4 Step 4: Determine Level 2 objects  

In this subprocess, objects with lesser priority (Level 2 objects) are determined. In this paper, level 2 
objects are defined as follows. 

Level 2 objects are objects, which are in such a state (e.g. failure probability, age, level of service) that an 
intervention on this object is not justified on its own but the synergies created by doing a combined 
intervention with a level 1 object justify an intervention, i.e. the decision to do an intervention is dependent 
on other proximate objects.  

The selection process is similar to the one for level 1, just with different trigger values.  

2.5 Step 5: Group objects 

In this process, the level 1 and level 2 objects which have been identified in the previous steps, are 
combined into intervention groups, i.e. sets of interventions that are executed together, using the 
DBSCAN algorithm as described in (Ester et al. 1996). This algorithm takes the centroid point coordinates 
of the objects requiring intervention and two values as inputs: 1) Eps - the maximum distance in which 
two interventions should be grouped into one intervention group, and 2) MinPts - the number of 
interventions, that form an intervention group. Then, the points are classified as either belonging to a 
group or being single objects. If they belong to a group, then the interventions are included in the work 
program as a group, otherwise it has to be discerned between level 1 and level 2 objects. Level 1 single 
objects are also included in the work program as intervention, despite not being grouped, because per 
definition level 1 signifies that an intervention is justified even without grouping, whereas level 2 objects 
belonging to no group will be discarded. Mathematically:  
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[12]  

with intervention group matrix for the DBSCAN clusters. The cost of each group is the sum of the 

setup costs  for executing all interventions in group  and the unit costs without setup costs for each 

intervention on each object of each network  multiplied by its size . 

[13]  

with cost vector of intervention in all groups . The WP is simply the whole set of intervention 

groups, i.e. all rows of . The total costs are then simply the sum of the cost vector : 

[14]  

2.6 Step 6: Rank groups  

If there are constraints (e.g. budget constraints) and not all intervention groups can be included in the 
work program, a priority (related to the consequences that would be incurred due to service interruption if 
a failure occured) is calculated so that the groups with the highest priority can be included in the work 
program. It is in this methodology based on two components: a) The object priority value, which relates to 
the object itself and its role in the network, e.g. for a sewer network object how many upstream objects 
will also be blocked if this object has to be blocked for maintenance, and b) a multiplicative factor related 
to the location, e.g. population density of the area with service interruption. Although this is multiplicatively 
connected with the object priority value, it is kept separate because the population density for example is 
not network dependent, whereas the object priority value is. Mathematically: 

[15]  

with priority vector of group , object priority vector based on object  and network , 

 group priority vector based on group location, and  representing the element-wise multiplication of 

vectors.  From there, the rank  of a group can be calculated:  

[16]  

This results in the group with the highest priority  having the lowest rank . 

2.7 Step 7: Add group to constrained work program 

The work program with constraints is constructed from the unconstrained work program: The groups 
included in the unconstrained work program are added one at a time to the constrained work program 
(i.e. a selection variable  is changed from 0 to 1) starting with the group with the highest priority (i.e. 

where , then where  etc.) and then the budget is checked. If the budget is not exceeded, 
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the group is kept and the group with the next highest priority is tried. This process is repeated until the 
sum of the costs of the groups in the work program reaches the budget limit : 

[17]  

with binary vector indicating inclusion in WP (1=yes, 0=no), budget limit. The WP is the 

whole set of intervention groups  subsetted by the inclusion variable : 

[18]  

The total costs are the sum of the cost vector  times the inclusion vector.  

[19]   

3 CASE STUDY 

The DNM was used to determine a work program for five proximate municipal infrastructure networks. 
This work program was then compared with the work program generated using a traditional methodology 
Kielhauser, Adey, and Lethanh (2014). The advantages and disadvantages of each will be discussed. 

3.1 Overview 

The infrastructure networks (electricity, gas, roads, sewage, and water) used in this case study belong to 
a municipality with a population of ca. 1’500. The single network maps are shown in Fig. 3a – Fig. 3e. 

         

 (a) Electricity (b) Gas  (c) Roads (d) Sewer  (e) Water 

Figure 3: Network maps 

The objects in the electricity, gas, and water networks were considered to be in one of 2 condition states, 
operational and not operational, the objects in the sewer network were considered to be in one of 5 
discrete condition states, and the road objects were considered to be in a continuous-range condition 
state between 0 and 5 (Tbl.1). The thresholds for level 1 and level 2 are shown in Tbl. 2, the costs for the 
interventions (given in monetary units mu) in Tbl. 3. 
 

255-7 



Table 1: Network characteristics at the time of investigation 

 
 
 

Table 2: Threshold values for levels 1 and 2 

 
 

Table 3: Intervention types and costs 

 
Using steps 1-7, a work program (with a budget constraint of 200’000 mu) was calculated and compared 
to the WP obtained by using the method described in Kielhauser, Adey, and Lethanh (2014). To facilitate 
the comparison, the work programs will be referred to as WPD (with the D representing the DNM) and 
WPT (the T representing the traditional methodology). Tbl. 4 shows the results. 
 

Table 4: Results 

This table shows that the traditional methodology selects 4 objects for the work program. A total amount 
of 861.6m will be renewed. With only 300'000 mu available, the total cost is 287’387 mu, which means a 
budget utilisation of 96%. The DMN selects 6 objects with a total length of 874.5m for the work program. 

 Length Objects No.of condition 
states 

Condition state (distribution) 

 [km] [-]  1 (as new) 2 3 4 5 (defunct) 
Electricity 20.6 2’226 2 100% - - - 0% 
Gas 6.8 351 2 100% - - - 0% 
Water 8.8 182 2 100% - - - 0% 
Road 9.7 104 cont. (0-1] 

2.9% 
(1-2] 

25.0% 
(2-3] 

44.2% 
(3-4] 

23.1% 
(4-5] 
4.8% 

Sewer 5.3 215 5 97.2% 2.8% 0% 0% 0% 

 Electricity Gas Roads Sewer Water 
Type Failure 

probability 
Failure 

probability 
Condition 

state 
Transition 
probability 

Failure 
probability 

Level 1 0.025 0.025 3.67 0.020 0.020 
Level 2 0.013 0.013 3.10 0.005 0.005 

 Electricity Gas Roads Sewer Water Setup cost 
Type Replacement Replacement Replacement Replacement Replacement Cost per 

intervention 
setup 

Value 100 150 350 250 300 1’500 
Unit [mu/m] [mu/m] [mu/m] [mu/m] [mu/m] [mu] 

Effect As-new 
condition 

As-new 
condition 

As-new 
condition 

As-new 
condition 

As-new 
condition 

 

 Objects Intervention Cost Avg. cost per Removed  B 
  Groups Length  Group Object Length Age units  
 [-] [-] [m] [mu] [mu/1] [mu/1] [mu/m] [y] [mu/(m*y)] 
WPT 4 4 861.6 287’387 71’847 71’847 334 7’965 36.1 
WPD 6 4 874.5 288’672 72’168 48’112 330 8’724 33.1 
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A total amount of 874.5m will be renewed. With total costs at 288’672 mu, the budget utilisation is also 
96%. To be better able to compare the methodologies, we have used a proxy B which is the average 
amount of financial resources used to improve the age of the infrastructure, expressed as monetary units 
divided by the amount of removed age, multiplied by extent of the object. This indicator is based on the 
concept, that if it is assumed that an adequate level of service is always provided, the main goal of an 
infrastructure manager becomes the improvement of the infrastructure for the least cost. In this case, the 
best work program is the one that gives the highest improvement in the infrastructure provided for the 
least cost. For example, when a gas pipe is 70 years old and is replaced with a new identical pipe, it is 
considered to have improved the condition of the infrastructure by 70 years. When this is coupled with the 
costs to improve the condition, one gets the costs per time. 

4 COMPARISON 

One of the first things that can be seen by comparing the two methodologies is the difference between 
the numbers of interventions proposed. For the case study, this difference originates in a part of the 
network that is shown in Fig. 4. The left half shows the WPT, the right shows the WPD. The dashed line 
represents the boundary of a grid cell. The line weight represents the different levels (thick: level 1, 
medium: level 2, grey: no selection). For the WPT, it can be seen that within the grid cell, the level 1 
object also triggers an intervention on the adjacent level 2 object, because it is in the same grid cell. For 
WPD, additionally, another object is included, as it is only at a topological distance of 1 from the level 1 
object. This shows the main benefit of the DNM: as the neighbourhood is calculated dynamically from the 
network, such boundary situations can be taken into account in contrast to the traditional methodology. 

 

Figure 4: Difference in work program 

As can be seen in Tbl. 4, the cost/improvement ratio B  varies between the work programs. The work 
program determined using the DNM gives the best (i.e. lower) ratio (33.1 vs. 36.1). Therefore, the DNM 
performs better than the traditional methodology. This is due to the synergy effects created by the 
topological approach in contrast to the traditional approach. 

5 CONCLUSION 

In this paper, two methodologies to determine work programs for municipalities possessing multiple 
infrastructure networks were investigated and compared. In the investigated example, the methodologies 
were used to determine work programs for five infrastructure networks in a municipality with a population 
of ca. 1'500. It was found that the DNM for grouping objects in need of intervention within a network and 
on multiple networks leads to improvements over the traditional methodology. This demonstrated that the 
explicit consideration of the proximity of objects within multiple networks should be systematically done. It 
was found that the DNM leads to work programs that generated lower per unit improvement costs than 
the traditional methodology. This is because the traditional methodology relies on predefined grid cells, 
while the DNM dynamically calculates those from the individual network data. 
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Keeping this in mind, future research in this direction should include: 

• the enhancement of the investigated methodologies to determine work programs using more direct 
consideration of the costs of service interruption  

• the extension of the investigated methodology to determine work programs over multiple time 
periods 

• the adaptation of the investigated methodology to take into consideration functional relationships 
between the objects within one network and within multiple networks, e.g. the effect on the amount of 
water flowing in a waste water network due to interventions being executed on a sewer network and 
a heavy rain fall occurring 

• the enhancement of the investigated methodology to better take into consideration real world costs, 
i.e. more accurate representations of the variant and invariant costs involved with intervening on one 
or more networks, and on one or more objects 

• the comparison of these methodologies with a real world situation to investigate the potential 
advantages and disadvantages of its use in practice 
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