# Infrastructure Condition Assessment Based on Low-Cost Hyper-Spatial Resolution Multispectral Digital Aerial Photography

Susan M. Bogus, Su Zhang, and Christopher D. Lippitt
Department of Civil Engineering
Department of Geography and Environmental Studies
University of New Mexico





### **About Us**

- **1. Susan Bogus:** Associate Professor, P.E., Dept. of Civil Engineering
- 2. Su Zhang: Ph.D. Candidate, Dept. of Civil Engineering
- **3. Christopher Lippitt**: Assistant Professor, Dept. of Geography and Environmental Studies



## Decision Making Relies on Infrastructure Condition Assessment

- Maintenance/ Repair/Rehabil itation
- Routine assessment
- Post-disaster assessment



www.nbcdfw.com

## Current Assessment Methods Have Limitations

- "Boots on the ground"
- Experts visually inspect the condition or using vehiclemounted electronic sensors
- Can collect detailed condition data
- Expensive, time-consuming, potentially dangerous to inspectors, requiring specialized staff on a regularly basis, high degree of variability



nps.gov



gvmc.org

## Current Assessment Methods Have Limitations

- Electronic sensors deployed on airplanes that fly over infrastructure
- Becoming more and more popular (Jensen and Cowen 1999)
- Image spatial resolutions limit the ability to detect and assess small defects such as cracks on pavement surfaces



rgis.unm.edu

## Improved Data Collection Possible Using Hyper-Spatial Resolutions

- Unmanned Airborne Systems (UAS)
  - A trend that is all but certain to continue
  - Legal use of UAS is severely restricted in the U.S. because of safety concerns
- A tethered helium weather balloon as a surrogate of UAS for hyper-spatial resolution aerial data collection





### Research Overview

Data Acquisition using Tethered Weather Balloon



**Image Processing** 



Application to Asset Management

#### **HSR-DAP Collection**

- Used a Low-cost URSS
- Helium weather balloon
- Camera rigging part
- Canon camera SX260HS
- Ten study sites
  - Pavement segments
  - ~200 overlapping images for each site
  - Site size 20-meter by 15-meter





publiclab.org



#### HSR-DAP Example 1

1 centimeter (~ half inch) DAP



Zoomed in 1 centimeter (~ half inch) DAP



#### HSR-DAP Example 2

3-millimeter (~ 1/10 inch) DAP



Zoomed in 3-millimeter (~ 1/10 inch) DAP



#### **Ground Reference Data**

- Trained two-person crew
- Collected by using standard pavement surface manual evaluation protocol (HPMS Field Manual)
- Rutting, alligator cracking, and transverse cracking



**Alligator Cracking** 



**Transverse Cracking** 



Rutting



#### Ground Control Points (GCPs)

- A Real Time Kinematic (RTK) system was used
- Used for image registration to ground
- Sixteen GCPs for each study site
  - Ten used for image processing
  - Six used for accuracy assessment







#### Aerial Triangulation (AT)

- Also known as structure from motion (SfM)
- Basic photogrammetric method for analyzing aerial images to determine X, Y, and Z ground coordinates of individual points based on measures from a series of overlapping aerial photographs
- Used to generate orthophotos and digital surface models (DSMs) for each study site
- Ten GCPs were used for each study site, the remaining six were used for accuracy assessment



Vrmapping.net

#### Example of AT Output

3-millimeter (~ 1/10 inch) Orthophoto



3-millimeter (~ 1/10 inch) DSM



#### **Example of AT Output**

Zoomed in 3-millimeter Orthophoto



Zoomed in 3-millimeter DSM



#### **AT Product Accuracy Assessment**

| Site Name | Image Frames | Horizontal Accuracy (in meters) | Vertical Accuracy (in meters) |
|-----------|--------------|---------------------------------|-------------------------------|
| Site 1    | 122          | 0.002                           | 0.006                         |
| Site 2    | 135          | 0.005                           | 0.004                         |
| Site 3    | 183          | 0.005                           | 0.003                         |
| Site 4    | 177          | 0.004                           | 0.009                         |
| Site 5    | 181          | 0.003                           | 0.007                         |
| Site 6    | 180          | 0.004                           | 0.006                         |
| Site 7    | 165          | 0.004                           | 0.004                         |
| Site 8    | 133          | 0.004                           | 0.006                         |
| Site 9    | 126          | 0.003                           | 0.005                         |
| Site 10   | 189          | 0.003                           | 0.004                         |
| Overall   | 1591         | 0.004                           | 0.006                         |

#### Rutting Depth Measurement

- For onsite evaluation, rutting depth measured as lowest point from pavement surface
- DSMs exhibit the modeled 3dimensional pavement surface
- Point and polygon were created on DSMs to simulate the locations of the actual measuring points and wooden bars
  - Measured at both inner and outer wheel paths
  - Each wheel path measured 3 time



bmt-institute.vn



Wooden Bar Bondary

Site 2 Pavement Surface DSM

(In Meters)

High: 1824.68

ow: 1822.52



#### Rutting Depth Measurement

- Point A and B Highest points of the rutting section
- Point C and D Measured points of the rutting section, from Point C to
   Point D is the rutting depth
- Under most circumstances the heights of Point A and Point B are different
- Height of Point  $C = \frac{\text{Height of Point A} \times \text{Distance 1+Height of Point B} \times \text{Distance 2}}{\text{Distance 1+Distance 2}}$
- Rutting Depth = Height of Point C Height of Point D



## Alligator Cracking Measurement

- For onsite evaluation, alligator cracking reported as the percentage of total alligator cracking section area (square feet) to the nearest 5% at a minimum
- For the proposed method, polygons were digitized to represent the entire manual evaluation boundary and the alligator cracking boundary
- Area percentage = alligator cracking area / entire evaluation area



## Transverse Cracking Measurement

- For onsite evaluation, inspectors count the number of transverse cracks extending at least half the lane width to estimate the total length of cracking in terms of feet per mile
- For the proposed method, polylines were digitized to represent transverse cracking and calculate the total length
- Total length of the evaluation zone can be measured with the help of the entire evaluation zone polygon



 Measurements from DSMs compared to manuallycollected data at the same locations

- Orthogonal linear regression revealed that the HSR-DAP derived measurement and the manual measurement fit closely to the regression lines
  - Paired t-test cannot be used because these data clearly violate the assumption that there is no linearity between the two groups of sample values
  - Orthogonal regression examines if two continuous variables are statistically different from each other
  - Orthogonal regression does not assume independence between variables

### Conclusions

- Results indicate that the pavement surface conditions measured by manual methods and the HSR-DAP method are not statistically different from each other
- The proposed HSR-DAP method could be more consistent than manual method
- 3. In the near-term, the proposed method could be used to measure infrastructure conditions in situations where field inspectors cannot evaluate except with considerable labor costs or where vehicles cannot access
- In the long-term, the proposed method is capable of completely replacing field infrastructure condition assessment

## Acknowledgements



New Mexico Department of Transportation





# Infrastructure Condition Assessment Based on Low-Cost Hyper-Spatial Resolution Multispectral Digital Aerial Photography

Susan M. Bogus, Su Zhang, and Christopher D. Lippitt
Department of Civil Engineering
Department of Geography and Environmental Studies
University of New Mexico



