RESEARCH FOR GENERATING 2D–DRAWINGS OF SUPERSTRUCTURE IN HIGHWAY BRIDGE

Graduate School of Informatics, Kansai University

◎ Wenyuan Jiang

Faculty of Informatics, Kansai University

Shigenori Tanaka
Background (1/3)

Status of highway bridges in Japan

High economic growth period

Number of bridges built over 50 years

(【Source】MLIT.: The current status of bridges in Japan)
Background (2/3)

- Concerning those highway bridges
 - Various damage
 - Effective and feasible maintenance plans

- Corrosion of concrete
 (Source: Metropolitan Expressway Company Limited: Shuto Expressway)

- Gap of bridge joint
 (Source: East Nippon Expressway Company Limited: Sendai Expressway)
Background (3/3)

- To ensure maintenance plans
 - Current status drawings

Maintenance works of Hanshin Expressway

(Source) Hanshin Expressway Company Limited: Construction of fresh-up on Ikeda route
Problems (1/2)

- Document retention period of construction drawings
 - 30 years (About new guidelines of delivery by MLIT.)

- Media of drawings of highway bridges
 - Paper media before 1970’s
 - Electronic delivery began in 2001

- Status of drawings
 - Disposed

The demands of maintenance plan: Regeneration detail drawings
Problems (2/2)

- Concerning regenerating detail drawings
 - Range of maintenance: Over several thousand meter
 - Status of highway bridge: Many vehicles are running on it
- Result of field surveying: Road closure

Problem: Huge Costs

Image of road closure
Previous Research

- To reduce the cost of field surveying
 - Mobile Mapping System (MMS)
 - Generate drawings in a low cost

- Issues of these research
 - Only visual data processing

Problem for maintenance:
No alignment information
Research Object

- Regenerate CAD drawings
 - Extract alignment vector information
 - Use point cloud data of MMS

Actual Structure

Auto-regeneration of 2D-Drawings

Final Object:
Maintain highway bridges
System Flow (1/7)

INPUT
- Point Cloud Data

SYSTEM FLOW

- **Point-Cloud Analysis Function**
 - Feature Point of Cross-Section Point Range
 - Cross-Section Point Range
 - 3D-Data Generation Function
 - Structural point of 3D data
 - Function of Segmenting Elevated Highway Bridge

- **3D Data**
 - Structural Point in Each Span of Superstructure
 - Point Range of Cross-Section at Regular Spacing
 - Point Range of Road Center Line

- **Line-Type Determination Function**
 - Alignment Information
 - Line-Type Correction Function
 - Alignment Information Owns Relativeness

- **Function of Generation of CAD Drawings**
 - Analysis of Alignment Information

OUTPUT
- CAD Drawing (SXF Format)
- Alignment Information of Plan
- Alignment Information of Cross-Section
- Alignment Information of Longitudinal Section
System Flow (2/7)

- **Point-Cloud Analysis Function**
 - Noise Reduction
 - Feature Points Extraction

INPUT
- Noise
- Highway Bridge
- Point Range of Cross-Section

Point cloud data (Plan)
- Feature Points of Cross-Section
- Cross-point of road Surface and Wall Surface
- Highest Point of Wall

OUTPUT
- Road Surface
- Wall Surface
- Surface and Wall Surface

Function of Segmenting Elevated Highway Bridge Generation of 3D Data

- Point-Cloud Analysis Function
- 3D-Data Generation Function
System Flow (3/7)

3D-Data Generation Function

- Point-Cloud Analysis Function
- 3D-Data Generation Function

Function of Segmenting Elevated Highway Bridge

Generation of 3D Data

- Point Range of cross-section at a regular Spacing
- Center Line
- Center Point

Point Cloud Data (Plan)

Point Cloud Data (3D View)

Changing Point in Values of Height

- Center Line

- Point Cloud Data (Plan)
System Flow(4/7)

Function of Segmenting Elevated Highway Bridge

Segmentation

INPUT

Point range of Cross-Section

Feature Point Range

Center Line

Joint

Segment

OUTPUT
System Flow (5/7)

- **Line-Type Determination Function**

<table>
<thead>
<tr>
<th>Line-Type Determination Function</th>
<th>Line-Type Correction Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function of Generation of CAD Drawings</td>
<td>Analysis of Alignment Information</td>
</tr>
</tbody>
</table>

- **Not straight line**
- **Not straight line and clothoid curve**
- **Radius of approximate circle is extremely long**
- **Radius of approximate arc of two parts of curve are different**

- **Straight Line**
 - Part 1
 - Part 2

- **ARC**

- **Clothoid Curve**

- **Quadratic Curve**

- **Not straight line**
System Flow (6/7)

- Line-Type Correction Function

8 Linking Patterns

<table>
<thead>
<tr>
<th>Straight Line Linked with Straight Line</th>
<th>Straight Line Linked with Clothoid Curve</th>
<th>Arc Linked with Arc</th>
<th>Arc Linked with Clothoid Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clothoid Curve Linked with Straight Line</td>
<td>Clothoid Curve Linked with Arc</td>
<td>Clothoid Curve Linked with Clothoid Curve</td>
<td>Clothoid Curve Linked with Clothoid Curve</td>
</tr>
</tbody>
</table>

Feature of Road Alignment

- Straight Line
- Clothoid Curve
- ARC

Line-Type Correction Function

- Straight Line — ARC — ARC (Determination Result)
- Straight Line — Clothoid Curve — ARC (Modification Result)

Feature of Road Alignment

- Straight Line
- Clothoid Curve
- ARC

Linking Patterns

- Clothoid Curve Linked with Straight Line
- Clothoid Curve Linked with Clothoid Curve
- Clothoid Curve Linked with Clothoid Curve
- Clothoid Curve Linked with Clothoid Curve

Correct Linking Patterns

- Straight Line — Clothoid Curve — ARC
- Clothoid Curve — Clothoid Curve

Wrong Linking Patterns

- Straight Line — ARC — ARC
- Clothoid Curve — Straight Line

Analysis of Alignment Information

- Line-Type Determination Function
- Line-Type Correction Function
- Function of Generation of CAD Drawings
Function of Generation of CAD Drawings

- Formulating of Straight Line
 - Starting Point
 - Ending Point

- Formulating of Arc
 - Rotation Direction
 - Starting Angle
 - Ending Angle
 - Center Point

- Formulating of Clothoid Curve
 - Base Point
 - Starting Angle
 - Length
 - Rotation Angle
 - Radius of Arc

- Formulating of Bezier Curve
 - Control Point
 - Control Point
 - Control Point

For plan and long-wise
For plan
For plan
For long-wise
Experiment and Result (1/3)

Part of Route 1 Loop Route (Osaka)
Experiment and Result (2/3)

Experiment Result

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of evaluation points</td>
<td>168 Points</td>
</tr>
<tr>
<td>Error range less than 10cm</td>
<td>113 Points</td>
</tr>
<tr>
<td>Degree of approximation</td>
<td>67.26%</td>
</tr>
</tbody>
</table>

3D Data

2D CAD Drawing

Plan

Cross-Section

3D Model

Longitudinal-Section
Experiment and Result(3/3)

Area both output drawing and actual surveying drawing exists

Area actual surveying drawing exists

Area output drawing exists
Recent Result

Accuracy: Over 90%
Conclusions

- Generate 2D CAD-Drawing by a method of extracting alignment information
- In the future
 - Improve the precision of alignments
 - Verify the applicability to practical business
- Final purpose
 - Municipalities in Japan can use output drawings of our system to maintain their highway bridges
Thank you for your attention
Evaluation Points and Error Range
Point Cloud Data
Recent Result