

A STRATEGIC SAFETY-RISK MANAGEMENT PLAN FOR RECOVERY AFTER DISASTER OPERATIONS

Presented by:

Mohammad Sadra Fardhosseini, Behzad Esmaeili, Ph.D. Richard Wood, Ph.D.

Agenda

- Problem Statement
- Background
- Research Objectives
- Research Methods
- Results and Discussion
- Practical Applications

Problem Statement

- The Impacts of disasters in our lives:
 - ✓ Disasters cause approximately \$24 billion worth of damage and affect the lives of 60 million people around the world every year
 - ✓ In 2010, an earthquake in Haiti destroyed over 250,000 houses)
 - ✓ In the U.S.A. (1980-1999), 13 hurricanes caused \$68 billion in damages and more than 400 deaths.

Recovery operations involve Construction Workers

Problem Statement

- Available data from different agencies reveals that workers faced over 3000 injuries and illness during recovery operations after hurricane Katrina.
- 11 workers lost their lives during these operations.
- Among 2801 causalities in ground zero, 343 victims were firefighters.

Background

There is no study to analyze safety risk of different hazards!

Research Objectives

1

 Identifying common hazards in post-disaster recovery and reconstruction

7

 Quantifying the safety risk of common hazards

3

 Developing a safety guideline for workers involved in post-disaster recovery

4

 Developing a mobile application to disseminate results of the study.

Research Method Overview

Literature Review

Hazards in Post-disaster

Results

Data Collection

Developing a survey to collect severity and frequency of injuries associated with each hazard.

Dissemination

Safety Guidelines

Mobile Application

Scenarios in Recovery after disasters

De-Watering

Cleaning up and Debris Removal

Using Portable Generator

Demolition and Rehabilitation

Risk Assessment

Cronbach's Alpha

Cronbach's alpha is a measure of **internal consistency**, that is, how closely related a set of items are as a group. It is considered to be a measure of scale reliability.

- A high value (> 0.90) of Cronbach alpha does not show that the measure is unidimensional.
- A high value (>0.90) shows **redundancies** and suggests that the test length should be shortened.

Cronbach alpha of Frequency = 0.984

Cronbach alpha of Severity = 0.992

Results and Discussion

#	Hazards	Frequency	Severity	Risk
35	Working in cold or windy weather (Weather)	4.5	4	18
33	Working in a hot and humid outdoor condition for a long time (Weather)	4	3.5	14
40	Performing an activity frequently (Ergonomic)	4	3	12

#	Hazards	Frequency	Risk	
12	Caught-in/between a trench (Physical)	1	4.5	4.5
13	Electrocuted while using cranes or boomed vehicles near energized power line (Physical)	1	4.5	4.5
14	Electrocuted while using conductive materials, ladder, or scaffold, near energized power line (Physical)	1	4.5	4.5
15	Electrocuted while working on/near live wiring or energized circuit (Physical)	1	5	5

#	Hazards	Frequency	Severity	Risk
10	Struck-by flying debris/objects (Physical)	2.5	3	7.5
18	Entering a confined place that has the probability of toxic gas emission (Chemical)	1	3.5	3.5
28-32	Biological Hazards	2	3	6
41-43	Psychological Hazards	2	3	6

Results and Discussion

Risk Assessment			Frequency				
			highly unlikely	unlikely	likely	highly likely	Near certainly
			1	2	3	4	5
Severity	Fatality	5	PHY (12, 13,14,15)	10	15	20	25
	Major injuries	4	Phy(2,5,6,16), Chem (18)	Phy (3,4,7,9,17)	12	Weather (33) 16	Weather (35) 20
	Moderate injeries	3	Phy (8), Chem (20,21,24)	Phy (1,11), Cehm (19,22,26,27), Bio (28,29,31), Erg (37,38), Weather (34) Psy(41,42,43)	Phy (10), Chem (23), Erg (36)	Other (44,45), Erg (40)	15
	Minor injuries	2	Chem (25)	Bio (30,32) Erg(39)	6	8	10
	Trivial injuries	1	1	2	3	4	5

Practical Applications

Practical Applications

Questions

Thank you for your time.

Mohammad Sadra Fardhosseini,

M.S. Student
University of Nebraska- Lincoln
Email: sadra.fh@huskers.unl.edu

- Born in Tehran Iran
- Power and Water University of Technology (Tehran)

B.S. Civil Engineering (2009-2013)

University of Nebraska Lincoln

M.S. Construction Management (2014 - Present)

