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Abstract: Motor neuron degeneration and spinal cord demyelination are hallmark pathological
events in Amyotrophic Lateral Sclerosis (ALS). Endogenous retrovirus-K (ERVK) expression has
an established association with ALS neuropathology, with murine modeling pointing to a role
for the ERVK envelope (env) gene in disease processes. Here, we describe a novel viral protein
cryptically encoded within the ERVK env transcript, which resembles two distinct cysteine-rich
neurotoxic proteins: conotoxin proteins found in marine snails and the Human Immunodeficiency
Virus (HIV) Tat protein. Consistent with Nuclear factor-kappa B (NF-κB)-induced retrotransposon
expression, the ERVK conotoxin-like protein (CTXLP) is induced by inflammatory signaling.
CTXLP is found in the nucleus, impacting innate immune gene expression and NF-κB p65 activity.
Using human autopsy specimens from patients with ALS, we further showcase CTXLP expression in
degenerating motor cortex and spinal cord tissues, concomitant with inflammation linked pathways,
including enhancement of necroptosis marker mixed lineage kinase domain-like (MLKL) protein and
oligodendrocyte maturation/myelination inhibitor Nogo-A. These findings identify CTXLP as a novel
ERVK protein product, which may act as an effector in ALS neuropathology.

Keywords: endogenous retrovirus; amyotrophic lateral sclerosis; conotoxin; HIV Tat; NF-κB;
necroptosis; myelination

1. Introduction

Viruses and toxins are considered potential environmental factors implicated in the motor neuron
disease Amyotrophic Lateral Sclerosis (ALS) [1–3]. With most ALS cases considered sporadic
in nature, the search for gene-environment interactions in ALS has remained disappointingly
elusive [4,5]. Endogenous retrovirus-K (ERVK) expression has been repeatedly associated with
ALS neuropathology [6–9], with murine modeling pointing to a role for the ERVK envelope (env)
gene as a cause of motor neuron loss [10]. However, recent studies conflict with previous findings by
suggesting there is no significant difference in ERVK env transcripts and protein expression between
ALS and control tissues [11,12]. Conversely, ERVK env has been shown to be neuroprotective in
Human Immunodeficiency Virus (HIV) infection [13]. To date, the role of ERVK env in disease remains
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highly debated, and it has been proposed that proteins other than canonical full-length Env should be
considered when examining the role of ERVK in ALS disease [11]. Here, we describe a novel ERVK
protein product termed conotoxin-like protein (CTXLP), which is cryptically encoded within ERVK env
and may help elucidate the neuropathological nature of ERVK reactivation.

ALS pathology involves the degeneration of the upper (brain) and lower (spinal cord) motor
neurons, leading to muscle weakness and paralysis (reviewed in [14–16]). The majority of ALS cases
are considered sporadic, and the cause of this disease remains unknown. Brain and spinal cord
inflammation are a hallmark of ALS neuropathology (reviewed in [17,18]). Whether specific viruses
have the capacity to cause ALS pathology, or if their role is predominantly as an inflammatory trigger
is controversial [2]. Nonetheless, viruses have been repeatedly postulated to play a role in ALS due to
the overlapping neuropathology of this disease with several infection models. For instance, renewed
interest in the link between enteroviruses and ALS is based on similar cellular and molecular pathology
in murine and cell line-based enterovirus infection [1]. As another example, the env gene of the
murine leukemia virus is a crucial driver of motor neuron disease in mice, albeit with a pathological
divergence from what is seen in ALS [19]. In humans, exogenous retroviruses HIV and Human
T-cell Lymphotropic Virus (HTLV) are occasionally associated with the development of ALS-like
syndrome [20–22]. Lastly, endogenous retroviruses, specifically ERVK proviruses, are also suspected
of promoting ALS-associated neuropathology [23].

Endogenous retroviruses (ERVs) are viral symbionts that populate the human genome, representing
approximately 8% of human genomic DNA [24]. ERVs are found to be highly polymorphic between
individuals and different ethnic groups [25]. They can benefit their host [26], or in other contexts,
are thought to participate in pathogenesis and disease development [23]. ERVK is the most recently
endogenized retrovirus and most biologically active in humans, with approximately 1000 genomic
ERVK insertions identified [27]. However, few loci retain the coding capacity for the production of
intact viral proteins [28]. ERVK expression has been detected in several tissues throughout the body at
varying levels amongst individuals and in a variety of disease states [29]. The role of ERVK in ALS
disease pathogenesis remains contentious, intensifying the search for cellular pathways impacted by
the ERVK envelope protein.

Unlike their exogenous counterparts, ERVs are often referred to as simple retroviruses. This is
because viruses like ERVK encode few regulatory accessory proteins in complement with their core
genes [30]. Accessory proteins often modulate cellular pathways; for example, HIV Tat is known to
provoke inflammatory responses and neurotoxicity via multiple cellular pathways [31,32]. To search
for unaccounted viral and pathological complexity within ERVK, we implemented an unbiased search
for open reading frames in human-derived ERVK provirus sequences. We discovered that ERVK
uses frameshifting of the envelope gene transcript to generate a novel protein product with a domain
similar to both HIV Tat and marine snail conotoxins, coined ERVK conotoxin-like protein (CTXLP).
This observation was alarming, as both these disparate proteins are known to be neurotoxic, in addition
to having immunomodulatory effects.

Conotoxins are a type of inhibitor cysteine knot (ICK) proteins and have been previously described
as neurotoxins in predatory cone snails (Conus sp.) [33]. Conotoxins within the venom of cone snails
cause psychosis, paralysis, and fatality in humans [34]. In addition, conotoxin-like protein products of
unclear function have been identified in the Nuclear Polyhedrosis Virus (NPV) [35–37]. ICK proteins
are also called knottins because of their stability, which is imparted by their three disulfide bonds.
Two of these disulfide bonds, together with their peptide backbone, form a ring that the third bond
goes through, thus forming a “knot” structure [38]. The ICK structure consists of six conserved
(connected as CysI-CysIV, CysII-CysV, and CysIII-CysVI) cysteine residues and an otherwise variable
peptide backbone [38]. Within the animal kingdom, ICK peptides are found in the venoms of spiders,
scorpions, and marine snails, functioning either as pore-blockers or gate-modifiers of ion channels [38].
The classification of knottins is based on criteria such as the gene superfamily, the pattern of cysteine
bridging, and molecular targets [33,39]. ERVK CTXLP most resembles O-conotoxins (which encompass
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ω and γ conotoxin groups); these small toxic peptides act by blocking ion channels [40]. Inhibition of
high-voltage activated CaV2.2 (N-type) calcium channels found at the presynaptic terminal of neurons
by O-conotoxins, leads to suppressed acetylcholine release and neurotransmission [41]. The success
of piscivorous cone snails to envenomate and immobilize their prey by blocking neuromuscular
transmission is attributed to the efficacy of conotoxin peptides [34,40].

Given the pathogenic effects of HIV Tat and conotoxins, we hypothesized that ERVK-encoded
CTXLP underpins some of the findings associated with transgenic mice expressing the ERVK env gene
succumbing to motor neuron disease [10]. While the concert of pathological pathways underlying
the inception and progression of motor neuron death in ALS is complex, here we focus on the
connection between ERVK CTXLP and neuropathological events in ALS, such as inflammation [42],
proteinopathy [43], necroptosis [44], and oligodendrocyte perturbation [45,46].

2. Materials and Methods

Ethically-sourced human autopsy tissues were obtained from the NIH Neurobiobank and the
Veterans Affairs Brain Bank. Cell culture, transfections, cytokine treatments, western blot, chromatin
immunoprecipitation, quantitative PCR, immunohistochemistry/histological staining, RNAseq analysis,
and computational biology were done as described previously [7,8,47–49]. Detailed descriptions of the
methodologies are provided in Supplementary Methods.

3. Results

3.1. An Unbiased Search for Open Reading Frames in the ERVK Genome Identified a Novel env-Derived Protein

A fundamental premise underlying this study was that key mechanisms accounting for the
inflammatory pathology associated with ERVK had yet to be discovered. Thus, as an initial line of
inquiry, we hypothesized that the ERVK genome encodes more proteins than had been previously
described. However, an open reading frame (ORF) analysis of ERVK proviruses yielded no novel
conserved domains when a start codon (methionine)-biased analysis was used. Thus, the requirement
for an initiating start codon was relaxed. This strategy was appropriate given that alternative ORFs
could be accessed through splicing or frameshifting events often employed by retroviruses [50].
The start codon-unbiased analysis delivered a Conserved Domains database hit (Toxin_18, PFAM
PF08087), identifying a previously undescribed translation product of the ERVK env gene (Figure 1
and Figure S1a). This ORF was in a different reading frame than the env gene. It occurred in both type
1 and type 2 ERVK genomes; it was not disrupted by the distinguishing 292-base pair deletion in env.
Having established the presence of a cryptic ORF, we sought to identify how it might be translated.

Since the reading frames of ERVK env (frame +1) and CTXLP (frame +3) differed by -1, ERVK
env transcripts were examined for evidence of secondary structures that may regulate viral protein
production [50], such as internal ribosomal entry sites (IRES) and programmed ribosomal frameshifting
(PRF) motifs. Certain viruses, including HIV, use IRES to allow for mRNA translation to begin in the
middle of the transcript [51]. These take the form of complex RNA hairpin structures that allow for
docking of ribosomal machinery and subsequent protein translation. RNAfold software was used to
predict mRNA secondary structure upstream of the CTXLP domain ORF. Within the env transcript,
we observed RNA secondary structures at nucleotides 84–187 and 213–318, similar to HIV IRES
(as predicted by IRESite) that allowed for alternate methionine start codons [52]. Figure 1b depicts that
the ERVK env transcript contains two typical IRES motifs.
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Figure 1. A conotoxin-like protein (CTXLP) is encoded within the endogenous retrovirus-K (ERVK) 
env transcript. (a) ERVK proviruses can produce a spliced env transcript. ERVK113 was used as a 
template for subsequent bioinformatic analyses. (b) RNAfold analysis predicts two distinct internal 
ribosomal entry site (IRES)-like hairpins at nucleotides 84–187 and 213–318, potentially allowing for 
the production of smaller isoforms of ERVK Env surface unit (SU) or CTXLP. (c) RNAfold analysis 
also predicts a conserved -1 ribosomal frameshifting (FS) sequence directly upstream of the CTXLP 
domain translational start. Three canonical elements i) a slippery site containing an X-XXY-YYZ motif, 
which after FS by -1, results in XXX-YYY reading, ii) a 5 to 10 nucleotide spacer sequence, and iii) a 
downstream hairpin-type pseudoknot, may facilitate ribosomal FS into the CTXLP reading frame. (d) 
Ribosomal frameshifting in ERVK env can generate a SU-CTXLP fusion protein. A rare -4 FS allows 
for the translation of the CTXLP cysteine-rich motif at the C-terminal end of the SU protein and 

Figure 1. A conotoxin-like protein (CTXLP) is encoded within the endogenous retrovirus-K (ERVK)
env transcript. (a) ERVK proviruses can produce a spliced env transcript. ERVK113 was used as a
template for subsequent bioinformatic analyses. (b) RNAfold analysis predicts two distinct internal
ribosomal entry site (IRES)-like hairpins at nucleotides 84–187 and 213–318, potentially allowing for
the production of smaller isoforms of ERVK Env surface unit (SU) or CTXLP. (c) RNAfold analysis
also predicts a conserved -1 ribosomal frameshifting (FS) sequence directly upstream of the CTXLP
domain translational start. Three canonical elements i) a slippery site containing an X-XXY-YYZ motif,
which after FS by -1, results in XXX-YYY reading, ii) a 5 to 10 nucleotide spacer sequence, and iii)
a downstream hairpin-type pseudoknot, may facilitate ribosomal FS into the CTXLP reading frame.
(d) Ribosomal frameshifting in ERVK env can generate a SU-CTXLP fusion protein. A rare -4 FS
allows for the translation of the CTXLP cysteine-rich motif at the C-terminal end of the SU protein
and introduces a nuclear localization sequence (NLS: KRQK motif). (e) Diagram of canonical and
novel protein products produced by ERVK env. The ERVK envelope polyprotein is cleaved by the
cellular protease furin (grey, RSKR motif) downstream of the R-X-R/K-R site. This splits the ERVK
Env polyprotein into the surface unit (SU) and transmembrane (TM) proteins, which interact to form
the viral spike protein on the surface of virions. Post-translational modification of ERVK SU protein
includes glycosylation, with N-linked N-X-S/T glycosylation sites identified by black arrows. The first
350 bp of ERVK Env-encoding RNA contains numerous AUG (methionine, blue) translational start sites.
Larger (51 kDa) and smaller (32 kDa) CTXLP variants are predicted based on alternative start sites.
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Frameshifting is also a common occurrence in viruses, used to maximize genomic economy and
control the ratio of gene products on poly-cistronic transcripts [50,53,54]. Programmed ribosomal
frameshifting can occur when three structural RNA elements are combined in the following order: i) a
slippery site containing an X-XXY-YYZ motif after which frameshifting by -1 results in an XXX-YYY
reading, ii) a five to 10 nucleotide spacer sequence, and iii) a downstream hairpin-type pseudoknot.
During the translation of the primary reading frame, the hairpin-type pseudoknot halts the ribosome
from continuing translation, leading to ribosomal frameshifting [53]. This configuration allows the
downstream hairpin-type pseudoknot to halt the translation of the primary reading frame with the
ribosome sitting on the slippery site. The slippery site then re-establishes ribosomal tRNA and mRNA
base pairing in the non-primary reading frame and allows for the continuation of translation after
the frameshift [53]. This type of ribosomal slippage has been described at the GagPol boundary in
HIV [50]. To predict RNA motifs and secondary structure, multiple ERVK env nucleotide sequences
were submitted to the RNAfold software starting from 150 base pairs upstream of the CTXLP sequence.
ERVK CTXLP-encoding transcripts contained an appropriate U-UUA-AAU slippery site followed
by a five-nucleotide spacer sequence before the CTXLP domain. All ERVK sequences examined
showed a strong probability of forming a hairpin-type pseudoknot within the RNA sequence encoding
the CTXLP cysteine-rich motif (Figure 1c). Furthermore, if the envelope protein translates past the
CTXLP domain start and frameshifts with a -4 hop, this would introduce a conserved KRQK nuclear
localization sequence (NLS [55]) into the hypothetical protein (Figure 1d).

Taken together, this challenges the conventional idea that the ERVK env transcript can encode only
a single envelope polyprotein, which is proteolytically processed by the cellular enzyme furin into the
surface unit (SU) and transmembrane (TM) proteins (Figure 1d) [56]. We predict that programmed
ribosomal frameshifting could be used to extend the ORF of the ERVK SU protein by adding on a
C-terminal CTXLP domain, ultimately creating a novel fusion protein. Moreover, translating env from
alternative start codons may result in different sized isoforms of CTXLP. Predicted 51 and 32 kDa
isoforms of CTXLP likely stem from using the start of the env ORF (methionine position 1) or an IRES
in the env reading frame (starting specifically at methionine position 200), respectively. Our data
suggest that the ERVK CTXLP domain is likely expressed as a cryptic peptide through the frameshifted
translation of the env transcript (Figure 1e).

3.2. Characterization of ERVK CTXLP, a Virus-Encoded Conotoxin Protein

A pBLAST search of the CTXLP domain returns no hits in humans at all, only conotoxin
proteins from other species. Given that the ERVK CTXLP domain was predicted to be similar to
the Toxin_18 family of proteins known as Conotoxin O-superfamily, we sought to establish the
degree of architectural consistency between CTXLP and known conotoxins. The ERVK CTXLP
domain is 39 amino acids long, with a core cysteine-rich motif accounting for 30/39 residues
(CSDYGINCSHSYGCCSRSCIALFCSVSKLC) (Figure 2a–c and Figure S1b). A sequence logo was
generated to assess amino acid conservation between CTXLP and known cysteine-rich proteins
(Figure S1b,c, and Table S1). Figure 2a shows the relationship of ERVK CTXLP to representative
O-conotoxins and Nuclear Polyhedrosis Virus (NPV) sequences. The ERVK CTXLP domain contained
six cysteine residues and one glycine residue, characteristic of theω-conotoxins, and select γ-conotoxins
(Figure S2a) [57]. ERVK CTXLP demonstrated a strong similarity to cone snail O-conotoxins (25.9–45.8%
identity) (Figure 2a and Figure S2a). Previous studies have shown that ω-conotoxin’s amino acid
residues lysine 2, lysine 4, threonine 11, tyrosine 13, and arginine 22 are important for calcium
channel receptor binding [58], of which some residues are similarly conserved in CTXLP (Figure 2a).
NPV, which belongs to the insect-infecting Baculoviruses, also produces a conotoxin-like protein
(NPV CTXLP) [37]. The ERVK CTXLP domain showed the greatest similarity to NPV viral proteins
(max similarity 46.2%, Figure 2a and Figure S2a–c). Conotoxins adopt a knot-like protein conformation,
called a knottin structure, which is important for their stability and action. O-conotoxin and NPV CTXLP
knottins include three disulfide bonds, formed through cysteine bridges (Figure S1b). Apart from
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the cysteine motif, amino acid residues in conotoxins are highly variable [57], suggesting that the
conservation of the cysteine residues and, therefore, the tertiary structure is more important for peptide
function than the primary amino acid sequence. Tertiary structure prediction of the ERVK113 CTXLP
protein using Knotter 1D3D software resulted in the predicted 3-dimensional structure shown in
Figure 2b, highlighting its capacity to form appropriate cysteine bridges as found in knottin proteins.
Thus, we conclude that an ERVK SU-CTXLP fusion protein is likely to harbor a C-terminal knottin
globular domain, based on sequence similarity with other conotoxin proteins and conservation of the
core cysteine motif.

Cells 2020, 9, x FOR PEER REVIEW 6 of 24 

 

family of proteins known as Conotoxin O-superfamily, we sought to establish the degree of 
architectural consistency between CTXLP and known conotoxins. The ERVK CTXLP domain is 39 
amino acids long, with a core cysteine-rich motif accounting for 30/39 residues 
(CSDYGINCSHSYGCCSRSCIALFCSVSKLC) (Figures 2a–c and S1b). A sequence logo was generated 
to assess amino acid conservation between CTXLP and known cysteine-rich proteins (Figure S1b,c, and 
Table S1). Figure 2a shows the relationship of ERVK CTXLP to representative O-conotoxins and 
Nuclear Polyhedrosis Virus (NPV) sequences. The ERVK CTXLP domain contained six cysteine 
residues and one glycine residue, characteristic of the ω-conotoxins, and select γ-conotoxins (Figure 
S2a) [57]. ERVK CTXLP demonstrated a strong similarity to cone snail O-conotoxins (25.9–45.8% 
identity) (Figures 2a and S2a). Previous studies have shown that ω-conotoxin’s amino acid residues 
lysine 2, lysine 4, threonine 11, tyrosine 13, and arginine 22 are important for calcium channel receptor 
binding [58], of which some residues are similarly conserved in CTXLP (Figure 2a). NPV, which 
belongs to the insect-infecting Baculoviruses, also produces a conotoxin-like protein (NPV CTXLP) 
[37]. The ERVK CTXLP domain showed the greatest similarity to NPV viral proteins (max similarity 
46.2%, Figures 2a and S2a–c). Conotoxins adopt a knot-like protein conformation, called a knottin 
structure, which is important for their stability and action. O-conotoxin and NPV CTXLP knottins 
include three disulfide bonds, formed through cysteine bridges (Figure S1b). Apart from the cysteine 
motif, amino acid residues in conotoxins are highly variable [57], suggesting that the conservation of 
the cysteine residues and, therefore, the tertiary structure is more important for peptide function than 
the primary amino acid sequence. Tertiary structure prediction of the ERVK113 CTXLP protein using 
Knotter 1D3D software resulted in the predicted 3-dimensional structure shown in Figure 2b, 
highlighting its capacity to form appropriate cysteine bridges as found in knottin proteins. Thus, we 
conclude that an ERVK SU-CTXLP fusion protein is likely to harbor a C-terminal knottin globular 
domain, based on sequence similarity with other conotoxin proteins and conservation of the core 
cysteine motif. 

 
Figure 2. ERVK CTXLP is conserved structurally with Conus and viral conotoxins, as well as Human 
Immunodeficiency Virus (HIV) Tat. (a) ERVK CTXLP cysteine-rich motif has a strong similarity to 
both nuclear polyhedrosis virus (NPV, 46.2%) and Conus (45.8%) conotoxin proteins. Cysteine bridges 
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Figure 2. ERVK CTXLP is conserved structurally with Conus and viral conotoxins, as well as Human
Immunodeficiency Virus (HIV) Tat. (a) ERVK CTXLP cysteine-rich motif has a strong similarity to
both nuclear polyhedrosis virus (NPV, 46.2%) and Conus (45.8%) conotoxin proteins. Cysteine bridges
conserved in knottin proteins are indicated with black bars. (b) A modeled 3D structure of the CTXLP
domain was predicted using the Knotter1D3D software. Note the interactions of the yellow cysteine
residues, as they form disulfide bonds. (c) Alignment and sequence logo of the cysteine-rich motif in
ERVK CTXLP peptide and cysteine-rich domain of HIV-1 Tat protein. Conservation of six of the seven
CTXLP cysteine residues is found in HIV Tat, as well as a C-terminal lysine residue.

After identifying that two unrelated groups of viruses (ERVK and NPVs) both have conotoxin-like
protein-coding capacity, we also searched for conotoxin-like peptides within translations of all three
forward reading frames of the env region of several other retroviral genomes (HIV-1, HTLV-1, MMTV,
ERVW, ERVH; Table S1). No conotoxin-like domains were identified using HMMER and BLAST
searches in any of these retroviruses, indicating that the CTXLP signature may be a unique feature of
ERVK proviruses. However, comparative protein analyses revealed a similarity between the CTXLP
cysteine motif and the retroviral accessory protein HIV Tat (Figure 2c). When ERVK CTXLP was
aligned to the cysteine-rich region (residues 22–44) of Tat proteins from HIV-1, some degree of similarity
was detected (23.3% identity). The conserved C-C-CC-C-C motif of Tat has a tighter cysteine spacing
than ERVK CTXLP, or conotoxins. Tat toxicity and its ability to regulate gene expression centers around
the use of its cysteine-rich domain [59,60]. In driving a self-promoting inflammatory environment for
HIV, Tat upregulation of NF-κB relies on its cysteine-rich motif [60,61]. These data suggest that HIV
Tat and ERVK CTXLP may share some functional similarities.
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3.3. ERVK CTXLP Variants in the Human Genome and Primate Homologs

A tBLASTn search of all human sequences in the NCBI reference database (nr) with the CTXLP
domain of ERVK-10 returns only known ERVK loci (e-value < 1). Within the human reference
and alternative genome builds, there are at least 14 ERVK insertions (including ERVK-1, -18, -20,
-24, -111, -113, and -115) capable of encoding a full-length SU-CTXLP fusion protein. Analysis
of ERVK CTXLP domain variants revealed a high degree of sequence conservation, with a single
common allele dominating (Figure S3a). Additionally, several CTXLP-encoding ERVK proviruses
have been associated with human disease states (Table S2), but none of the identified CTXLP domain
polymorphisms correlated with disease. While CTXLP-containing ERVK proviruses can also be found
in other primates (Figure S3b–d), the predominant form of ERVK CTXLP in humans (from ERVK-113)
was examined further as the prototypic model for this viral peptide. Moreover, this CTXLP signature
can be found in a murine model of ERVK env-driven ALS-like neuropathology (Figure S3e) [10].

3.4. Novel Inflammation-Inducible ERVK CTXLP Protein is Distinct from Other ERVK Gene Products

The characterization of ERVK CTXLP is paramount to our understanding of ERVK in health and
disease. Therefore, we developed ERVK CTXLP specific reagents to study this novel viral protein.
A custom rabbit antibody was generated and validated using i) competitive peptide blocking assay
(Figure S4a), ii) immunoprecipitation and western blot for CTXLP and surface unit (SU) epitopes
(Figure S4b), iii) comparison between pre-immune serum and post-CTXLP peptide immunization
antibodies in immunohistochemistry (Figure S4c), and iv) overexpression of ERVK CTXLP and SU
pcDNA3.1 vectors (Figure S4d). These multiple approaches support the specificity and use of these
reagents in this study.

3.5. ERVK CTXLP Is Inducible through the Action of Pro-Inflammatory Signaling

Pro-inflammatory cytokines have been shown to induce ERVK expression [8,47,62]. Upon Tumor
Necrosis Factor-alpha (TNFα) treatment, enhancement of ERVK CTXLP expression was interrelated
with cytoplasmic ERVK reverse transcriptase (RT) levels in astrocytic cell lines (Figure 3a). This is
consistent with previously observed global regulation of ERVK gene expression by pro-inflammatory
stimuli [8]. Endogenous CTXLP protein was located predominantly in the nucleus of SVGA cells,
as seen in both confocal imaging (Figure 3a,b) and a chromatin cellular fraction blot (Figure 3c).
Higher resolution images and quantification of TNFα-treated CTXLP expressing astrocytes showed
that CTXLP puncta also formed in the cytoplasm, suggesting that potential isoforms of CTXLP may
have location-specific functions (Figure 3c,d). ERVK CTXLP expression did not co-localize with the
canonical ERVK SU protein (as measured with a commercial antibody), indicating that these proteins
have different localization sequences (i.e., NLS in CTXLP, and not SU) and cellular distribution patterns.
Despite the presence of SU epitopes in denatured CTXLP peptides (Figure S4b), the in vivo protein
conformation may mask these epitopes [63], leading to the appearance of distinct cellular distributions
for these ERVK proteins.
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Figure 3. ERVK CTXLP is induced by inflammatory signals. (a) The pro-inflammatory cytokine
Tumor Necrosis Factor-alpha (TNFα) enhances ERVK CTXLP levels in human astrocytic SVGA cell line.
Representative confocal micrographs depicting ERVK CTXLP (red) and ERVK reverse transcriptase
(RT, green) in cells treated with or without 0.1 ng/mL TNFα for 24 h, n = 2. DAPI stain indicates nuclei
(blue). CTXLP mainly localized to the nucleus with diffuse cytoplasmic staining. (b) Quantification
of CTXLP staining in untreated and TNFα-treated SVGA cells highlights the increase in both nuclear
and cytoplasmic expression of CTXLP under inflammatory conditions (*** p < 0.001, **** p < 0.0001).
(c) Cell fractionation further supported the nuclear localization of CTXLP proteins in SVGA cells.
Cytoplasmic (C) and nuclear fractions (N) expressed mainly the small form of CTXLP (32 kDa), whereas
larger (90–110 kDa) isoforms of CTXLP were mostly confined within the cellular chromatin (CHR)
fraction (n = 4). (d) Upon TNFα treatment, although the expression of CTXLP and Env SU proteins
was enhanced in SVGAs, they did not co-localize upon merging confocal microscopy images. CTXLP
nuclear foci are indicated by an arrow, whereas cytoplasmic puncta are indicated by an asterisk.
Together, this reveals that CTXLP expression exhibits a distinct cellular distribution pattern from that



Cells 2020, 9, 1584 9 of 24

of SU. (e) CTXLP protein binds chromatin, and specifically at regions containing interferon-stimulated
response elements (ISREs) and κB sites within the ERVK promoter (5′ LTR) [62]. Chromatin
immunoprecipitation (ChIP) was performed following 8 h of 10 ng/mL TNFα or LIGHT (cytokine
belonging to the TNF superfamily) treatment in SVGA cells (n = 3) and human ReNcell-derived neurons
(n = 2). There was a notable increase in CTXLP chromatin binding in astrocytes and neurons upon
stimulation with LIGHT and TNFα, respectively (* p < 0.05, ** p < 0.01). (f) 293T cells were transfected
with pcDNA3.1 plasmids encoding empty vector, ERVK CTXLP, or ERVK SU for 24 h. Cells were
assessed for expression of CTXLP or Env SU epitopes using a custom CTXLP antibody or a commercial
ERVK Env SU antibody. Note that overexpression of the ERVK Env SU construct only generates
an overexpressed protein containing the SU epitope, whereas CTXLP overexpression generates an
overexpressed fusion protein containing both ERVK Env SU and the cysteine-rich CTXLP domain
epitopes. Only CTXLP overexpression results in NF-κB p65 nuclear translocation (arrow), indicative
of NF-κB activation. DAPI stain depicts nuclei. (g) Q-PCR analysis of inflammatory genes in 293T
cells transfected with pcDNA3.1 plasmids encoding empty vector, ERVK CTXLP, or ERVK SU for 24 h
(n = 2). Note the enhanced expression of NF-κB p65 transcript in both CTXLP and SU transfected cells.
Conversely, only CTXLP-transfected cells exhibit enhanced Viperin mRNA expression. No significant
change in IRF7 or CXCL10 transcript abundance was observed.

3.6. ERVK CTXLP Binds Chromatin

Consistent with our observation that CTXLP is enriched in the chromatin fraction (Figure 3c),
DNABIND predicts that CTXLP binds DNA, with a score of 1.771 and a probability of DNA binding
of 85.5%, which are firmly above threshold cut-offs [64]. As HIV Tat is known to regulate viral and
cellular gene expression through the modulation of NF-κB activity and interaction with κB sites [61,65],
we sought to determine if CTXLP has similar properties. We have previously published that the ERVK
promoter contains two interferon-stimulated response elements (ISREs) that overlap with adjacent κB
sites for interaction with NF-κB transcription factors [8,62]. Treatment of human astrocytic and neuronal
cell lines with pro-inflammatory cytokines belonging to the TNF superfamily, TNFα and LIGHT
(lymphotoxin-like inducible protein that competes with glycoprotein D for herpes virus entry on T cells),
enhances NF-kB binding to these sites [8]. Experimentally, chromatin immunoprecipitation revealed
that CTXLP bound the ISREs within the ERVK viral promoter (5′ LTR) (Figure 3e). Notably, enhanced
chromatin association of CTXLP occurs in the presence of inflammatory cytokine stimuli, although the
provoking inflammatory stimuli can vary between cell types. Together with cell fractionation data,
this suggests that CTXLP binds DNA and, therefore, might regulate gene expression. Indeed, ectopic
expression of CTXLP (but not ERVK SU) enhanced nuclear NF-κB p65 expression (Figure 3f,g), as does
HIV Tat [61]. We also assessed the expression of other ISRE and κB regulated inflammatory genes that
may be impacted by ERVK CTXLP. The mRNA expression of the transcription factor IRF7 or chemokine
CXCL10 was not impacted by the presence of ERVK CTXLP or SU (Figure 3g). However, ERVK CTXLP
(but not ERVK SU) enhanced viperin transcript expression (Figure 3g), suggesting potential impacts
on metabolism and immunity [66]. These data indicate that ERVK CTXLP can modulate cellular
gene expression.

Several cell types are known to produce ERVK env-derived proteins and even form virions in certain
disease states, notably in various types of cancers (reviewed in [30]). Likewise, the teratocarcinoma
NCCIT and the breast cancer T47D cell lines express ERVK at high levels [67,68]. To assess the extent
and localization of CTXLP expression in such ERVK+ cells, we screened a panel of cancer cell lines
(Figure S5). Notably, CTXLP was not restricted to the nucleus in some cancerous cells. In the NCCIT
cancer cell line, endogenous CTXLP protein appeared ubiquitously expressed and localized to the
cytoplasmic, nuclear and chromatin enriched fractions (Figure S5a,b). CTXLP protein was also found
in both soluble and insoluble protein preparations from NCCIT cells. The latter suggests that there is
an interaction of CTXLP with cell membranes and chromatin. The abundant and ubiquitous nature of
CTXLP expression in untreated NCCIT cells, as compared with untreated human astrocytes (SVGA
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cells), was further supported by confocal imaging (Figure S5a). Moreover, several other cancer cell lines
express CTXLP (Figure S5a,c), including the T47D breast cancer cell line, which has been previously
associated with ERVK reactivation [68]. These findings underscore the fact that ERVK CTXLP may
localize to distinct cellular compartments depending on the cell type and cellular state.

3.7. ERVK CTXLP Protein Is Associated with Pathological Features of Amyotrophic Lateral Sclerosis (ALS)

The hallmark pathology of ALS involves motor neuron damage within the motor cortex and
spinal cord. Degeneration of motor neurons in Brodmann’s areas BA4 and BA6 (the primary motor
and pre-motor cortex areas, respectively), as well as axonal disruption in the spinal cord, leads to
denervation culminating in muscle atrophy. Therefore, we examined ex vivo (autopsy) human tissues
for the expression of ERVK CTXLP in conjunction with pathological markers indicative of cell death.
Despite cell line models indicating that CTXLP can induce apoptosis (Figure S4d–f), in preliminary
immunopathological studies, we did not observe substantial caspase-3 staining in ALS tissues.
Alternatively, necroptosis is a form of cell death that drives inflammation and is posited to contribute
to ALS neuropathology [69,70]. Activation of this pathway involves RIP1/RIP3 signaling leading
to phosphorylation and multimerization of the effector protein mixed lineage kinase domain-like
(MLKL), which forms pores in the plasma membrane; this allows the release of cellular contents into
the extracellular space and drives a local inflammatory response [44]. The cellular redistribution of
cytoplasmic MLKL protein to the plasma membrane is characteristic of ongoing necroptosis [71]. To our
knowledge, this is the first report to quantitatively assess MLKL expression patterns in disease-affected
tissue from patients with ALS.

3.8. CTXLP Is Associated with Neuronal Necroptosis in ALS

Confocal microscopy of the motor cortex (Figure 4) and spinal cord (Figure 5) specimens
from neuro-normal controls and patients with ALS revealed substantially enhanced CTXLP protein
expression in ALS (BA4, p < 0.01 (Figure S6), BA6, NS (Figure 4)). This viral protein may be derived from
select ERVK loci encoding the CTXLP domain, which are more abundantly expressed in ALS cases than
controls (Figure S7a). In the motor cortex, CTXLP+ cells were predominantly neurons (based on MAP2
neuronal marker) (Figure 4a, Figure S6a and Figure S7b), although ERVK CTXLP+MAP2− cells with
astrocytic morphology were observed in select ALS cases (Figure S7c). This is consistent with previous
observations of ERVK protein production in the motor cortex of patients with ALS [6–8]. Notably,
basal CTXLP expression was mostly nuclear in neuro-normal tissues, whereas CTXLP exhibited a
pattern of cytoplasmic aggregation in motor cortex tissues from patients with ALS (puncta count for
BA4, p < 0.0001, BA6, p < 0.01) (Figure 4a,c,d, Figure S6a,c and Figure S7b). ERVK CTXLP expression
was also strongly associated with elevated MLKL levels in ALS as compared to neuro-normal controls
(BA4, NS trend (Figure S6b,c), BA6, p < 0.05 (Figure 4b,c)). As with CTXLP expression in ALS,
MLKL redistribution could be observed in intact cells, as well as degenerating cells. Figure 4d
shows an example of an ALS tissue containing a CTXLP+ neuron with an accumulation of MLKL
staining in the axon hillock (arrow), as well as a nearby degenerating cell (co-localized CTXLP+MLKL+

puncta, asterisk). Typical of necroptosis [72], extracellular CTXLP deposits were also observed
surrounding degenerating pyramidal neurons in the motor cortex of ALS patients (Figure 4d and
Figure S7b). Together, these pathological indicators suggest CTXLP-driven proteinopathy, neuronal
damage, and necroptosis, causing the release of CTXLP in the motor cortex of patients with ALS.
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Figure 4. ERVK CTXLP is enhanced in the motor cortex of patients with Amyotrophic Lateral Sclerosis
(ALS) and associated with necroptosis. (a) ERVK CTXLP levels are enhanced in motor cortex brain
tissues of patients with ALS, as measured by confocal microscopy. Representative 40× confocal
micrographs of ERVK CTXLP (red), mixed lineage kinase domain-like (MLKL) protein (necroptosis
marker, green) and neuronal microtubule-associated protein 2 (MAP2) expression (grey) in Brodmann
area 6 (BA6, panel D) pre-motor cortex tissue of a neuro-normal (NN) control (n = 5) and patient with
ALS (n = 5). DAPI stain depicts nuclei. (b) Violin plots of staining quantification of DAPI, CTXLP,
and MLKL in NN and ALS cohorts for BA6 tissue. (c) Violin plots of protein puncta quantification
of CTXLP and MLKL in NN and ALS cohorts for BA6 tissue). (d) Enhanced expression of MLKL in
CTXLP+ neurons from the motor cortex of a patient with ALS (arrow). The nearby degenerating cell is
marked with co-localized CTXLP+MLKL+ puncta (asterisk). Statistical test with unpaired two-tailed
t-tests, (* p < 0.05 ** p < 0.01, black bars are medians).
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the sheaths surrounding axons. (F) Diagram of CTXLP+MLKL+ sheaths surrounding neuronal axons 
in ALS. Image produced with BioRender and PowerPoint. 

3.9. CTXLP is Associated with Oligodendrocyte Perturbation in ALS 

Apart from motor neuron disturbances, accumulating evidence points to oligodendrocyte (OL) 
dysfunction and demyelination in ALS (reviewed in [73]). Specifically, the anterior and lateral 
corticospinal tracts are impacted in ALS [74]. Figure 5a points to the dramatic CTXLP staining in 
spinal cords from patients with ALS versus neuro-normal controls, with distinctive expression in the 
lateral corticospinal tract (p < 0.01, Figure 5c). Remarkably, CTXLP patterning in the spinal cord 
exhibited a ring pattern surrounding MAP2+ neurons (MAP2 marks neuronal axons in grey, Figure 5b). 
This distinctive staining pattern pointed towards CTXLP expression in OLs, as these cells wrap 
protective myelin sheaths around axons in the spinal cord [75]. Many of these sheaths were also MLKL 
positive, with a significant increase in numbers of CTXLP+MLKL+ cells in ALS as compared to controls 

Figure 5. ERVK CTXLP is enhanced in the spinal cord of patients with ALS and associated with
axonal sheaths. (a) ERVK CTXLP levels are enhanced in autopsy spinal cord tissues of patients with
ALS, as measured by confocal microscopy. Representative 10×mosaic confocal micrographs of ERVK
CTXLP (red), MLKL (necroptosis marker, green), and DAPI (nuclear marker, blue) in the cervical spinal
cord of a neuro-normal (NN) control and a patient with ALS. Note the intense CTXLP staining in
the lateral corticospinal tract, surrounding a lesioned area in ALS. (b) Representative 40× confocal
micrographs of ERVK CTXLP (red), MLKL (necroptosis marker, green), and neuronal MAP2 expression
(grey) in the cervical spinal cord of a NN control (n = 5) and a patient with ALS (n = 5). DAPI stain
depicts nuclei. (c) Violin plots of staining quantification of DAPI, CTXLP, and MLKL in NN and ALS
cohorts for cervical spinal cord. (d) Violin plots of protein quantification of CTXLP+MLKL+ sheaths in
cervical spinal cord. Statistical test with unpaired two-tailed t-tests (** p < 0.01, black bars are medians).
(e) Projected image of a 5 µm tissue section depicting CTXLP+MLKL+ sheaths in the cervical spinal
cord of a patient with ALS. The oligodendrocyte cell body is indicated by an asterisk and myelin sheath
by an arrow. CTXLP+ rings ranged from 6–16 µM in diameter, with clear differences in the thickness of
the sheaths surrounding axons. (f) Diagram of CTXLP+MLKL+ sheaths surrounding neuronal axons in
ALS. Image produced with BioRender and PowerPoint.

3.9. CTXLP Is Associated with Oligodendrocyte Perturbation in ALS

Apart from motor neuron disturbances, accumulating evidence points to oligodendrocyte (OL)
dysfunction and demyelination in ALS (reviewed in [73]). Specifically, the anterior and lateral
corticospinal tracts are impacted in ALS [74]. Figure 5a points to the dramatic CTXLP staining in
spinal cords from patients with ALS versus neuro-normal controls, with distinctive expression in
the lateral corticospinal tract (p < 0.01, Figure 5c). Remarkably, CTXLP patterning in the spinal
cord exhibited a ring pattern surrounding MAP2+ neurons (MAP2 marks neuronal axons in grey,
Figure 5b). This distinctive staining pattern pointed towards CTXLP expression in OLs, as these cells
wrap protective myelin sheaths around axons in the spinal cord [75]. Many of these sheaths were also
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MLKL positive, with a significant increase in numbers of CTXLP+MLKL+ cells in ALS as compared
to controls (p < 0.01, Figure 5d). This is notable, as Ser441 phosphorylation of MLKL is associated
with myelin destabilization following tissue injury [76]. A projection of ALS tissue staining reveals a
consistent pattern of co-localized CTXLP and MLKL, with additional CTXLP staining beyond the OL
cell body (asterisk) and into the tight wrappings of the myelin sheath surrounding neuronal axons
(arrow) (Figure 5e,f).

Next, we investigated the association of ERVK CTXLP expression and myelin damage in ALS.
Our observations showed that CTXLP expression occurs in either lateral and anterior cortical spinal
tracts in ALS (Figure 6a and Figure S8). Strong CTXLP+ staining coincides with demyelinating lesions,
as shown by solochrome cyanine staining of adjacent tissues (Figure 6a and Figure S8b). Additionally,
the overall levels of key mature OL proteins, myelin-associated glycoprotein (MAG), and myelin basic
protein (MBP) were greatly diminished in cervical spinal cords from patients with ALS (Figure 6b,c).
Evidence of MBP-forming degraded myelin vesicles (Figure 6c inset) was also apparent in CTXLP+

OLs, further indicating an underlying neurodegenerative process [77].
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Figure 6. ERVK CTXLP protein expression is associated with demyelinated lesions in spinal cord
tissues from patients with ALS. (a) ERVK CTXLP levels are enhanced in autopsy lumbar spinal cord
tissues from patients with ALS, as measured by light and confocal microscopy. Representative 10×
confocal micrographs of ERVK CTXLP expression in ex vivo lumbar (LC) spinal cord of a neuro-normal
control (NN, n = 5), and patients with ALS (n = 5). Solochrome cyanine (SC) stain (purple) with eosin
counterstain (pink) depicts tissue myelination; pale lesions appear in ALS tissues (as indicated by an
asterisk). These lesioned areas exhibited increased CTXLP protein expression (red). Oligodendrocyte
precursor marker transcription factor 4 (TCF4) is in green. DAPI stain depicts cellular nuclei. Note:
CTXLP expression occurs in either the lateral (indicated by a white circle) and anterior cortical spinal
tracts. (b) Myelin protein MAG levels are lower in CTXLP+ ALS-lesioned spinal cord tissues (n = 5),
as compared to controls (n = 5). (c) Myelin protein MBP levels are reduced in CTXLP+ ALS lesioned
spinal cord tissues (n = 5), as compared to controls (n = 5). The magnified inset depicts MBP-degraded
myelin vesicles (condensed MBP aggregates) in CTXLP-expressing cells, which is indicative of an
ongoing neurodegenerative process.
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Further evidence indicates that ERVK CTXLP is associated with altered OL behavior. CTXLP
expression in the spinal cord of patients with ALS was strongly associated with increased transcription
factor 4 (TCF4, oligodendrocyte precursor marker) expression (Figure 7). Oligodendrocyte precursor
cells (OPCs) are a pool of immature OLs, which express characteristic markers such as TCF4,
oligodendrocyte transcription factor 1 (Olig1), and oligodendrocyte transcription factor 2 (Olig2) [78].
Upon differentiation into mature OLs, they begin to express myelin proteins such as proteolipid protein
(PLP), myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), and myelin-associated
glycoprotein (MAG) [78]. Oligodendrocytes must myelinate early post-differentiation, and myelination
occurs within a short timeframe (12–18 h), where their extended processes ensheathe 50–60 axonal
segments simultaneously [79]. Pools of OPCs can remain in tissues and are capable of migration and
later differentiation into mature OLs, often in response to brain injury [80]. However, in many disease
states, an attempt at remyelination is most often unsuccessful [80]. A prevailing theory surrounding
defects in remyelination is that despite increased numbers of OPCs in injured tissue, these precursor
cells become stalled in an immature state and fail to differentiate into mature OLs properly [80].
Alterations in OPC markers, such as enhanced levels of TCF4 and Olig1 occurs in tissue lesions from
patients with MS [81]. Figure 7a,b depicts an enhanced number of CTXLP+ OPCs in ALS. Colocalization
of TCF4 and Olig1 with CTXLP expression in the spinal cord of patients with ALS indicates that these
cells are indeed immature OLs.

Neurite outgrowth inhibitor (Nogo-A) is a key regulator of OPC differentiation; when OPCs express
Nogo-A they are unable to progress towards a mature OL phenotype capable of myelination [82,83].
Thus, enhanced expression of Nogo-A in OPCs in the context of inflammation and disease states
prevents axonal regeneration by restricting OPC maturation [84]. As an example, demyelinated MS
lesions show an increased abundance of Nogo-A+ OPCs, and the inability of OPCs to mature is proposed
as the mechanism driving a non-permissive environment leading to remyelination failure [84,85].
Western blot analysis confirmed that Nogo-A expression was substantially elevated in ALS spinal cord
(Figure S9a; p < 0.05). Figure 7c demonstrates that CTXLP expression in the spinal cord of patients with
ALS is associated with elevated Nogo-A expression, particularly in OPCs (patient 1, Figure 7c) and other
cell types (patient 2, Figure S9b). This specifically occurs in areas of myelin depletion (see Figure 6b,c).
It has been demonstrated in the human spinal cord that select myelin protein rings (PLP, MOG, but not
MAG) are detectable by immunohistochemistry even three years after injury in degenerating fiber tracts
exhibiting the absence of intact axons [86]. Therefore, degrading CTXLP+MLKL+Nogo-A+ myelin
rings may persist in patients with ALS for most of the progressive phase of the disease (2–5 years) [74].
Together, CTXLP toxicity, MLKL effects, and Nogo-A expression in degenerating ALS tissues may
ultimately create a non-permissive environment for neural regeneration [86], contributing to the rapid
clinical progression of this neurodegenerative disease in select ALS patients.
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Figure 7. Nogo-A expression in CTXLP+ oligodendrocyte precursors may limit spinal cord
remyelination in ALS. ERVK CTXLP levels are associated with demyelination, and CTXLP is enhanced
in TCF4+Olig1+ oligodendrocyte precursors in cervical spinal cord tissues from patients with ALS.
(a,b) ERVK CTXLP expression in ex vivo cervical (CC) spinal cord of NN controls (n = 5) and patients
with ALS (n = 5) analyzed by confocal imaging (representative 20× confocal micrographs are shown).
In ALS tissue, CTXLP expression (red) co-localizes with Olig1 (green, panel A) or TCF4 (green, panel B)
markers indicative of oligodendrocyte precursor cells. DAPI stain depicts cellular nuclei. (c) ERVK
CTXLP+ oligodendrocyte precursors either express myelin inhibitory protein Nogo-A or lie in close
proximity to Nogo-A positive cells (Figure S9b) in spinal cord tissues of patients with ALS. Human ex
vivo cervical spinal cord tissues were stained for ERVK CTXLP (red), TCF4 (green), Nogo-A (grey),
and nuclei (blue) in NN controls (n = 5) and patients with ALS (n = 5). Image merging for CTXLP and
TCF4 indicates that oligodendrocyte precursors express CTXLP in ALS. White stars indicate areas that
are magnified to depict overlapping protein expression in CTXLP+ rings.



Cells 2020, 9, 1584 16 of 24

4. Discussion

A pathological role for ERVK env in ALS is currently contentious [10,11,13]. Transgenic mice
with neuron-restricted ERVK env expression, as well as in vitro models, support the toxic potential
of the ERVK env gene [10,87–89]. In these systems, toxicity has been attributed to either the SU or
TM proteins. Recently, Mayer et al. have proposed that proteins other than canonical full-length
Env should be considered when examining the role of ERVK in ALS disease pathology [11]. Herein,
we have described a novel protein product termed conotoxin-like protein (CTXLP), which is cryptically
encoded within ERVK env and may further elucidate the toxic nature of ERVK reactivation in the motor
cortex and spinal cord. ERVK CTXLP spans several pathological features, as it encompasses properties
of an ALS risk gene, viral protein, and toxin.

Neurotoxins have long been proposed as etiological agents of ALS. The most prominent example
is the suspected link between ALS (or an ALS-like syndrome) and beta-N-methylamino-l-alanine
(BMAA), a neurotoxin produced by a group of terrestrial cyanobacterial symbionts in cycad plants [90].
However, large scale spatial clustering of individuals with ALS has been inconsistent with the range
of BMAA-producing cyanobacteria and other suspected environmental risk factors [90]. That said,
no proposed neurotoxin-based etiology has been able to explain the predominance of sporadic
cases of ALS. Therefore, although an environmental neurotoxin model for ALS makes sense at a
physiological level, a genetic-based model (with environmental/epigenetic influence) seems more
likely at an epidemiological level. A genetically encoded neurotoxin such as ERVK CTXLP would be
consistent with both theories. Environmental triggers which promote NF-κB signaling in the context
of immunity-related risk genes for ALS/FTD [91–93], may lead to a failure to control the expression of
this endogenous viral symbiont, thus facilitating ERVK CTXLP-driven neuropathology.

Our work suggests that the enhancement of CTXLP and its putative toxic effects are likely driven
in part by NF-κB signaling. In the context of TNFα-related inflammatory signaling, CTXLP bound ISRE
and κB sites in the ERVK promoter (Figure 3e). Enhanced expression of CTXLP further augmented
NF-κB p65 transcript levels and nuclear localization (Figure 3f,g). Thus, NF-κB driven expression of a
human-genome encoded viral protein like CTXLP could mimic a gene-environment interaction and
begin to explain how ERVK may pathologically contribute to a subset of sporadic cases of ALS.

It has previously been observed, in a seminal study by Li et al., that patients with ALS express
ERVK Env surface unit protein in their frontal cortex and anterior horn motor neurons in the lumbar
spinal cord [10]. Approximately half of the patients with ALS in this study (11/19) expressed CTXLP at
levels above controls in the motor cortex and spinal cord (specifically the lateral and anterior horns),
further supporting a role for ERVK-driven pathology in at least a subset of ALS patients [7,8,10].
It may be that ERVK CTXLP effects were previously implicated in ALS pathology. The most obvious
case for this claim is the phenotype of transgenic mice with neuron-restricted expression of ERVK
env, which develop progressive motor pathology and symptoms, causing a 50% case fatality within
10 months [10]. An analysis of the env gene insert in these transgenic mice reveals that they have
the capacity to produce CTXLP (Figure S3e), and that neuronal production of this novel viral protein
may have been occurring in this model system. It will be a serious future undertaking to decipher
the relative contributions of canonical env proteins versus CTXLP in these transgenic mice and other
systems. Moreover, the use of an SU-CTXLP fusion protein may have helped the exogenous form
of ERVK overcome the retrovirus’ natural tropism with only SU. Peptide addition to retroviral SU
proteins can target virions to other cell types and impact SU glycosylation patterns [94,95]. In addition
to the many roles of env-derived proteins [30], the SU domain may facilitate the secretion of CTXLP;
future research in this area is warranted.

The importance of the identification of CTXLP protein expression patterns in ALS is upheld by the
lack of correlation with total ERVK env transcript abundance. Consistent with a recent study by Mayer
et al. [11], we observed a lack of differential total ERVK env RNA expression in controls versus the ALS
cohort (Figure S7a). However, PCA analysis revealed that the expression of select ERVK CTXLP+ loci
cluster the ALS cohort versus controls, suggesting that specific CTXLP loci may drive the expression of
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CTXLP protein in ALS. There are notable alterations in RNA translation in ALS proteinopathy [96,97];
thus, deregulated processes may favor CTXLP expression over canonical ERVK env protein products.
Our data from protein analysis shows obvious differences in CTXLP expression between clinical groups
(Figures 4–7). Moreover, ERVK CTXLP expression was primarily observed in ALS disease-affected
tissues, specifically in the primary motor cortex (BA4) and the lateral corticospinal tract. Cryptic
peptides, such as CTXLP, often have significantly different functions than their precursor proteins [98].
Indeed, we observe different cellular localization of the ERVK SU protein as compared to ERVK CTXLP.
In cell line models and neuro-normal tissues, basal expression of ERVK CTXLP was mainly nuclear;
however, in diseased tissue, there was evidence of CTXLP protein deposits in the cytoplasm of neurons
within the motor cortex and myelin sheaths within the spinal cord. Our neuropathological observations
point to possible roles for ERVK CTXLP in necroptosis, expansion of OPCs, and demyelination.

The role of necroptosis in ALS remains controversial, as motor neuron disease in murine models
is independent of necroptosis signaling and MLKL activation [99,100]. In contrast, recent in vitro
work using a fully-humanized co-culture system demonstrated that an unidentified toxic factor
secreted from primary astrocytes from sporadic ALS, but not those from control patients, triggered
necroptosis-mediated death of motor neurons [69]. We postulate that ERVK CTXLP could play a role
in inflammatory cell death, based on our observations of enhanced aggregates of MLKL in CTXLP+

neurons in ALS brain tissue. Enhanced MLKL expression was also observed in CTXLP+ OPCs in the
spinal tissue from patients with ALS, which may not causally link to necroptosis per se, but with myelin
breakdown and regeneration [76]. Our work supports the accumulating evidence of OL pathology in
ALS [101] and points to CTXLP as also having a potential role in OL pathology in a select subset of
ALS cases.

CTXLP expression was also tightly correlated with Nogo-A levels in the spinal cord of patients
with ALS. Nogo-A has been previously identified as a prognostic marker and therapeutic target in ALS
due to its substantial expression in motor neuron disease and destabilizing effect on neuromuscular
junctions [102,103]. As expected [104,105], elevated Nogo-A expression was associated with evidence
of spinal cord injury and increased OPC numbers in this study. In ALS tissues, CTXLP expression
was observed in conjunction with elevated Nogo-A in the sheaths, which is expected to limit neurite
outgrowth and prevent myelination, coinciding with reduced MAG and MBP expression observed
in ALS tissues. The blockade of voltage gated calcium channels (VGCCs) induces the expression of
Nogo-A [105]; given the similarity of CTXLP with O-conotoxins which are known to block select
VGCCs [33], this may be a mechanism of action in ALS that ought to be explored. Taken together,
the impact of CTXLP, MLKL, and Nogo-A on OPC maturation and myelination likely results in
unprotected and susceptible axons in ALS-lesioned areas of the corticospinal tracts. Our study
implicates a novel toxic ERVK protein in MLKL-driven pathology and myelin damage in ALS
neurodegeneration and broadens the outlook on potential therapeutic strategies for ALS.

We envision that a substantial amount of research is required to address potential mechanisms
of ERVK CTXLP neuropathology, as ERVK CTXLP is a putative functional homolog of HIV
Tat. The mechanisms surrounding HIV Tat neurotoxicity are diverse and manifold [106,107].
The cysteine-rich motif of Tat endows this protein with neurotoxic properties [108]. Tat expression in
the brains of HIV-1 infected patients has been associated with neuronal and oligodendrocyte apoptosis
via caspase activation and calcium accumulation [107,109]. The cysteine motif in HIV Tat has also
been associated with increased HIV transactivation and global gene regulation by interacting with
transcriptional machinery [110,111]. HIV Tat can also transactivate ERVK [112]. Thus, the multiple
functions of HIV Tat suggest that CTXLP’s similar cysteine motif may also contribute to neurotoxicity
and gene regulation. There are no known small molecule drugs to inhibit the action of conotoxins,
yet there is ongoing development on anti-Tat therapeutics [113]. Considering the structural and
functional similarities between HIV Tat and ERVK CTXLP, small molecule inhibitors may serve as a
therapeutic approach for motor neuron disease. Research in these areas is currently underway.
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Revisiting our understanding of ERVK has shed new light on this endogenous viral symbiont.
Here we have shown that a ribosomal frameshifting event in the ERVK env transcript allows for the
formation of novel fusion protein we have called ERVK CTXLP. Our findings reveal an unforeseen
complexity within the ERVK genome and highlight a biological curiosity in that a virus-encoded
neurotoxin is hiding within the human genome. CTXLP is strongly upregulated by inflammatory
NF-κB signaling. As ERVK CTXLP is present in affected CNS tissues of many ALS patients, it may be a
useful biomarker for the disease, following independent confirmation of this initial study. Furthermore,
as a putative etiological agent of ALS (and other ERVK-associated diseases [23]), the discovery of
ERVK CTXLP is likely to have implications beyond ALS neuropathology and therapeutics, as it
speaks to a broader challenge in accurately assessing the role of retroelements in health and disease.
Fundamentally, these data further support the concept that human cells are built using a holobiontic
template of human and viral genes, blurring the lines between “human” biological processes and those
contributed by our DNA symbionts.

5. Patents

This work is the subject of patent application Endogenous Retrovirus-K (ERVK) encodes an alternate
envelope protein, WO 2019 075562 A1, 17 October 2018.
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