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Abstract: Groundwater is the main source of water for drinking, household use, and irrigation
in Kabul; however, the water table is dropping due to the excessive extraction over the past two
decades. The groundwater restoration criteria selection mainly depends on the techniques used
to recharge the aquifer. The design of infiltration basins, for example, requires different technical
criteria than the installation of infiltration wells. The different set of parameters is relevant to water
being infiltrated at the surface in comparison with water being injected into the aquifers. Restoration
of the groundwater resources are complicated and expensive tasks. An inexpensive preliminary
investigation of the potential recharge areas, especially in developing countries such as Afghanistan
with its complex Upper Indus River Basin, can be reasonably explored. The present research aims
to identify the potential recharge sites through employing GIS and Analytical Hierarchy Process
(AHP) and combining remote sensing information with in situ and geospatial data obtained from
related organizations in Afghanistan. These data sets were employed to document nine thematic
layers which include slope, drainage density, rainfall, distance to fault, distance to river channel,
lithology, and ground water table, land cover, and soil texture. All of the thematic layers were
allocated and ranked, based on previous studies, and field surveys and extensive questionnaire
surveys carried out with Afghan experts. Based on the collected and processed data output, the
groundwater recharge values were determined. These recharge values were grouped into four classes
assessing the suitability for recharge as very high (100%), high (63%), moderate (26%), and low (10%).
The relative importance of the various geospatial layers was identified and shows that slope (19.2%)
is the most important, and faults (3.8%) the least important. The selection of climatic characteristics
and geological characteristics as the most important criteria in the artificial recharge of the aquifer
are investigated in many regions with good access to data and opportunities for validation and
verifications. However, in regions with limited data due to the complexities in collecting data in
Afghanistan, proper researching with sufficient data is a challenge. The novelty of this research is the
cross-disciplinary approach with incorporation of a compiled set of input data with the set of various
criteria (nine criteria based on which layers are formed, including slope, drainage density, rainfall,
distance to fault, distance to river channel, lithology, ground water table, land cover, and soil texture)
and experts’ questionnaires. The AHP methodology expanded with the cross-disciplinary approach
by adding the local experts´ questionnaires survey can be very handy in areas with limited access to
data, to provide the preliminary investigations, and reduce expenses on the localized expensive and
often dangerous field works.
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1. Introduction

With the depletion of groundwater resources and substantial losses in surface water
reservoirs through evaporation, the restoration of groundwater aquifers can be a strategy
to enhance the sustainability of the groundwater resources in the Kabul Plain aquifer
within the Upper Indus River Basin (UIRB) (Figure 1). Previous studies show a decreasing
trend in groundwater levels and deteriorating groundwater quality [1–12]. Therefore,
improved groundwater management is needed to ensure an adequate water supply to
the expanding city. One of the most appropriate ways to enhance the condition of the
aquifer is to use the managing aquifer recharge (MAR) technique, which is widely used
for different regions [13–18]. Regional recharge studies in the Kabul aquifer have been
limited to traditional approaches to groundwater and recharge exploration which only
utilized drilling and geophysical methods in some small areas sporadically due to the
expensive field work investigations and the regional complexity with confrontations and
wars [19]. The traditional field geophysical works are costly, time-consuming, and can
be deployed in only limited areas [20,21]. The RS techniques and GIS tools are helpful in
investigations and provide the opportunity to prepare the first-order, preliminary estimates
with less expense and avoid the complexities of field investigations in developing or war-
torn countries [22,23]. The RS-GIS based methodologies with utilization of global datasets
can be applied in many regions throughout the world, particularly in areas where in situ
data is insufficient and accessibility is limited. The RS-GIS based models like DRASTIC
(depth to water-table, recharge, aquifer media, soil media, topography, impact of the vadose
zone, hydraulic conductivity) have been previously used in groundwater pollution risk
assessment [24,25]. The support methodologies to identify potential recharge areas are in
development, and include, for example, the frequency ratios method [26], logistic regression
model techniques [27], random forest models [28], and artificial neural networks [27]. The
RS-based methods allow quick and replicable coverage of entire regions, making it a useful
tool for obtaining short-term spatiotemporal information from large areas [29,30]. GIS is
able to effectively handle complicated spatial-temporal data and various datasets for the
same geographical location [31]. Several researchers have used RS and GIS approaches for
delineating potential sites and identifying artificial groundwater recharge areas [32–37].
Other methods are based on bivariate and multivariate statistical analysis with decision
making in prioritization of the collected information [38,39]. The RS-GIS based techniques
in combination with the AHP methodology have been increasingly popular to obtain spatial
plans and resource allocations for addressing various water resource management issues
in the last several decades [40]. Lack of access to reliable data and to financial resources
often make large-scale geophysical exploratory surveys in the region impossible. The AHP
has been employed as a well-organized technique to specify the groundwater potential
sites in some other areas [41–44]. We expand applications of RS-GIS and AHP approaches
to combine hydrogeological, geomorphological and climatic data to delineate sites for
groundwater recharge potential in the UIRB area, Kabul aquifer system.

This study aims to develop a method using RS and GIS overlays and AHP techniques
to delineate potential sites for groundwater recharge. Specific objectives include identifying
potential locations for groundwater recharge and determining the relative importance of
the various Geospatial attributes based on their impact on groundwater recharge.
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Figure 1. Location of the study area within the Upper Indus Basin.

2. Materials and Methods
2.1. The Study Area Description

The study area, the Kabul Plain, is located in the central part of Kabul province in
Afghanistan, which lies at 69◦24′37.38” E to 69◦9′16.50” E longitude and 34◦32′3.37” N to
34◦35′5.71” N latitude, and which covers a total of 926.48 km2 within the UIRB (Figure 1).
The relief of the study area is around 1600 m and ranges between 1695 m and 3311 m above
sea level (a.s.l.). The study area is enclosed by mountain ranges which divide the catchment
into two sub-basins in the NW-SE direction. The climate of the study area is categorized
into arid and semi-arid with air temperature ranging from a mean monthly high in July of
32 ◦C to an average monthly low in January of −7 ◦C. Average annual precipitation and
potential evapotranspiration rate is 330 mm/year and 1600 mm/year, respectively. There is
no permanent river flows in the study area. However, surface water due to flooding during
the cold seasons is the major source for groundwater recharging. Three rivers enter the
Kabul city region: the north-flowing Kabul River and its two tributaries, the Paghman and
the Logar rivers (Figure 1). The Kabul River ultimately flows eastward and enters Pakistan.
Geologically, the fluvial and aeolian sedimentary rocks form a major part of the lithology
of the study area. The results obtained from pumping tests conducted in the Kabul Plain
were employed to validate the results of this study. The values of hydraulic conductivity
are between 2 and 112 m per day [45].

2.2. Overall Methodology

To delineate a potential site for recharging the Kabul Plain aquifer, a set of GIS tools
were employed. The applied methodology is presented in Figure 2, which involves the
following major steps:

1. Identifying criteria and preparing thematic layers,
2. Ranking the thematic layers,
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3. Weighting of the criteria (layers),
4. Analyzing the overlay,
5. Generating the suitability map
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Figure 2. The flowchart of the overall methodology.

2.3. Identify Criteria and Preparation of Thematic Layers

Three main category datasets, which included RS, hydrometeorological, and con-
ventional data were used to develop the map of suitable recharge sites. The data used
include slope, distance from faults, land use, drainage network, soil texture, lithology,
depth to groundwater table, distance from river, and precipitation amount. These datasets
were gathered from the previous studies and followed the international guidelines in the
identification of suitable recharge sites [46]. Each criterion was represented as a thematic
layer created from satellite images, data from relevant sources, and conventional field data.
The analysis of these data was completed employing QGIS 3.22.9.

2.3.1. Remote Sensing Data

Slope and drainage density data were obtained from Shuttle Radar Topography Mis-
sion Digital Elevation Model (SRTM DEM) at 30-m resolution [47]. The slope and drainage
density maps (Figure 3a,b) were prepared by using the spatial analyst tool of the QGIS
tools. The land use map was extracted using the national land use map of Afghanistan
(Figure 3c). The map was received in shape file format from the Afghanistan Ministry of
Agriculture, Irrigation and Livestock (MAIL) [48]. The land use maps show that the land
is mostly used as rangeland and crop lands (Figure 3c). Figure 3d shows the lineaments,
adopted from the U.S. General Services (USGS) work in Afghanistan [49].
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2.3.2. Conventional Data

The geology map was extracted from the Geologic and Mineral Resource Map of
Afghanistan (scale: 1:250,000) (Figure 4a). The map was obtained in shape file format from
the USGS [50]. The Kabul Plain is enclosed by mountain ranges and the Kabul Plain is
filled with Quaternary and Neogene deposits (Figure 4) [51]. The mountain ranges mainly
consist of a variety of metamorphic rocks and to some extent crystalline rocks [52].

The Kabul Plain is geologically composed of an accumulation of lacustrine and ter-
restrial deposits. The deposits in the Kabul Plain are categorized into Quaternary and
Neogene deposits. The Quaternary deposits are composed of sand and gravel, and are
deposited mainly in the river channels. The Neogene sediments consist mainly of clay,
siltstones, marls, fine-grained sandstones, and conglomerate (Figure 5a) [53].

The soil texture layer map (Figure 5b) was extracted from the regional soil map of
Afghanistan which was prepared by the U.S Department of Agriculture (USDA) [54].
The soil texture map shows five classifications. Included Class -1-Haplocambids with
Torriorthents: This type of soil covers a large amount of low slope land of the central
portion of the basin. Class -2 Rocky lands with Lithic Cryorthents: cover the eastern
and northern parts of the study area in small amounts. Class -3 Rocky land with Lithic
Haplocambids; Covers small part of central flat section of the study area. Class -4 Rocky
lands with Lithic Haplocryids, Class -5 Xerochrepts with Xerorthents covers a small area of
the Kabul Plain to the western.
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2.3.3. Meteorological Data

Depth to the ground water-table is one of the primary variables for the groundwater
recharge system. Water table data of 2017 were received from the hydrogeology department
of the National Water Affair Regulation Authority of Afghanistan (NWARA), and Afghanite
Geo Engineering Company (AGEC, Kabul, Afghanistan) [55] in digital format. The inverse
distance weighting (IDW) approach was employed to interpolate these data for the whole
study area. Figure 6a shows the groundwater depth map. Groundwater fluctuations are
between 15 and 100 m. The average annual rainfall of the area’s three meteorological
stations was used to prepare the rainfall thematic layer. The minimum and maximum of the
rainfall amount are about 285 mm and 381 mm, respectively. These data are interpolated
spatially using the IDW method for the whole study area. Figure 6b illustrates the rainfall
distribution map of the study area. Rainfall decreases to the east (Figure 6). Flood water is
considered one of the potential sources of water for the groundwater recharge projects, and
floods occur on both sides of stream channels. Less distance indicates higher suitability.
Figure 6c presents a map of major rivers. The measurements of rivers were received from
the Ministry of Energy and Water of Afghanistan.

1 

 

 

Figure 6. Water resource contribution to the area: (a) water table; (b) rainfall; (c) major river.

2.4. Ranking the Thematic Layers

The different scales on the datasets and the criteria were measured, unified, and
converted into the comparable units. The thematic layers were unified with the sample
category. The thematic layers were assorted into the classes, according to the groundwater
occurrence and recharge approach taken by previous works [33] and recommendations.
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For each layer, higher values are dedicated to classes that are more important for locating
groundwater recharge. The thematic maps, however, were prepared first and then were
re-classed into five suitability classes (1–5) (Figure 7a–i).
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Slope plays an important role in controlling runoff into the subsurface. The slope
must be as gentle as possible to favor surface water infiltration. A significant amount of
rainwater is commonly percolated in the flat terrain, whereas overflow will occur on steep
slope areas. Thus, the slope of the study area is classified into five categories, namely 0–2◦,
2.1–5◦, 5.1–8◦, 8.1–13◦, and higher than 13◦. Higher infiltration values were allocated to
the flat and undulating areas (e.g., 0–2d = 5), whereas less value was assigned to the steep
slope areas (Table 1).

Areas with high drainage density can receive excessive runoff and have high recharge
potential. Therefore, areas with high drainage density were assigned a high recharge
potential, as demonstrated in Figure 7b.

Table 1. Ranking of the suitability variables.

Parameters Range Rank

Slope
(Degree)

0–2 5
2.1–5 4
5.1–8 3
8.1–13 2

13.1–77 1

Lithology

Gneiss 1
ultramafic intrusions 2

gabbro and monzonite 3
sandstone and siltstone/carbonates 4

Fan alluvium and colluvium/loess/conglomerate and
fractured sandstone 5
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Table 1. Cont.

Parameters Range Rank

Drainage
density

0–0.17 1
0.17–0.30 2
0.30–0.46 3
0.46–0.67 4

>0.67 5

Land-use

Rock Outcrop/ Bare Soil/Settlements/Marshland
Permanently inundated 1

Fruit Trees/Irrigated: Intensively Cultivated (1 crop/Year) 2
Irrigated: Intermittently Cultivated/Vineyards 3

Rangeland (grassland/forbs/low shrubs) 4
Rain fed Crops (flat lying areas)/Water bodies 5

ground water
table (m)

>60 2
30–60 4
15–30 5
<15 1

Rainfall
(mm)

319.25–323.86 1
323.861–328.47 2

328.4701–333.07 3
333.078–337.6 4
337.68–342.3 5

Distance to
river (m)

0–50 3
50–300 5

300–1000 4
1000–5000 2

>5000 1

Distance to
fault (m)

0–3500 3
3500–6600 5
6600–9800 4

9800–13,500 2
>13,500 1

Soil

Haplocambids with Torriorthents 5
Rocky land with Lithic Haplocambids 4
Rocky lands with Lithic Cryorthents 3

Xerorthents and Xerochrepts 2
Rocky land with Lithic Haplocryids 1

Land-use and land cover affect groundwater potential by affecting runoff, soil erosion,
and evapotranspiration [56,57]. The study area contains vineyards, rock outcrops, bare
soil, settlements, rangeland, cropland, and irrigated areas. Settlements have a negative
consequence on water infiltration to the subsurface with surface coverage of different
types of engineering constructions, pavements, and soil condensations. Settlements often
restrict the infiltration of precipitation and affect the recharge of the groundwater. Agricul-
tural land and rainfed lands pose high groundwater recharge potential. They have good
vegetation cover. The infiltration capacity of soil depends on numerous factors such as
moisture content, soil type, organic matter, and vegetative cover. The soil characteristics
affecting infiltration and non-capillary porosity are probably the most significant. The
porosity determines the storage capacity of soil and influences persistence to flow; thus,
infiltration tends to increase with effective porosity. Vegetation cover increases infiltration
in comparison with barren soil because (i) it retards surface flow giving the water additional
time to percolate the soil; (ii) the root system makes the soil more pervious; and (iii) the
foliage shields the soil from raindrop impact and decreases the rain packing of the surface
soil. Similarly, other researchers noted that land covered with vegetation is an attractive
site for groundwater investigation [21]. Geological features such as faults and lineaments
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induce secondary porosity and subsequently the permeability of rocks. Groundwater flow
in the subsurface is facilitated by faults, fracture, and solution conduits below the land
surface. There is a strong positive correlation between the geologic structure and rapid
pathways for groundwater recharge and flow to the aquifers [58]. The lineament inter-
sections in an area facilitate the infiltration of surface water to the subsurface. Therefore,
areas away from the lineament have a lower potential for groundwater recharge. The
type of rock and soil is the most important component for groundwater potential due
to the infiltration process primarily depending on the permeability of particular types of
rock [59,60]. Fan alluvium and colluvium, loess, conglomerate and sandstone, gabro and
monzonite, gneiss, carbonates, siltstone, and ultramafic intrusions are the main geological
formations found in the Kabul Basin as shown in Figure 5a. High weight is assigned for fan
alluvium, conglomerate, and sandstone, because these formations are highly weathered
and fractured. In contrast, low weights were given to ultramafic formations due to their
low permeability. Soil is commonly categorized based on the drainage classes. The suburbs
of the Kabul Plain are mainly overlayed with well-drained soil, particularly in rangeland.
High weight is assigned to a well-drained area. The depth between 15 to 30 m in the water
table is considered suitable for recharge. This is in line with artificial groundwater recharge
schemes and the interaction between rechargeable water and the aquifer. Groundwater
depth fluctuations are between 15 to 100 m. Within 15 to 30 m depth, the groundwater can
be held in the targeted aquifer. At a depth of less than 15 m, the lateral drainage may move
water downstream. Regarding the precipitation, due to limitations in snow-measuring
data only rainfall data were used. Rainfall for the Kabul Plain was divided into five equal
classes using GIS tools. The classification of rainfall ranges was completed by considering
local precipitation [25,44,61]. In terms of rivers, the areas near them are more suitable to
natural and artificial groundwater recharge. However, to prevent the flow of water from
the recharged area back to the stream from a groundwater table mound caused by the
recharge project, very short distances to surface water have lower values.

The artificial recharge to groundwater usually improves the sustainable yield of the
aquifer in areas where over-exploitation has decreased the aquifer storage. The distance
between 50 to 300 m from the river is considered very suitable for recharging projects if
these natural linear structures are used for this purpose.

2.5. Determining Weights for the Criteria (Layers)

The weighting procedure was completed using the AHP method. The AHP matrix
approach is suitable in cases of separating a large number of alternatives to a series of
pairwise comparisons followed by synthesizing the results.

In order to identify suitable recharge sites, the AHP approach was applied in four
steps: (1) the delineation of effective factors on groundwater recharge sites; (2) a pairwise
comparison matrix; (3) estimating relative importance; and (4) calculating matrix consis-
tency. The effective factors are nine thematic layers which include aquifer lithology, soil
texture, drainage density, distance to fault, slope, land use, rainfall, distance to river, and
depth to the groundwater table.

The relative significance of each variable on groundwater recharge is determined
according to the employment of a nine-point scale, as illustrated in Table 2; a score of
1 is given for equal importance between the two factors, and a score of 9 is given for
extreme importance of the row theme in comparison with the column factor. According to
the number of input factors (reclassified maps of thematic layers) a pairwise comparison
matrix, A (m2), is created. In this research, the pairwise comparison matrix procedure was
applied. For pairwise comparison, the factor effects on each other were measured according
to Saaty’s one-to-nine-point scale (Table 2).

In the matrix, the selection parameter pairs, and the assignment of pair weight were
undertaken according to the interconnection between one factor and the others to af-
fect recharge.



Water 2022, 14, 2390 12 of 19

Table 2. Saaty’s 1-9 scale of relative importance [62].

Intensity of Importance Interpretation

1 Equal importance
3 Moderate importance
5 Essential
7 Very strong importance
9 Extreme importance

2,4,6,8 Intermediate value between adjacent scale values

The target population consisted of ten people knowledgeable about Afghanistan’s
water resources basin, including five experts from the Ministry of Energy and Water, three
water resource management engineers of private Afghanistan geoscience companies, and
two local people working on water issues in the study area. Ten people were asked to
complete the questionnaire which sought information on the following criteria: slope,
drainage density, rainfall, distance to fault, distance to river channel, lithology, ground
water table, land cover, and soil texture.

For instance, the lithology/land use type pair was assigned 3 (moderate importance)
because geological features play a crucial role in the occurrence and distribution of ground-
water in any terrain and can recharge the aquifer directly [63]. A value of 1 was assigned to
parameters of equal importance.

Table 3 shows a pairwise comparison matrix which was derived from Saaty’s nine-
point importance scale.

Table 3. Pairwise comparison matrix of parameters.

Parameter Slope Geology Drainage
Density Land Use Distance

to Fault
Water
Table

Soil
Texture

Distance
to River Rainfall

Slope 1 1.09 1.5 3 5 4.5 2 4 1.63

Geology 0.91 1 2 3 2.5 1.5 2 1.02 2.16

Drainage Density 0.66 0.5 1 1.5 2.5 1.5 2.5 2 3.06

Land use 0.33 0.33 0.66 1 3 5 1.5 2 2.58

Distance to fault 0.2 0.4 0.4 0.33 1 1.6 1.5 2.02 6.96

Water table 0.22 0.66 0.66 0.2 0.62 1 1 1.01 1.07

Soil texture 0.5 0.5 0.4 0.66 0.66 1 1 3 1.26

Distance
to river 0.25 0.98 0.5 0.5 0.49 0.99 0.33 1 1.24

Rainfall 0.61 0.46 0.32 0.38 0.14 0.93 0.79 0.80 1

CI 0.09

The Consistency index (CI) is expressed as ratio of the difference between the principal
eigenvalue (λmax) and the number of factors under study from the (n) to (n − 1) as follows:

CI =
λmax− n

n− 1
(1)

The CI for recharge parameters studied in Kabul Basin was achieved using an overly-
ing method. The consistency index was 0.09, which is less than 1.

3. Results
Map of Groundwater Recharge Potential

The reclassified layers and their corresponding percentages influencing the recharge
were integrated using the weighted overlay tool of QGIS tools and generated a spatial
distribution map of groundwater recharge within the Kabul aquifer system (Figure 8).
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The Equation (2) is applied to map of groundwater recharge as following;

GWRSM = 18.6%×RR f + 13.7%×RGm + 19.2%×RSl + 11.2%×RSt + 3.8×RLd+
8.2× RDd + 10.5×RLulc + 6.9×Rdr + 7.9×RW f

(2)

where, RRf is a reclassified rainfall map, RGm is a reclassified geology map, RSl is a
reclassified slope map, Rst is reclassified soil texture map, RLd is a reclassified fault distance
map, RDd is a reclassified drainage density map, Rlulc is a reclassified land-use/land-
cover map, Rdr is a reclassified distance to river map, and Rwf is a reclassified distance to
groundwater level map.

The spatial distribution of recharge categories (Figure 8) displays that the very high to
high areas for groundwater recharge are situated in the central and southern parts of the
Kabul Plain, while most of the marginal parts were assigned as moderate to low.

Based on the map of suitable sites, 64% of the study area has high suitability for
groundwater recharge (Figure 9). The suitable areas are situated in low altitude areas
which are almost flat. These areas are covered by sedimentary units including two major
geological formations: alluvium and colluvium fans, limestone, and sandstone. These
formations are considered to have a high potential for the recharge process due to their
specific characteristics including the porosity values and the nature of +. Twenty-six percent
of the study area has moderate suitability and 10% has low suitability (Figure 9).
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Figure 9. Distribution of suitable areas in the Kabul aquifer.

The mountains are the main part of these areas that are primarily composed of Pale-
oproterozoic gneiss and ultramafic rocks. The natural characteristics of these formations
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are not appropriate for groundwater recharge. Also, the suitable areas for groundwater
recharge have residential development alongside the rivers.

A map of the groundwater recharge potential was created. The central and southern
parts of the Kabul Plain are specified as very high to high potential sites which have rain-fed
crops and croplands where the infiltration is high. The areas with the most potential for
groundwater recharge that have been identified are: alluvial fans/sandstones/conglomerates,
crop lands, and low/flat slope areas, areas near surface water, areas with higher precipi-
tation, and proximity to faults. Based on the map of suitable sites, (Figure 9), 64% of the
study area has high suitability for groundwater recharge.

Figure 10 denotes the weights of each layer in AHP. The slope (19.2%) and rainfall
(18.6%) are the most important thematic layers and strongly influence the recharge process.
Soil texture and land use are also important. The distance to fault (3.8%) layer is the
least important.
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4. Discussion
4.1. Delineation of Groundwater Potential Recharge Zones

The integration of RS data and the AHP method into the GIS environment to delineate
the spatial distribution of recharge within a geographical area has been proven to be both
practically and economically feasible [44]. According to the obtained weights of applied
layers (Figure 10), recharge is controlled by several different factors. Suitable recharge
sites (high and very high classes) correspond to outcrops of the Quaternary (Lataband
series) and Tertiary (Kabul series) sediments (Section 2.3.2). These components are highly
weathered and fractured. They have high porosity and permeability and they are suitable
for recharge. Therefore, the outcrops of the Lataband and Kabul series were allocated a
high recharge potential.

Regarding slope characteristics, which shows lithological resistance to weathering
and erosion, a large portion of the area has a low slope. A low slope (<5◦) can generally
be observed in central parts of the Kabul Plain and in the foothills (Figure 3a). Flat to
gentle slopes tend to spread overflows and produce considerable groundwater recharge
in permeable areas. Therefore, these areas are considered appropriate for groundwater
recharge. Higher slopes can be located at the flanks of the hill regions.

The precipitation availability is considered an essential source of groundwater
recharge [64,65]. Therefore, rainfall has been assigned as the most significant factor in
groundwater recharge after slope. Generally, total rainfall gradually increases with an
increase in elevation in the study area from medium (328.5–333.1 mm/year) to high
(333.1–337.6 mm/year) and very high (>337.7 mm/year). The eastern and the central part
of the study area receives very low (<319.3 mm/year) to low (324–328.5 mm/year) rainfall
(Figure 6b). Moving to the east, the rainfall values and groundwater potential decreases.

Areas with dense lineaments are usually considered suitable sites for groundwater
recharge. Faults and lineaments also have good potential for recharging groundwater.
Areas with a high recharge potential are in the central and southwest of the Kabul Plain
aquifer, closer to fault and fracture areas. The aforementioned areas are characterized by
the most permeable lithologic units, low to gentle slopes, high drainage density, and thick
soil layers with high infiltration capacity, corresponding to reclassified thematic layers of
high recharge potentials.
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4.2. Validation

The distribution map of established extraction wells was in combination with the cre-
ated map of the potential recharge areas; the well locations overlap these areas (Figure 11a).
Most of the wells exist in the conglomerate, sandstone and loess. This lithology is well
known for their high permeability. The central and southwestern regions are high recharge
zones and coincide with six recharge sites (Figure 11b) which previously were identified
using field work and groundwater investigation. The identified suitable recharge zones
include: (1) southwest of the catchment where the Maidan River enters the study area;
three zones of the six suitable recharge areas are located along the river; and (2) the alluvial
fan situated in the central part of the plain where the Kabul and Maidan rivers connect.
The areas with high values of hydraulic conductivity, k (m/day), are in the high recharge
zones. In addition, the amount of hydraulic conductivity decreases toward the outlet of the
basin. The high recharge zones are seen on conglomerate, sandstone and loess lithology
in which the amounts of hydraulic conductivity are highest. Recharge rates fall in regions
where lithology properties are confined by the ultramafic intrusions, gneiss and the gabbro
and monzonite cover (Figure 11c).
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5. Conclusions

The expansion and availability of RS and GIS datasets and tools significantly increase
opportunities to study the natural environment within a reasonable time and financial
expenses. AHP provides support in ranking and weighing the impact of various factors to
determine recharge potentiality in the Kabul Plain aquifer. AHP allows for the deriving
of the ratio scales from both discrete and continuous paired comparisons of recharge
parameters. The present study showed that slope and rainfall are the most influential factors
controlling groundwater recharge, followed by lithology in the study area, as confirmed
by previous studies. The applied methodology can be used in less-studied regions around
the world, particularly in areas where in situ data is inadequate and the accessibility is
limited. One of the primary features of our methodology is the utilization of global datasets
that are easily and freely available for most of the world’s land surface. The implemented
methodologies are not a substitute for conventional methods that need extensive in situ
datasets, but they could provide first-order estimates for identification of the groundwater
recharge areas. The results of this study indicated that areas with a high recharge potential
are located in the central and southwest of the Kabul Plain aquifer. The sustainability
of water resources and availability are complicated issues worldwide and under stress
in developing countries where we are faced with difficulties in providing the proper
local research. Many countries have decreased their water resources dramatically and
continue to deplete underground water. Underground water resources are not given proper
investigation in regards to sustainability supply chains. At the same time, it is important to
use groundwater efficiently, as recommended by the UN. Groundwater makes up 99% of all
of Earth’s fresh water and requires appropriate attention [66]. Managed Aquifer Recharge
(MAR) should work for maintaining the required groundwater sustainability, but is difficult
to apply in some complicated regions worldwide, including many regions in Afghanistan
and Central Asia. The AHP methodology expanded with the cross-disciplinary approach
by adding the local experts’ questionnaires, which can be very handy in areas with limited
access to data, in order to provide the preliminary investigations, reduce expenses and
circumvent often dangerous fieldwork. We plan to continue our research in Afghanistan
and Central Asia.
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