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Abstract: High-spatial-resolution air quality (AQ) mapping is important for identifying pollution
sources to facilitate local action. Some of the most populated cities in the world are not equipped with
the infrastructure required to monitor AQ levels on the ground and must rely on other sources, such as
satellite derived estimates, to monitor AQ. Current satellite-data-based models provide AQ mapping
on a kilometer scale at best. In this study, we focus on producing hundred-meter-scale AQ maps
for urban environments in developed cities. We examined the feasibility of an image-based object-
detection analysis approach using very high-spatial-resolution (2.5 m) commercial satellite imagery.
We fed the satellite imagery to a deep neural network (DNN) to learn the association between visual
urban features and air pollutants. The developed model, which solely uses satellite imagery, was
tested and evaluated using both ground monitoring observations and land-use regression modeled
PM2.5 and NO2 concentrations over London, Vancouver (BC), Los Angeles, and New York City. The
results demonstrate a low error with a total RMSE < 2 µg/m3 and highlight the contribution of specific
urban features, such as green areas and roads, to continuous hundred-meter-scale AQ estimations.
This approach offers promise for scaling to global applications in developed and developing urban
environments. Further analysis on domain transferability will enable application of a parsimonious
model based merely on satellite images to create hundred-meter-scale AQ maps in developing cities,
where current and historical ground data are limited.

Keywords: air quality; remote sensing; urban environment; deep learning; satellite imagery

1. Introduction

Air quality (AQ) in urban environments results from a complex interaction between
environmental conditions and natural and anthropogenic sources. The air we breathe has a
strong impact on our health and life expectancy [1,2]. Poor air quality has been consistently
ranked among the top risk factors for death and disability worldwide. In 2017, air pollution
was the fifth-highest mortality risk factor globally and was associated with about 4.9 million
deaths [3]. Fine particulate matter (PM2.5) and nitrogen dioxide (NO2) are common urban
air pollutants [4,5]. Whereas NO2 is especially important in urban areas and a marker for
traffic-related air pollution, mainly affected by local sources (e.g., transportation), PM2.5 is
most relevant for health impacts and has a regional effect with numerous contributors [6,7].
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Many epidemiological studies examining the health effects of air pollution have
measures of air pollutant concentrations collected from sparse networks of stationary
ground monitors as their main exposure metric. Continuous, high-spatial-resolution air
AQ estimates will help with source identification, facilitate local awareness, improve the
accuracy and specificity of health effects studies, and be useful for tracking impacts of air
quality management.

Over the past several decades, different models have been used to estimate air quality,
with improved spatial coverage and reduced bias. These include dispersion modeling [8],
regression kriging [9], land-use regression (LUR) [10–14], and satellite-based models [15–17].
The satellite-based models use retrieved variables such as aerosol optical depth (AOD) as
explanatory variables. Satellite-based estimates are increasingly being used to determine
continuous exposure metrics in health studies at coarse resolutions (1 km–10 km) and with
limitations related to column-surface calibration. Assessments of long-term air pollution
exposure in environmental health studies have commonly employed LUR or chemical
transport modeling (CTM) techniques. Whereas CTM requires local emissions data, LUR is
a commonly used algorithm for urban regions that require substantial local (measured) data
such as traffic, meteorology, and spatially disaggregated population data. LUR requires
gathering many datasets on a specific location and therefore is usually performed on an
annual basis [11,13]. Due to large input data requirements of LUR models, coverage cannot
easily be scaled up. As a result, we currently lack high-spatial-resolution estimates of pollu-
tant levels in many cities around the world, especially in low- and middle-income countries.

LUR modeling uses multiple regression equations to describe the relationship between
sample locations and environmental variables. Resulting models can predict pollution
concentrations at unmeasured locations, usually with relatively high spatial resolution.
In addition, satellite-based retrieved data (e.g., AOD, temperature) have been used for
estimating concentrations of air pollutants mostly combined with additional explanatory
variables [18–21]. The great allure of satellite data is their global coverage. These models
perform well where historical ground monitoring data and ancillary data are available,
and calibration is possible, which facilitates the production of continuous air pollutant
concentration maps at a relatively coarse spatial resolution (i.e., on the kilometer scale).

The spatial resolution of available satellite imagery has increased significantly due to
the existence of commercial satellites that obtain daily images of the globe at a meter-scale
resolution. Current developments in applying deep learning methods to satellite imagery,
and not only to satellite-borne retrieved variables as AOD, have recently been used to
improve capabilities of estimating air quality [22,23] and socioeconomic and environmental
factors [24–26]. Visual features in high-spatial-resolution satellite imagery contain signifi-
cant information relevant to urban air quality. This will allow the next generation of AQ
models to estimate hundred-meter-scale air quality concentrations in urban environments,
potentially without requiring any locally collected ground data.

This study demonstrates a novel deep learning approach based on very high-spatial-
resolution satellite imagery (2.5 m) to estimate PM2.5 and NO2 annual mean concentrations
in urban environments. The analysis was conducted on Greater London, UK; Vancouver,
Canada; and Los Angeles (LA), USA and evaluated on an unseen city—New York City
(NYC), USA in 2010 (datasets and methodology are detailed in the ‘Data and Methods’
section and in the Supplementary Material). Results from the multi-location model are
validated with ground measurements and with 2010 LUR models (which serve as our target
data). Furthermore, spatial error analysis and model interpretability are discussed.

2. Data and Methods
2.1. Data

• Satellite Imagery

We used Maxar Technologies (formerly DigitalGlobe, USA) WorldView2 (WV2) images
available over Greater London, Vancouver, LA, and NYC for the year 2010. WV2 was
launched on 8 October 2009, as part of the Maxar satellite constellation. It is a Sun-
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synchronous satellite with a 10:30 a.m. descending node overpass, located 770 km from
Earth. Images are produced in 8 spectral bands in the VIS–NIR range (400 nm–1040 nm)
with a spatial resolution of 50 cm (for the panchromatic imagery) and 2.5 m (for the multi-
spectral imagery) [27]. The latter have been used in this study. Access to the Maxar imagery
archive was completed under the ‘NextView’ license framework. Over the study period,
we obtained and pre-processed raw imagery over all study areas, including radiometric
correction and cloud cleaning, resulting in a total of 717 non-overlapping 2.5 m spatial-
resolution satellite images that cover all the studied cities for 2010. These images were used
to construct a total of 612,248 100 m × 100 m (40 pixels × 40 pixels) image patches that
were then used as input to the model. Table 1 shows the number of available images and
constructed patches for each individual city (more details in the “Data Preparation” section).

Table 1. Summary details of data availability over the study areas (2010).

No. of London Vancouver Los Angeles NYC

Available images
(patches) 61 (105,242) 337 (117,924) 315 (369,602) 4 (19,480)

Annual mean LUR
PM2.5/NO2 (µg/m3) 14.4/41.0 2.22/8.07 7.48/37.8 9.46/47.4

Co-located PM2.5/NO2
ground monitoring sites * 11/7 8/12 8/10 6/2

Ground monitoring sites—PM2.5/NO2

Annual Mean (µg/m3) 16.17/61.32 5.65/8.11 10.91/25.99 10.17/-

Annual SD (µg/m3) 2.43/27.85 2.49/4.63 1.85/8.71 1.64/-
* Only sites that had co-located model-estimated values within a distance less than 500 m were included. For
London, daily station data was used to calculate annual means of measured pollution over ground stations that
had at least one measured value every month. For the other cities, annual means of measured data were used for
the stations that had collected data for over 50% of the year.

• LUR data

We obtained annual mean LUR-modeled PM2.5 and NO2 concentrations (for 2010)
with 100 m and 200 m spatial resolution, respectively, for all studied cities [11,13,28–30].
These continuous surfaces served as the target data for training, testing, and validating the
model. An example list of variables included in a LUR can be found in Table S1, with more
details in [11].

To efficiently use the meter-scale satellite images with the ability to have a target
dataset for testing and validating the developed model, we looked for a reliable continuous
surface that is commonly used. Since a ground monitoring network is not a continuous
mapping surface, it does not provide a sufficient amount of labeled data to train deep
learning models. As an alternative, we propose to use land-use regression model (LUR)
outputs, which are developed based on real data, e.g., air quality monitors, traffic density,
distance from roads and rails, and population density, among others (Table S1). LURs
require much effort in obtaining the data and are limited for regions that have those data
available. It has been used in environmental health and urban planning studies as a valid
exposure metrics [31–33]. For further evaluation, we calculated annual concentrations
for each available ground monitoring site for all study regions. The correlations between
2010 LUR PM2.5/NO2 models and the annual mean ground monitoring concentrations,
from available ground monitoring sites at the study metropolitan areas range from 0.262
in London to 0.44 in New York for PM2.5 and 0.1 in London to 0.78 in Vancouver for NO2.
These calculated correlations are in agreement with published results in Europe between
LUR model outputs and AQ concentrations from ground monitoring sites [11].

In this study, we are mapping AQ in the 100 m–200 m scale, defined by the target
data (i.e., LUR) resolution. This finer spatial resolution expresses human exposure. It
addresses local AQ distribution and AQ spatial variation that cannot be captured in lower
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spatial resolutions. These high spatial resolutions are key for detecting pollution sources
and are a proxy for human activity and urban planning. We use information from 2.5 m
spatial-resolution satellite imagery to understand the relationship between PM2.5/NO2 and
surface reflectance (in a broader look). The advantage of using very high-spatial-resolution
satellite images is the ability to capture urban features that are known to influence pollution
levels (e.g., roads, buildings, trees) that are often used as inputs to LUR models but not
visible at lower resolutions. This approach helps our proposed model to account for more
than a single pixel (2.5 × 2.5 m2 area) but understand the urban composition causing that
pollution level.

This study introduces an opportunity to use meter-scale images that are globally
available to develop a more parsimonious model for estimating AQ. This approach can
then be applicable in developed and developing urban environments that lack the data
required for developing LUR models.

• Ground monitoring data

Ground monitoring data of PM2.5 and NO2 concentrations in ug/m3 were obtained
for 2010 at all study areas and annual concentrations were calculated. For London, daily
ground monitoring data were used to calculate annual means of measured pollution
over ground stations that had at least one measured value every month. For the other
cities, annual means of measured data were used for the ground monitoring sites that had
collected data for over 50% of the year. Only sites that had co-located model-estimated
values within a distance less than 500 m were included. We used a total of 33 (31) ground
PM2.5 (NO2) sites, for evaluation, with 11 (7), 8 (12), 8 (10), and 6 (2) sites in London,
Vancouver, LA, and NYC, respectively (Table 1). Data were obtained from the following
sources: London [34,35], Vancouver [36], LA [37], and NYC [28,37].

2.2. Methodology

In this study, we used over 700 Maxar satellite images to train, validate, and test our
air quality estimation models. The imagery had a spatial resolution of 2.5 m, covering
4 cities, and came from the year 2010 (see details in Table 1).

In the first stage, the model was trained and validated on combined data from three
urban environments: London, Vancouver, and LA. This multi-location model was then
tested to predict PM2.5 and NO2 concentrations in the same three locations, on a subset of
10% of the data unseen by the model. In the second stage, we validated the same trained
model on NYC: an urban region completely unseen by the model.

The same two-stage process was used to produce separate models for each air pol-
lutant, and both models were trained and evaluated with LUR estimates as their target
data (more details in the ‘Data and Methods’ section). Root mean squared error (RMSE),
residuals (defined as the difference between the predicted values and the target data), and
normalized RMSE (NRMSE, defined as RMSE divided by the difference between the 25th
and 75th percentiles of the target PM2.5/NO2 concentrations) were calculated to quan-
tify model prediction errors. In addition, we compared our results to available ground
monitoring stations’ annual concentrations for PM2.5 and NO2.

• Model Architecture

We used a deep learning approach to develop a new model for estimating PM2.5 and
NO2 concentrations. We modified a VGG16 model (developed by [38]), which is a deep
convolutional neural network (CNN) originally tasked to classify objects in the ImageNet
dataset. CNNs are a type of neural networks that are popular for their effective and efficient
performances in dependent data structures such as time series and images [39]. CNNs
consist of a stack of convolutional layers that will understand data patterns using internal
data dependency. For instance, in images, each pixel is dependent on its neighboring
pixels, and the image patterns are linked to not just a pixel but a collection of pixels in
a neighborhood. Hence, CNNs are capable of learning spatial features, such as roads,
buildings, trees, etc., in urban environments from satellite images. The aim of this study is
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to train a CNN that efficiently and effectively learns urban features and finds their relations
to the PM2.5 and NO2 pollution level. To adapt the VGG16 model to our objective, we
changed the original architecture from a classification model to a regression model by
removing the final softmax activation function (resulting in a neuron with linear output).
This enabled us to estimate continuous PM2.5 and NO2 concentration levels. We also
removed some of the convolutional layers to account for the difference in size of our
input imagery. The new model is trained to learn urban reflectance patterns and estimate
their corresponding PM2.5 and NO2 concentrations (Figures 1 and S1). This approach was
feasible due to the computational resources of the NASA Ames Research Center High-End
Computing Capability GPU nodes. The proposed model is set up to take Maxar images
with a spatial resolution of 2.5 m as input and output AQ maps with 100–200 m scale.
The model will take a high-spatial-resolution image (meter-scale) as input and output
a corresponding value with 100–200 m scale. Thus, we will not see the local pixelated
behavior, and the model output will have the same resolution/detail level as the LUR
target data.

Figure 1. Methodology Flowchart. (A) Single satellite imagery patches are input to the CNN
40 × 40 pixels (100 m × 100 m) for PM2.5 and 80 × 80 pixels (200 m × 200 m) for NO2, each patch
corresponds to one target value from a continuous LUR surface. (B) The satellite images are applied
to a CNN, which consists of stacked layers of convolution and nonlinear activation functions (rectified
linear unit (ReLU); yellow blocks), followed by max pooling layers (red blocks) to spatially down-
sample the features at the end of each convolutional block. Lastly, the convolutional features are
flattened and fed into fully connected layers (showed in purple) and (C) regressed to the LUR training
data to predict continuous PM2.5/NO2 estimates. RMSE was used to measure the error and evaluate
the model. (Further details: Section S1 of Supplementary Material). (This figure was developed using
the PlotNeuralNet package [40]).

• Data Preparation

To prepare our data for model training, we aligned our satellite imagery from the
study areas with the LUR models and partitioned the imagery into patches that matched
the grid resolution of the LUR-modeled data. This resulted in 100 m (200 m), 40 × 40
(80 × 80) pixel patches, for the PM2.5 (NO2) data. Some locations in our study area have
multiple overlapping satellite images, which produces multiple patches for the same
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target data point. We randomly selected one of these patches for each point so that our
dataset has only one patch corresponding to each target data point. Our imagery dataset
has a disproportionate number of image patches for some cities over others, with LA
having over three times as many patches as London. To prevent the model from favoring
the image distribution of one city, we balanced the dataset by oversampling patches
proportionally from the under-represented cities. We also used a city-stratified, randomly
selected 80/10/10 split for our training/validation/testing datasets.

The model output resolution is limited by the spatial resolution of the target data
we have for validating the model. LUR models have the finest spatial resolution for this
purpose. The aim of this study is to leverage the meter-scale land surface information to
map pollution. However, instead of pixel-to-pixel mapping, we used a broader land surface
area that will allow us to accurately understand the pollution distribution in the area. To
achieve this, we designed a patch sampling to collect a 40 × 40-pixel image centered over
the LUR pollution point (Figure 1). The input to the model is a single patch of satellite
imagery, i.e., 40 × 40 pixels of 2.5 m spatial-resolution imagery, which corresponds to a
real-world image patch of 100 m × 100 m in size (for PM2.5; NO2 patches are twice as big).
Each patch corresponds to one LUR value from a continuous LUR surface. The model
is learning to engineer features from the imagery and associate those features with the
corresponding AQ measurement.

The dataset of imagery patches for London, LA, and Vancouver was split into three
portions: 80% of the patches were used to train the model, 10% of the patches were used to
examine performance between models, adjust model hyperparameters, and evaluate over-
fitting, and the last 10% were held out until the end and only used to evaluate performance
of the final model. All numbers in the results section used the latter.

• Validation

Stage 1: We used the trained model to predict on NYC—a location completely unseen
by the model during training—to examine generalizability. Stage 2: We examined the asso-
ciation between the model predictions and available ground monitoring site concentrations
in all study regions.

3. Results

• Air Quality Data

All studied regions are urban environments that have available coverage of satellite
imagery, ground monitoring sites, and LUR-modeled target data at high spatial resolution.
LUR models require substantial time and effort, mainly in obtaining a large number of
input datasets, and while they are used for planning and decision-making purposes, LUR-
modeled data are not commonly available.

The continuous LUR-modeled PM2.5 concentrations in all our case study regions are
more heterogeneously spread, while NO2 concentrations demonstrate a clearer spatial
trend, following roads as the main contributor (Figures 2 and 3). It is clear from the target
data surfaces that PM2.5 annual concentrations are much lower in Vancouver than in LA
and London, especially related to the city centers’ density (Details in Table 1).
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Figure 2. PM2.5 target data, model estimates and errors. PM2.5 target data (a), based on 2010 LUR
data in Los Angeles, Vancouver, and London. Column (b) shows the 100 m model estimates of PM2.5

annual concentrations using the testing dataset (10% of the available data for all 3 cities), and column
(c) shows the model residuals calculated by the difference between the predicted concentrations and
the target data. The residuals’ distributions are shown in column (d).

In particular, the spatial distribution of PM2.5/NO2 in LA is dominated by highways
and roads. Particularly high PM2.5/NO2 levels are observed in the downtown area and
at the border of Los Angeles and Orange counties. Low pollution concentrations are
spotted at recreation areas such as Angeles National Forest in Northeastern LA. Vancouver
demonstrates lower PM2.5/NO2 concentrations compared to LA and is mainly dominated
by recreational areas with low pollution levels. Downtown Vancouver and areas close to
the Vancouver International Airport are regions with relatively higher pollution levels. The
PM2.5/NO2 concentrations over London are mostly moderate with distinct high-pollution
areas close to roads. Low pollution levels are observed in the southern and western regions
co-located with South Downs National Park and North Wessex Downs Area of Outstanding
Natural Beauty, respectively. NYC has a high concentration of pollutants in the densely
populated Manhattan region, as well as Queens and Brooklyn Heights.

• Estimating PM2.5 Concentrations

Table 2 presents the model results for each individual city and for all cities combined.
The model was trained for 100 iterations and showed a Pearson correlation between the
target data and the model-predicted PM2.5 concentrations in the testing subset of R = 0.93,
and an RMSE of 1.64 µg/m3, for all locations trained by the model. The model explained
87% of the variance in the multi-location testing dataset using solely images as input to the
model, and the model outcomes for validation and testing phases result in a relatively low
RMSE < 2 µg/m3 for all study regions (Figure 2; Table 2).
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Figure 3. NO2 target data, model estimates and errors. NO2 target data (a), based on 2010 LUR
data in Los Angeles, Vancouver, and London. Column (b) shows the 200 m model estimates of NO2

annual concentrations using the testing dataset (10% of the available data for all cities). Column (c)
shows the model residuals calculated by the difference between the predicted concentrations and the
target data, and the residuals’ distributions are shown in column (d).

Table 2. PM2.5 and NO2 model performance.

City PM2.5 Model NO2 Model

RMSE
(µg/m3) NRMSE RMSE

(µg/m3) NRMSE

Los Angeles (LA) 1.495 0.743 4.605 0.480

Vancouver 1.967 0.592 4.234 0.987

London 1.709 1.192 6.647 0.551

New York City (NYC) 1.902 1.499 20.199 1.776

Combined (just training cities) 1.64 0.321 4.925 0.165

Combined (all cities) 1.706 0.484 11.107 0.682

The model captures most of the coarser spatial trends, such as greenery spaces and
populated areas, with fairly small residuals spanning mostly from −4 to +4 µg/m3. It
also captures some of the spatial trends of larger road features in LA. However, it tends to
underestimate pollution levels over roads (more dominant in LA) and overestimate over
green areas (seen in all locations). All validation residuals are distributed fairly evenly
around zero µg/m3 for all locations (Figure 2).

• Estimating NO2 Concentrations
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Here, we used the same imagery input from all study regions with an adjusted patch
size of 200 m × 200 m, derived from the target data resolution, to estimate NO2 annual
concentrations. We obtained results with a reasonably strong Pearson correlation between
the predicted concentrations and target data (LUR) NO2 concentrations for all training
locations of R = 0.95, and a low RMSE < 6.7 µg/m3 (Figure 3; Table 2). These results
demonstrate a robust model. The model explained 91% of the variance in the data using
solely the satellite imagery as input to the model.

The model clearly captured patterns in the spatial distribution of NO2, which are
largely affected by local sources, such as traffic, as seen in the results (Figure 3). However,
the model underestimates highly polluted roads, and overestimates green areas with very
low pollution—similar to the PM2.5 model results. Although London city center is well
captured by the model, its surrounding road networks are underestimated to a level of
15 µg/m3. This may reflect the greater proportion of diesel vehicles and higher levels of
congestion in London compared to the other training cities [41]. LA and Vancouver show
better results with more evenly distributed model residuals.

• Validation

Stage 1: The model performed well (see Figure 4 and Table 2) but lacks some of the
feature specificity the trained cities have.

Figure 4. PM2.5 and NO2 target data, model estimates and errors for NYC. Target data (a), based on
2010 LUR data in New York City. Column (b) shows the 100 m, and 200 m model estimates of PM2.5

and NO2 annual concentrations, respectively. Column (c) shows the model residuals calculated by the
difference between the predicted concentrations and the target data, and the residuals’ distributions
are shown in column (d).

The model clearly underestimates pollution over Central Park, which is an atypically
large ‘green lung’ located in the middle of Manhattan—a bustling and densely populated
borough of NYC. In the satellite images, these ‘green lungs’, which are large, green areas
surrounded by high levels of human activity, look virtually indistinguishable from green
areas outside the city, especially for small patch sizes.

Stage 2: Figure 5 shows the correlations between the estimated annual PM2.5 and
NO2 concentrations and the observed annual mean concentrations at co-located ground
monitoring sites with a total R2 of 0.86, 0.43 and RMSE of 1.78, 16.68 µg/m3, respectively.
We obtained data from 33 sites for PM2.5 and 31 sites for NO2.
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Figure 5. Correlations between observed and predicted PM2.5 and NO2 concentrations. Correlations
between observed PM2.5 (upper panel) and NO2 (lower panel) concentrations at ground monitoring
sites and predicted values based on our model; the dashed line is the 1:1 line and the black line is
the regression line with 95% confidence intervals (R2 = 0.86, 0.43, and RMSE = 1.78, 16.68 µg/m3,
respectively). Only sites that had co-located model-estimated values within a distance less than 500 m
were included. For London, daily station data was used to calculate annual means of measured
pollution over ground stations that had at least one measured value every month. For the other cities,
annual means of measured data were used for the stations that had collected data for over 50% of
the year.
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• Model Interpretability

To further examine the main hypothesis that urban features visible from high-spatial-
resolution satellite images directly correlate with pollution levels, we analyzed the effect of
different urban features on the value of the prediction. We wanted to investigate whether
inputs (e.g., roads, trees) to the LUR models (whose outputs were used as labels) are being
captured by the deep learning models. Neural networks are known to often be black-box
models with learned features that cannot be interpreted easily [42–44]. However, recent
advances in machine learning have made it possible to gain insights into some types of
neural networks, such as CNNs. We know that certain urban features, such as roads
and industrial objects, are correlated with high pollution levels. Conversely, green areas
and residential blocks are associated with lower pollution levels [45]. To test the effect
these urban features have on the pollution estimate, we created synthesized images by
adding urban features on top of existing imagery, and we used these synthesized images to
examine how these added features affected the model estimate (Figure 6b).

We started by randomly selecting different images that have urban features consisting
of greenery, road, industrial and residential objects. Then, we synthesized satellite images
with urban features associated with low and high pollution levels (i.e., artificially adding
image features over existing images) with examples in Figure 6b. Each row/column in
Figure 6b represents an urban feature category and the intersection of each row and column
shows a synthesized image combining those features. The differences between pollution
concentrations of original and synthesized images predicted by the model are indicated on
the right hand of each subplot in Figure 6b. We fed the original and synthesized images into
the trained model and analyzed the difference in pollution levels predicted by the model.

In Figure 6a, we hypothesize the expected changes in PM2.5 concentrations between
the original imagery and the synthesized imagery. For example, we expect that, for
all categories of features, adding greenery features will lower the concentration. The
correspondence between the expected changes (Figure 6a) and the interpretability of the
results (Figure 6b) supports the hypothesis that our model learns the non-linear relations
between visual urban features and their corresponding pollution levels. The overall results
indicate the trained model successfully learns correlations between visual urban features
and pollution levels and are in line with our physics-backed understanding of urban
feature compositions.
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Figure 6. Feature contribution analysis (a) Hypothesis of expected changes in PM2.5 concentrations
(µg/m3) when adding different urban features to original imagery; (b) Confusion table following
the hypothesize in subfigure (a) using satellite images with and without synthesized residential,
greenery, and road features. The columns represent the original satellite images of greenery, road,
industrial, and residential from left to right. From top to bottom, the rows are partial residential,
greenery and road images to be overlayed on original images. We demonstrate the differences of
PM2.5 levels between the original and synthesized images on the right hand of each subplot. The
results in subfigure (b) are in line with our hypothesis demonstrated in subfigure (a) and support the
conclusion that our model is learning the non-linear relations between urban objects and air pollution
concentrations.

4. Discussion

The goal of our study is to estimate hundred-meter-scale PM2.5 and NO2 concentra-
tions in different urban environments. Our approach advances the science by (i) introducing
a novel approach to the earth science community by applying deep learning to solely very
high-spatial-resolution satellite imagery for AQ estimation, (ii) developing fine-scale con-
tinuous AQ maps, and (iii) creating an efficient approach for high-spatial-resolution AQ
monitoring independent of ground monitoring and ancillary data. Although we have
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compelling results, we recognize some of the limitations of our model and discuss methods
to address them.

The existing literature on satellite-based AQ estimation incorporates many variables
in the modeling scheme, including meteorology, traffic, topography, and distance from
emission source [15,16,18]. The model by [46] reported 36% explained variation in PM2.5 in
NYC, with a coarser (kilometer-scale) spatial resolution. Other models reported a PM2.5
prediction RMSE of 3.1 µg/m3 in the LA region [47], and PM2.5 (NO2) hourly prediction
RMSE of 6.7 (43.5) µg/m3 in London [48]. Our model results, trained and validated
on modeled LUR data, improve current modeling efforts in all study areas (Table 3).
The models exhibit reduced error and produce high-spatial-resolution predictions, while
significantly decreasing the amount of input datasets required.

Table 3. Baseline model performance.

Study Variable Study Region R2 RMSE
(µg/m3)

Gupta et al., 2006 [46] PM2.5 NYC 0.36 Not reported

Wang et al., 2016 [47] PM2.5 LA 0.80 3.10

Carslaw et al. 2013 [48]
PM2.5

London
0.46 6.70

NO2 0.50 43.50

Current model
PM2.5

All cities *
0.86 1.78

NO2 0.43 16.68
* Calculation performed between model estimates and ground monitoring data.

Certain features of the urban environment demonstrated a clear effect on the air
quality prediction (e.g., greenery, roads). Nevertheless, changes in air pollution can be
related to urban features that cannot be recognized by the image-analysis model (e.g., the
use of electric cars, winds, and temperature). These features may also affect the physical
relationship between the measured air quality variables and the image reflectance values.
Furthermore, the model underestimates PM2.5 and NO2 concentrations in certain urban
areas that lack context—the aforementioned ‘Central Park problem’. The model perceives
Central Park only as a green area, without any context of the human activity in the areas
surrounding it. This causes it to under-predict air pollution over that area. Incorporating
the “bigger picture” context into the model is expected to resolve this issue. We examined
the use of satellite-based night-time light data retrieved from the Visible Infrared Imaging
Radiometer Suite (VIIRS) instrument onboard the Suomi-NPP satellite [49] as a means
for incorporating context-based on human activity into the model. The VIIRS night-time
light product over NYC was analyzed as a potential additional input to the model. This
dataset can detect the large, bright areas around Central Park that represent its location
with context (i.e., in the heart of urban activity) (Figure S2).

Apart from adding larger-scale context to the model, it was also observed that the VI-
IRS night-time light data demonstrated a high pixel-to-pixel Pearson correlation coefficient
of R = 0.64 with PM2.5 over NYC. This shows promise for night-time light data to also be
used as a feature co-located with the satellite images. Moreover, the VIIRS data are available
globally, which could help facilitate the process of transferring the model to different urban
regions around the globe. Although we have demonstrated generalizability to a completely
unseen city, we need to explore how well the model generalizes to a wide range of global
urban environments in developed and developing locations with different distributions of
both urban features and AQ. This study sets the standard for future work applying this
model to other developed urban environments as well as examining the transferability of
the model to developing cities that lack ground measurements. The ability to exclusively
use satellite images to infer AQ on a local scale is novel to the AQ-modeling research
community and can address some of the shortcomings of current modeling approaches,
particularly in areas where historical ground data do not exist. The reason we were able to
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use an image taken on a single day to predict the annual mean is because larger scale objects
(e.g., buildings, roads, cars) do not change drastically from day to day or even over the
course of months. Changes in larger features would generally happen on the scale of years.
Therefore, contributions such as urban density and buildings correlated with industry, or
infrastructure correlated with driving, would not change substantially over the imagery
taken within a year. We recognize the need to train our model on additional years to be able
to pick up changes from year to year and test the sensitivity of the model to annual changes.
The scope of our project and funding is primarily to demonstrate a proof of concept that a
CNN model can infer some types of air pollutants solely from satellite imagery.

This paper presents a strong and feasible methodology to work with for future AQ-
modeling efforts. Although satellite images are a promising source of data for generat-
ing estimates at high spatial resolution on a local scale, as they do capture some spatial
variability, they are limited to generalize in certain areas. Future work should focus on
combining additional datasets readily available globally (e.g., additional bands of satellite
data, Normalized difference vegetation index (NDVI)/ Enhanced Vegetation Index (EVI),
meteorology, Digital Elevation Model (DEM)) that can be combined with meter-scale satel-
lite images to generate better estimates. In addition, future efforts will need to assess the
sensitivity of image-based models to images collected with different temporal aspects such
as time of day and season.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/atmos13050696/s1, Figure S1: Deep Learning Model Architecture, Table S1: Common
variables used in LUR models, Figure S2: VIIRS Night-Time Light over Manhattan [50,51].
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