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Abstract In this paper, we will analyze a five-dimensional
Yang–Mills black hole solution in massive gravity’s rain-
bow. We will also investigate the flow of such a solution
with scale. Then, we will discuss the scale dependence of the
thermodynamics for this black hole. In addition, we study the
criticality in the extended phase space by treating the cosmo-
logical constant as the thermodynamics pressure of this black
hole solution. Moreover, we will use the partition function
for this solution to obtain corrections to the thermodynamics
of this system and examine their key role in the behavior of
corrected solutions.
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1 Introduction

It is interesting to couple Yang–Mills theory to to a gravitating
system, and study various black hole solutions using such
a coupled theory [1,2]. Here, we will investigate different
aspects of a five-dimensional Yang–Mills black hole solution.
We will specifically analyze the modification of this solution
in the context of gravity’s rainbow.

The Yang–Mills black hole solutions have been motivated
by the bosonic part of the low-energy heterotic string action
[3,4]. This topic has been explained by considering the low-
energy heterotic string action to leading order, after it has
been compactified to four dimensions. This compactified
action is then used to obtain a static and spherically sym-
metric Yang–Mills black hole solution. It has motivated the
construction of interesting Yang–Mills black hole solutions
[1,2]. Static spherically symmetric Yang–Mills black hole
solution has been studied before, both numerically and ana-
lytically, and it was observed that such a solution is unsta-
ble under linearized perturbations [5]. The phase transition
of Yang–Mills black holes has been studied using entangle-
ment entropy and two-point correlation functions [6,7]. It
is also possible to analyze the black hole solution in five-
dimensional gauged supergravity [8]. This model describes
a system of NS5-branes wrapped on a three-sphere. A five-
dimensional Yang–Mills black hole solution supporting a
Meron field has been constructed, and it has been observed
that this Yang–Mills gauge field has a non-trivial topolog-
ical charge [9] . Furthermore, the thermodynamics of this
system demonstrates that it enjoys a first-order phase transi-
tion. Thus, it is interesting to study Yang–Mills fields in five
dimensions.
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It is possible for gravitons to become massive in string
theory due to scalar fields acquiring a vacuum expectation
value [10,11]. In fact, motivated by string theory, the correc-
tions to a braneworld model (with warped AdS spacetime)
from graviton mass have been discussed [12]. So, the gravi-
tons can have a small mass [13–16], and this gravitons mass
is constraint from LIGO collaboration to mg < 1.2 × 10−22

eV/c2 [15,17]. As it is possible for gravitons to have any
mass below this bound, such a small mass would produce an
IR correction to general relativity and have important astro-
physical consequences. In fact, it has been suggested that
such massive gravitons could produce an effective cosmo-
logical constant, and cause an accelerated expansion of the
universe [18–20]. Thus, it is very important to study the mod-
ification to general relativity from small graviton mass. It is
possible to add a mass term in the form of Fierz-Pauli term
to obtain massive gravity [21]. However, due to the vDVZ
discontinuity, this theory is not well defined in the zero mass
limit [22–24].

This problem can be resolved in the Vainshtein mecha-
nism, by using the Stueckelberg trick [25,26]. This mech-
anism produces non-linear corrections terms, which in turn
produce ghost states [27]. However, these ghost states can
be removed in the dRGT gravity [13]. As dRGT gravity is
ghost free IR modification to general relativity (without the
vDVZ discontinuity), several black hole solutions have been
constructed in this theory [28–37] . It has also been demon-
strated that the small graviton mass can produce interesting
modifications to the behavior of such black hole solutions. In
fact, it has been observed that the thermodynamics of black
holes gets non-trivial modifications due to the small gravi-
ton mass [38–41]. Thus, it is interesting to analyze black
hole thermodynamics for different black holes using such a
small graviton mass. So, in this paper, we will analyze the
modifications to a five-dimensional Yang–Mills black hole
in massive gravity [42–45].

It is possible to use extended phase space to analyze an
AdS black hole solution [46,47]. In such an extended phase
space the cosmological constant is identified with the ther-
modynamic pressure of the black hole solution. Furthermore,
the thermodynamic volume is the conjugate variable to this
thermodynamic pressure. Thus, the thermodynamic volume
can be obtained from the cosmological constant of an AdS
black hole solution. The Van der Waals like behavior an AdS
black hole solution has also been studied using this extended
phase space [48]. It is possible to analyze the triplet point
for an AdS black hole solution [49–51]. In fact, the reentrant
phase transition of the AdS black hole has also been stud-
ied using this formalism [52–54]. Thus, it is interesting to
analyze critical behavior for black hole solutions in massive
gravity, and new non-trivial phase transition [55,56].

It may be noted that it is possible to analyze the thermal
corrections to black hole solutions [57]. This can be done

for an AdS black hole as it is dual to conformal field the-
ory, and so its microstates can be analyzed using a confor-
mal field theory [58]. Thus, using the partition function for
such microstates, it would be possible to analyze the cor-
rections to the thermodynamics of black holes. The leading
order correction to the entropy of black holes is a logarith-
mic correction, and it is possible to analyze the effects of
this correction on various other thermodynamic quantities
as thermal fluctuations [59,60]. It has been argued that these
thermal fluctuations can have important consequences for the
stability of black hole solutions [61,62]. As the black hole
evaporates due to Hawking radiation, these corrections can-
not be neglected. Thus, it is important to analyze the effects
of such corrections for Yang–Mills black holes. It may be
noted that these thermal fluctuations in the thermodynamics
of a black hole can be related to quantum fluctuations using
the Jacobson formalism [63,64].

As string theory can be viewed as a two-dimensional con-
formal field theory. The target space metric can be regarded
as a matrix of coupling constants, and these would flow due
to the renormalization group flow [65,66]. Thus, the target
space geometry would flow with scale, and this flow would
depend on the energy of the probe. This consideration has
motivated gravity’s rainbow, where the spacetime geometry
depends on the energy of the probe [67–70]. It is known that
the energy-dependence of such geometry can produce impor-
tant modifications to the thermodynamics of black holes
[71,72]. In fact, it has been observed that such an energy-
dependence can have important consequences for the detec-
tion of mini black holes at the LHC [73]. We will use such
an energy-dependent metric of gravity’s rainbow for analyz-
ing these Yang–Mills black hole solutions, as such solutions
can be motivated from the bosonic part of the low-energy
heterotic string action [3,4]. In this formalism, the geome-
try of the Yang–Mills black hole depends on the energy of
the probe. As the particle emitted in the Hawking radiation
can act as a probe for the geometry of a black hole, it is this
energy that deforms the geometry of Yang–Mills black holes.
So, in this paper, we will analyze the scale dependence of the
geometry of the Yang–Mills black hole in massive gravity
using different rainbow functions.

The paper is organized as follows. In the next section,
we review Yang–Mills black hole solution in massive grav-
ity together with horizon structure analysis. In section 3, we
study the thermodynamics of the three separated rainbow
models. The criticality in the extended phase space is dis-
cussed in section 4. Then, in section 5 we consider the effect
of thermal fluctuations and study corrected thermodynamics.
Finally, in section 6 we give the conclusion.
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2 Yang–Mills black hole

In this section, we will analyze the Yang–Mills black hole
solution in massive gravity, and its flow with scale. The action
of five-dimensional massive gravity with negative cosmolog-
ical constant coupled to Yang–Mills theory can be written as
[42–45],

S =
∫

d5x
√−g

(
R − 2� − F (a)

μν F (a)μν

+m2
∑

ciUi (g, f )
)
,

where R is the Ricci scalar, (a) is the Lie algebra index, m
is the mass term of massive gravity, � = − 6

l2
is the cosmo-

logical constant, (l denotes the AdS radius) and F (a)
μν is the

SO (5, 1). This Yang–Mills gauge field tensor is given by

F (a)
μν = ∂μA

(a)
ν − ∂ν A

(a)
μ + 1

2e
f (a)
(b)(c)A

(b)
μ A(c)

ν ,

where e is coupling constant of the Yang–Mills theory. Also,
ci are constants and Ui (g, f ) are symmetric polynomials of
the eigenvalues of the following 5 × 5 matrix [74,75],

Kμ
ν = √

gμα fαν, (2.1)

where fαν can be expressed as fμν = dia

(
0, 0,

c2
0hi j
g2(ε)

)
.

Here we have introduced f (ε) and g(ε) as the rainbow func-
tions, which depend on the relative energy ε = E

Ep
, where

E is the energy of the particle emitted in the Hawking radia-
tion, and Ep is Planck energy [67–70]. This is because string
theory is a two-dimensional conformal field theory, with the
target space metric as a matrix of coupling constants for that
conformal field theory. So, this matrix of coupling constants
is expected to flow due to the renormalization group flow
[65,66]. This would make the geometry of spacetime depend
on the ratio μ/μp, where μ is the scale at which the theory
is being probed and μp is the Planck scale. Now, this ratio
would be proportional to ε = E

Ep
, and so the geometry of

spacetime should be a function of this ratio. So, the renor-
malization group flow would make the target space geometry
depend on the scale at which it is being probed, and this in
turn would depend on the energy of the probe. This energy-
dependence of the geometry can be analyzed using these
rainbow function [67–70]. In fact, as the Yang–Mills black
hole solutions can be motivated from the bosonic part of the
low-energy heterotic string action [3,4], we will use analyze
the effect of such a flow of geometry of the Yang–Mills black
hole solution. Now the black holes with AdS asymptote in the
massive gravity’s rainbow can be described by the following
energy-dependent metric

ds2 = − ψ (r)

f 2 (ε)
dt2 + 1

g2 (ε)

[
dr2

ψ (r)
+ r2d�2

k

]
,

where ψ is an unknown function which will be determined
by field equations, and

d�2
k =

⎧⎪⎨
⎪⎩
dθ2

1 + sin2 θ1dθ2
2 + sin2 θ1 sin2 θ2dθ2

3 k = 1

dθ2
1 + dθ2

2 + dθ2
3 k = 0

dθ2
1 + sinh2 θ1dθ2

2 + sinh2 θ1 sin2 θ2dθ2
3 k = −1

,

(2.2)

where k = 1, 0 and −1 represent spherical, flat and hyper-
bolic horizon of possible black holes, respectively. Hereafter,
we indicate ωk as the volume of boundary t = cte and
r = cte of the metric. Using [K ] = Tra(K ) = Kμ

μ , one
can obtain

U1 = [K ] = 3c0

r
,

U2 = [K ]2 −
[
K 2

]
= 6c2

0

r2 ,

U3 = [K ]3 − 3 [K ]
[
K 2

]
+ 2

[
K 3

]
= 6c3

0

r3 ,

U4 = [K ]4 − 6
[
K 2

]
[K ]2 + 8

[
K 3

]
[K ]

+3
[
K 2

]2 − 6
[
K 4

]
. (2.3)

By using the variational principle, one can obtain the follow-
ing field equations

Rμν +
(

� − R

2

)
gμν − m2χμν = 8πTμν. (2.4)

F (a)μν

;ν = J (a)μ, (2.5)

where

Tμν = 1

4π
γab

(
F (a)λ

μ F (b)
νλ − 1

4
F (a)λσ F (b)

λσ gμν

)
, (2.6)

J (a)ν = 1

e
f (a)
(b)(c)A

(b)
μ F (c)μν. (2.7)

Furthermore, we also have

χμν = c1

2
(U1gμν − Kμν) + c2

2
(U2gμν − 2U1Kμν + 2K 2

μν)

+c3

2
(U3gμν − 3U2Kμν + 6U1K

2
μν − 6K 3

μν)

+c4

2
(U4gμν − 4U3Kμν + 12U2K

2
μν

−24U1K
3
μν + 24K 4

μν) (2.8)

By using the value of the Yang–Mills field F = γabF (a)μν

F (b)
μν , which is F = 6e2

r4 in five-dimensions, we can obtain
rr−component of the field equation as

R11 +
(

� − R

2

)
g11 − m2χ11 = 8πT11 (2.9)

123
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where

R11 = −1

2

ψ
′′
(r)

ψ (r)
− 3

2

ψ
′
(r)

rψ (r)
,

R = −g2 (ε)

(
ψ

′′
(r) + 6

ψ
′
(r)

r
+ 6

ψ (r)

r2 − 6k

r2

)
,

χ11 = 3

2g2 (ε) ψ (r)

(
c0c1

r
+ 2c2

0c2

r2 + 2c3
0c3

r3

)
,

T11 = −3e2

8πg2 (ε) ψ (r) r4 .

Solving the nonzero components of the field equation
(such as Eq. (2.9 )), yields

ψ (r) = k − m0

r2 + 1

g2 (ε) r2

[
r4

l2
− 2e2 ln

( r

L

)

+m2
(c0c1

3
r3 + c2

0c2r
2 + 2c3

0c3r
)]

,

where m0 is the mass parameter, which is related to the black
hole mass, and L is a constant with length dimension, intro-
duced to obtain dimensionless logarithmic function (which
we can set to one without loss of generality). Horizon struc-
ture of this solution shows that there is at least one real pos-
itive root for ψ(r) = 0 which is confirmed by the plots of
Fig. 1. In Fig. 1a we analyze the effect of mass term in the
massive gravity. Effects of other parameters like c0, e and c1

are illustrated by plots of Fig. 1b–d, respectively. In order to
plot, we assume c1 ≈ c2 ≈ c3, for simplicity. Also we plotted
for k = 1, however the situation of the k = 0 , and k = −1
are the approximately the same as the case of k = 1. Accord-
ing to different panels of Fig. 1, one find that the value of the
event horizon radius depends on the chosen parameters.

It is worth mentioning that for r = r+, the metric function
vanishes (ψ (r+) = 0), and therefore, we can obtain m0 as a
function of other parameters at r = r+

m0 = r2+

(
k + 1

g2 (ε) r2+

[
r4+
l2

− 2e2 ln(r+)

+m2
(c0c1

3
r3+ + c2

0c2r
2+ + 2c3

0c3r+
)])

. (2.10)

Using the obtainedm0 in Eq. (2.10), we can rewrite the metric
function with the following form

ψ(r) = k

r2

(
r2 − r2+

) + 1

g2 (ε) r2

[
r4 − r4+

l2
− 2e2 ln

( r

r+
)]

+ m2

g2 (ε) r2

[(c0c1

3

(
r3 − r3+

) + c2
0c2

(
r2 − r2+

)

+2c3
0c3 (r − r+)

)]
, (2.11)

where directly one can find that ψ(r) vanishes at r = r+
(term by term). Now, we can analyze the thermodynamics of
this black hole solution as its flow with scale.

3 Thermodynamics

In this section, we discuss the scale dependence of the ther-
modynamics of this Yang–Mills black hole solution given
by (2.11). This will be done using the formalism of gravity’s
rainbow. So, first of all we will discuss general formalism,
and then discuss certain special models, with specific rain-
bow functions f (ε) and g(ε).

3.1 General formalism

In this section, we will review the general formalism for black
hole thermodynamics in gravity’s rainbow [71,72,76–80].
Now for a black hole the value in the uncertainty of position
for a particle emitted in Hawking radiation is equal to the
radius of the event horizon [81]. This uncertainty in posi-
tion can be related to the uncertainty in momentum using the
uncertainty principle, �p ≥ 1/�x , and this in turn can be
used to obtain a lower bound on the energy of such parti-
cle emitted in Hawking radiation, E ≥ 1/�x [82]. So, the
energy of the particle is bounded by the radius of the horizon.
This dependence of energy on the radius of the horizon has
been used to obtain the correction to the black hole temper-
ature in gravity’s rainbow as [71,72,76–80]

TH = 1

4π

g(ε)

f (ε)

dψ(r)

dr

∣∣∣∣
r=r+

. (3.1)

Thus, we obtain the following temperature for the Yang–
Mills black hole

TH = 1

4π

[
2k

r+
g(ε)

f (ε)
+ 1

f (ε)g(ε)

[
4r+
l2

− 2e2

r3+

+m2

(
c0c1 + 2

c2
0c2

r+
+ 2

c3
0c3

r2+

)]]
. (3.2)

Also, the entropy per unit volume ωk is given by

S = r3+
4g3 (ε)

.

So, the mass term per unit volume ωk can be obtained from
the first law of black hole thermodynamics

T =
(

∂M

∂S

)
.

Therefore, we can write

M =
∫

TdS,

123
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Fig. 1 Horizon structure for
unit values of the model
parameters

Thus, for the Yang–Mills theory, we obtain

M = 3k

16π f (ε)g2 (ε)
r2+

+ 3

16π f (ε)g4 (ε)

[
r4+
l2

− 2e2 ln (r+)

+m2
(c0c1

3
r3+ + c2

0c2r
2+ + 2c3

0c3r+
)]

. (3.3)

The heat capacity at constant volume can be calculated as

C = TH

(
∂S

∂TH

)
V

,

which yields to the following expression

C = 3g3 (ε) r2+
4

[
2k
r+

g(ε)
f (ε) + 1

f (ε)g(ε)

[
4r+
l2

− 2e2

r3+
+ m2

(
c0c1 + 2

c2
0c2
r+ + 2

c3
0c3

r2+

)]]
[
− 2k

r2+
g(ε)
f (ε) + 1

f (ε)g(ε)

[
4
l2

+ 6e2

r4+
+ m2

(
−2

c2
0c2

r2+
− 4

c3
0c3

r3+

)]] .

It can be used to analyze the stability of specific models. If
its sign be positive the model is in the stable phase, and vice
versa. It may be noted that black hole’s radius with C = 0 is
important, as at that stage the black hole does not exchange
any energy with the surroundings. If C = 0, then we obtain
the following equation

4r4+ + m2l2c0c1r
3+ + 2l2

(
m2c2

0c2 + kg2 (ε)
)
r2+

+2m2l2c3
0c3r+ − 2l2e2 = 0.

123
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We can observe that various thermodynamics quantities
for the model, and its thermodynamics stability, depend on
the choice of the rainbow functions g(ε) and f (ε) [67–70].
So, we will now analyze this model for the specific choice of
rainbow functions.

3.2 Loop quantum gravity

It has been observed that the geometry of spacetime becomes
energy-dependent in loop quantum gravity, and the energy-
dependent metric for such a spacetime can be obtained using
the following rainbow functions [83,84]

f (ε) = 1 (3.4)

g(ε) = √
1 − ηεn, (3.5)

where η is a dimensionless constant, also we should note that
0 ≤ ε ≤ 1. It may be noted that these rainbow functions are
compatible with the results obtained from both loop quantum
gravity and non-commutative geometry [84]. In this model,
we can obtain entropy as

S = r3+
4 (1 − ηεn)

3
2

. (3.6)

Now, according to Fig. 1, we can approximate r+ ≈ 0.6
(for k = 1), for unit values of the model parameters (also
r+ ≈ 0.65 for k = 0 and r+ ≈ 0.7 for k = −1). Hence, we
can discuss the entropy for various values of n as plotted in
Fig. 2. Besides, one can find that

S ≈ r3+
4

(
1 + 3

2 ηεn + O(ε2n)
)
, for ε → 0+

S ≈ r3+
4(1−η)

3
2

(
1 + 3ηn

2(1−η)
(ε − 1) + O(ε − 1)2

)
, for ε → 1−

It is obvious that for ε the entropy is approximately constant
for small values of η. Generally, it is an increasing function
of ε, but the local behavior depends on the values of η and
n. We should note that this approximately constant behavior
is in the given range of 0 ≤ ε ≤ 1. Also, choosing the other
values for the model parameters gives no important different
result.

Temperature of this model can be expressed as

TH = 1

4π

[
2k

r+
√

1 − ηεn + B√
1 − ηεn

]
, (3.7)

where B = 4r+
l2

− 2e2

r3+
+m2

(
c0c1 + 2

c2
0c2
r+ + 2

c3
0c3

r2+

)
. In order

to find the behavior of temperature, we use the series expan-

sion to obtain

TH ≈ 1

4π

[(
B + 2k

r+

)
+ η

2

(
B − 2k

r+

)
εn + O(ε2n)

]
,

for ε → 0+,

TH ≈ 1

4π
√

1 − η

[(
B + 2k(1 − η)

r+

)
+

(
B − 2k(1 − η)

r+

)

ηn(ε − 1)

2(1 − η)
+ O(ε − 1)2

]
, for ε → 1−.

Although these relations confirm that T is an increasing
function of ε, one can easily find that for small values of
η with allowed region of ε (0 ≤ ε ≤ 1), temperature is
approximately constant (see different panels of Fig. 3 for
more details).

The black hole mass for this model is given by

M = 3kr2+
16π (1 − ηεn)

+ 3

16π (1 − ηεn)2

[
r4+
l2

− 2e2 ln (r+)

+m2
(c0c1

3
r3+ + c2

0c2r
2+ + 2c3

0c3r+
)]

. (3.8)

Typical values of the black hole mass are given by Fig. 4,
for several values of n. Generally, one can find that M is
an increasing function of ε (with infinitesimal variation). For
example with n = 1 (linear dependence to the energy), which
is consistent with results obtained from loop quantum gravity
(minimum value of mass for ε = 0). Here, we can conclude
that the black hole mass is approximately constant for the
given values of 0 ≤ ε ≤ 1 and small values of η.

Specific heat for this Yang–Mills black hole can now be
expressed as

C = 3 (1 − ηεn)
3
2 r2+

4

×

[
2k
r+

√
1 − ηεn + 1√

1−ηεn

[
4r+
l2

− 2e2

r3+
+ m2

(
c0c1 + 2

c2
0c2
r+ + 2

c3
0c3

r2+

)]]
[
− 2k

r2+

√
1 − ηεn + 1√

1−ηεn

[
4
l2

+ 6e2

r4+
+ m2

(
−2

c2
0c2

r2+
− 4

c3
0c3

r3+

)]] .

(3.9)

The behavior of specific heat for various values of n in terms
of ε in the given range illustrated by plots of Fig. 5. It is
notable that in this figure the event horizon radius is fixed to
r+ = 1, and therefore, the heat capacity is positive function
of ε. It is easy to find that we can obtain negative values of
the heat capacity for smaller values of event horizon.

Now, from Eq. (3.1), we observe that for stability the fol-
lowing condition is necessary

m > e. (3.10)

In fact, Eq. (3.1) reduced to the following expression

4r4+ + m2l2c0c1r
3+ + 2l2

(
m2c2

0c2 + k − ηkεn
)
r2+

+2m2l2c3
0c3r+ − 2l2e2 = 0. (3.11)
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Fig. 2 Entropy of the first model (Eq. (3.6)) in terms of ε for η = 0.001, and r+ = 0.60 (k = 1), r+ = 0.65 (k = 0) and r+ = 0.70 (k = −1)

Fig. 3 Temperature of the first model (Eq. (3.7)) in terms of ε for η = 0.001 and r+ = 0.6 (unit value for other parameters)

Fig. 4 The first model mass (Eq. (3.8)) in terms of ε for η = 0.001, and unit value for other parameters
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Fig. 5 Specific heat of the first model (Eq. (3.9)) in terms of ε for η = 0.001, and unit value for other parameters

An exact bound on the energy for a stable model can now be
written as

εn ≥
2l2e2 − 4r4+ − m2l2c0c1r3+ − 2l2

(
m2c2

0c2 + k
)
r2+

−2m2l2c3
0c3r+

−2kl2ηr2+
.

(3.12)

Hence, we find that for E � Ep, the first model is stable.

3.3 Gamma-ray bursts

It is also possible to obtain an energy-dependent metric by
using the rainbow function obtained from hard spectra of
gamma-ray bursts at cosmological distances [85]

f (ε) = eξε − 1

ξε
, (3.13)

g(ε) = 1, (3.14)

where ξ is a dimensionless parameters of the order of unity.
In this case, we have

S = r3+
4

. (3.15)

We see that the entropy only depends on the horizon radius,
and

TH = 1

4π

[
2k

r+
ξε

eξε − 1
+ ξε

eξε − 1

[
4r+
l2

− 2e2

r3+

+m2

(
c0c1 + 2

c2
0c2

r+
+ 2

c3
0c3

r2+

)]]
. (3.16)

Now, we can plot the temperature in terms of the horizon
radius. In Fig. 6, we plot the temperature for various values of
m. Interestingly, there is a critical horizon radius for which
the temperature is constant (for example, see solid orange
line of Fig. 6 for k = −1).

Then, the black hole mass can be obtained as

M = 3

16π

[
ξεk

eξε − 1
r2+ + ξε

eξε − 1

[
r4+
l2

− 2e2 ln (r+)

+m2
(c0c1

3
r3+ + c2

0c2r
2+ + 2c3

0c3r+
)]]

. (3.17)
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Fig. 6 Temperature of the second model (Eq. (3.16)) in terms of horizon radius, for ξ = 1 and ε = 1 (unit value for other parameters)

The specific heat is given by

C = 3r2+
4[

2k
r+

ξε

eξε−1
+ ξε

eξε−1

[
4r+
l2

− 2e2

r3+
+ m2

(
c0c1 + 2

c2
0c2
r+ + 2

c3
0c3

r2+

)]]
[
− 2k

r2+
ξε

eξε−1
+ ξε

eξε−1

[
4
l2

+ 6e2

r4+
+ m2

(
−2

c2
0c2

r2+
− 4

c3
0c3

r3+

)]] .

(3.18)

According to Fig. 7, it is evident that the smaller values m
produce the negative value of specific heat. On the other
hand, larger values of m produce a phase transition from a
stable to an unstable phase. So, for the thermodynamically
stable model, we should have mmin < m < mmax . For the
unit value of the model parameters, we find mmin = 0.6
and mmax = 1.37 for k = 1 (see Fig. 7a), mmin ≈ 0.7
and mmax ≈ 1.4 for k = 0 (see Fig. 7b). We also have
mmin ≈ 0.85 and mmax ≈ 1.45 for k = −1 (see Fig. 7c).
These plots show that the phase transition is possible for the
second model.

3.4 Horizon problem

It has been proposed that the horizon problem can be resolved
with suitable rainbow functions [86,87],

f (ε) = g(ε) = 1

1 − λε
, (3.19)

where ξ is a dimensionless parameters of the order of unity.
In this case, the entropy and temperature of the system can
be written as

S = (1 − λε)3 r3+
4

. (3.20)

and

TH = 1

4π

[
2k

r+
+ (1 − λε)2

[
4r+
l2

− 2e2

r3+

+m2

(
c0c1 + 2

c2
0c2

r+
+ 2

c3
0c3

r2+

)]]
. (3.21)

In order to have well defined model (positive entropy and
temperature), we should have ε ≤ 1

λ
and m > mmin . In

the plots of Fig. 8, we observe the behavior of the entropy.
Now Fig. 8a demonstrates that there is an upper limit for the
energy, below which the entropy is negative. For the selected
value λ = 1, we observe that εmax = 1. Here S = 0, and
S ≥ 0 for ε ≤ εmax . It should be noted that general behavior
is similar for k = 0, and k = ±1. It is also illustrated by Fig.
8b which plots the behavior of the entropy with ε.
In Fig. 9, we can verify our previous results. According to
Fig. 9, we shall denote the maximum ε = 1

λ
by εmax (ε = 1

in plot), Here the value of temperature does not depend onm.
For k = 0 and k = 1 temperature is positive for suitable mass.
However, for k = −1, value of temperature is negative at this
energy. Hence, we find that TH is positive for ε < εmax . The
positive temperature occurs, when ε > εmax is not allowed.
So, both ε andm are constrained as ε < εmax andm > mmin .
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Fig. 7 Specific heat of the second model (Eq. (3.18)) in terms of r+, with unit values for the model parameters

Fig. 8 Typical behavior of the
entropy in the third model (Eq.
(3.20)) for λ = 1. a in terms of
r+ for different values of ε, and
b in terms of ε for r+ = 0.6.
Unit value for the other model
parameters is used

Then, we can find,

M = 3kr2+ (1 − λε)3

16π
+ 3 (1 − λε)5

16π

[
r4+
l2

− 2e2 ln (r+) + m2
(c0c1

3
r3+ + c2

0c2r
2+ + 2c3

0c3r+
)]

. (3.22)

C = 3 (1 − λε)3 r2+
4

[
2k
r+ + (1 − λε)2

[
4r+
l2

− 2e2

r3+
+ m2

(
c0c1 + 2

c2
0c2
r+ + 2

c3
0c3

r2+

)]]
[
− 2k

r2+
+ (1 − λε)2

[
4
l2

+ 6e2

r4+
+ m2

(
−2

c2
0c2

r2+
− 4

c3
0c3

r3+

)]] . (3.23)

Graphical analysis of specific heat in terms of ε is represented
in Fig. 10. It shows the variation of the specific heat with
0 ≤ ε ≤ 1.
For k = 1, we can see that the first-order phase transition
exists. We confirm the previous result, as ε < εmax is crucial
to have well defined (stable) model. Hence, in the case of
k = 1 we have unstable/stable phase transition.

4 Criticality in the extended phase space

Now, we give a discussion of the critical behavior of the
Yang–Mills black hole solution in the using the extended
phase space [46,47]. In the extended phase space, the cosmo-
logical constant is identified with a thermodynamic pressure
as [88,89]
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Fig. 9 Typical behavior of the temperature in the third model (Eq.
(3.21)), for unit value for all model parameters

Fig. 10 Typical behavior of the specific heat in terms of ε in the third
model (Eq. (3.23)), with unit value for all model parameters

P = − �

8π
= 3

4πl2
. (4.1)

Substituting the pressure from Eq. (4.1) in Eq. (3.2), one
can obtain the following equation of state

P = 3

8π

(
e2

r4+
− m2c3

0c3

r3+
−

[
m2c2

0c2 + kg2(ε)
]

r2+

+
[
4π f (ε)g(ε)T − m2c0c1

]
2r+

)
. (4.2)

Due to the fact that in (4 + 1)−dimensions, the specific

volume (v) is related to the event horizon radius as v = 4r+�3
P

3 ,
we can work with P = P(T, r+), instead of P = P(T, v), as
it will produce the same thermodynamic behavior. In other
words, the criticality, phase transition and, in general, the
behavior of P − v diagram is equivalent to P − r+ diagram.
Regarding Eq. (4.2), we observe that it is reasonable to define
an effective (shifted) temperature Tef f , and horizon topology
factor kef f as

Tef f = T − m2c0c1

4π f (ε)g(ε)
, (4.3)

kef f = k + m2c2
0c2

g2(ε)
. (4.4)

In order to obtain the critical point of isothermal P −
r+ diagram, we use the inflection point property of such a
diagram as

(
∂P

∂r+

)
Tef f

= 0,

(
∂2P

∂r2+

)

Tef f

= 0. (4.5)

Fig. 11 P − r+ (left) and
G − T (right) diagrams for
e = m = c0 = c1 = c2 = c3 =
g(ε) = 1 and kef f = 1 (k = 1
with c2 = 0 or k = 0 with
c2 = 1 or k = −1 with c2 = 2).
The blue dashed line
corresponds to the critical
temperature (left) and the
critical pressure (right)
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Fig. 12 Logarithmic corrected entropy in terms of r+ for g(ε) ≈ 1, and unit value for other model parameters

Fig. 13 Logarithmic corrected entropy, mass, specific heat and temperature in terms of r+ for g(ε) ≈ 1, f (ε) ≈ 4, m = 1.2 and unit value for
other model parameters

After some simplification, we find the following expres-
sion corresponding to Eq. (4.5)(

∂P

∂r+

)
Tef f

= −3

8πr5+

[
2π f (ε)g(ε)Tef f r

3+ − 2g2(ε)kef f r
2
+

−3 c0
3c3 m

2r+ + 4e2
]

= 0 (4.6)(
∂2P

∂r2+

)

Tef f

= 3

4π r6+

[
2π f (ε)g(ε)Tef f r

3+ − 3g2(ε)kef f r
2
+

−6c0
3c3 m

2r+ + 10e2
]

= 0. (4.7)

The critical quantities are obtained by solving Eqs. (4.6) and
(4.7), simultaneously

rc = −3m2c3
0c3 ± �

2kef f g2(ε)
,

Tef f |c = 2k2
e f f g

3(ε)
[
�2 ∓ 3m2c3

0c3� − 8e2kef f g2(ε)
]

π f (ε)(−3m2c3
0c3 ± �)3

,

Pc = 3k3
e f f g

6(ε)
[
�2 ∓ 2m2c3

0c3� − 12e2kef f g2(ε) − 3m4c6
0c

2
3

]
2π(−3m2c3

0c3 ± �)4
,

(4.8)

where � =
√

9m4c6
0c

2
3 + 24e2kef f g2(ε). The two branches

of critical quantities distinguishing by the sign behind �,
where for the lower sign, there is results are not physical, for
any real positive values of the critical quantities. So, we will
only analyze this system with the upper sign.
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Although the Van der Waals phase transition and critical
behavior are observed only for spherical horizon topology
in the Einstein-AdS gravity, here in the massive gravity sce-
nario, we can build such behavior for all topologies. As we
indicate in the caption of Fig. 11, it is obvious that by adjust-
ing the massive parameters (or rainbow function), one can
find the Van der Waals like behavior.

To confirm the results, we can study the Gibbs free energy
per unit volume ωk as follows

G = M − T S

=
6e2 + 3kef f g2(ε)r2+ + 12m2c3

0c3r+
−4π Pr4+ − 18e2 ln r+

48π f (ε)g4(ε)
. (4.9)

According to the right panel of Fig. 11, we observe a first-
order phase transition for different topologies, which is char-
acterized by the swallow-tail shape of the Gibbs free energy
for P < Pc.

5 Thermal fluctuations

It has been argued that the thermodynamics of black hole
should be corrected due to thermal fluctuations [57]. Such
fluctuations can be analyzed using the partition function for
such a system. As the AdS black holes are dual to conformal
field theories, it is possible to analyze the fluctuations to the
black hole thermodynamics using the statistical mechanical
partition function of microstates, which can be obtained from
the dual conformal field theory [58]. It is possible to explicitly
write down such a partition function as

Z =
∫ ∞

0
�e− E

T dE, (5.1)

where � denotes the density of state in canonical ensemble,
which is proportional to

� ∝
∫

es

T 2 dT . (5.2)

Here s denotes the exact (corrected) entropy. Applying the
inverse Laplace transformation to Eq. (5.1) yields

� ∝
∫

ze
E
T

T 2 dT . (5.3)

Combining Eqs. (5.2) and (5.3) yields

s = ln Z + E

T
. (5.4)

This is identical to the statistical relation,

s = ln �. (5.5)

If we assume S to be the equilibrium entropy, and use Taylor
expansion of s in Eq. (5.3), then after some calculations, we

obtain [57,58,90]

s = S − α

2
ln

[
S′′T ′ − S′T ′′

(T ′)3

]
+ · · · , (5.6)

where prime denotes derivative with respect to the horizon
radius r+, ie., S′ = dS

dr+ . Also, the constant α is added by
hand to track correction terms [59]. Here, α = 0 reproduces
results in the absence of such logarithmic corrections, and
α = 1 produces logarithmic corrections. In Eq. (5.6), we
have neglected higher-order terms in the Taylor expansion
(which produce higher-order corrections). Hence, the first-
order correction occurs in form of a logarithmic correction
term to the entropy [60,61].

By using the general temperature and general entropy, one
can obtain this logarithmic corrected entropy as

s = r3+
4g3 (ε)

− α

2

ln

⎡
⎣15π2r9+

4

f 2 (ε)

g(ε)

(m2 + kg2 (ε))
2r2+

5 + m2r+ − 1
5 (9 + 2r4+)

((m2 + kg2 (ε))
r2+
2 + m2r+ − r4+ − 3

2 )3

⎤
⎦ ,

(5.7)

where, we have assumed c0 = c1 = c2 = c3 = e = 1 for
simplicity. Then, we can obtain corrected mass via

Mc =
∫

Tds. (5.8)

To see effect of the logarithmic correction, we plot the
entropy in Fig. 12. We observe that the thermal fluctua-
tions are important in smaller r+. It has been argued that
when the black hole size reduced due to the Hawking radi-
ation, the thermal fluctuations become important [62]. As
general behavior does not depend on ε, we fix their values
to study thermodynamics behaviors generally. We show that
thermal fluctuations produce the negative entropy for larger
r+. Depend on the model ( f (ε)), black hole in presence of
thermal fluctuations may be stable or unstable.

We can also compute corrected specific heat as

Cc = T

(
ds

dT

)
V

. (5.9)

Reducing the black hole size, the system goes to an unstable
phase until the entropy and specific heat vanish.

Now it is interesting to study the case when black hole
entropy, temperature and specific heat are zero, but black hole
mass is not zero. These are denoted by a circle in Fig. 13.
It has been shown that at a special radius the black hole
entropy, temperature and specific heat may be zero, while
black hole mass is non-zero. It is interpreted as black remnant
mass, below which the black hole will not evaporate. For
k = 1, we cannot observe any black remnant, due to the
absence of a unique (even approximately) point where the
black hole entropy, temperature and specific heat is zero. In
the case of k = 0, there is an approximate radius r+ ≈ 0.45,
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where the black hole entropy, temperature and specific heat
are approximately zero, and Mc �= 0 (see Fig. 13b). For
k = −1, we find that when r+ ≈ 0.5, the black hole entropy,
temperature and specific heat are zero, and Mc ≈ 0.25 (see
Fig. 13c).

6 Conclusion

In this paper, we have analyzed a five-dimensional black hole
solution in massive gravity coupled to the Yang–Mills the-
ory. We have discussed the thermodynamics of this black
hole solution. We also studied the flow of such a solution with
scale, using the energy-dependence of the geometry. We have
used the rainbow functions, motivated by loop quantum grav-
ity, the hard spectrum of gamma-ray bursts, and the horizon
problem to analyze such a flow with scale. It was observed
that these rainbow functions can change the behavior of the
black hole thermodynamics when the size of the black hole
reduces due to the Hawking radiation.

We have also investigated the criticality in the extended
phase space. It was done by treating the cosmological con-
stant as the dynamic pressure. Its conjugate variable was
treated as the thermodynamic volume for this black hole solu-
tion. We have also analyzed the effects of thermal fluctuations
on this black hole solution. It was observed that these ther-
mal fluctuations can be obtained from a statistical mechanical
partition function for this system. The thermal fluctuations
produce a logarithmic correction for the entropy of this black
hole. We have also examined the corrections to the specific
heat for this black hole solution.

It may be noted that it would be interesting to generalize
these results to higher dimensions. Thus, we could consider
higher dimensional Yang–Mills theory coupled to massive
gravity, and obtain black hole solutions in such a theory.
Then, we can analyze the thermodynamics of such solutions.
Here again, we can investigate the flow of the solution with
scale, using gravity’s rainbow [67–70]. We can then study
how such a flow deforms the thermodynamics of such higher
dimensional solutions. Furthermore, it is expected that the
thermodynamics of such solutions will again depend on the
specific rainbow functions. So, we can use rainbow functions
motivated from loop quantum gravity [83,84], the hard spec-
tra of gamma-ray bursts at cosmological distances [85], and
the horizon problem [86,87], to deform the thermodynamics
of such solutions. It would also be pointed out to analyze the
critical behavior [46,47] for this higher dimensional solution.

We can also construct the partition function for this higher
dimensional AdS solution, and use it to analyze the thermal
fluctuations for that solution [57,58]. It is expected that the
entropy of this higher dimensional AdS solution will again be
corrected by the logarithmic correction term. It would be use-
ful to investigate the effects of such corrections on other ther-

modynamic quantities for this higher dimensional solution.
It would also be interesting to study the effects of thermal
fluctuations on the criticality of these black hole solutions.

It may be noted that a mass term for graviton can be gener-
ated from a gravitational Higgs mechanism [91,92]. It would
be worth analyzing such a gravitational Higgs mechanism for
various supergravity solutions. As the Yang–Mills black hole
solutions can be motivated from the bosonic part of the low
energy Heterotic string theory [3,4] , it would be important to
study the gravitational Higgs mechanism in low energy Het-
erotic string theory. This could be used to obtain a mass term
for Yang–Mills fields. It would be interesting to investigate
the consequences of such a mass term on the thermodynamics
of Yang–Mills black holes.
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