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Abstract: Effective density (ρe) is universally used in atmospheric science as an alternative measure
of the density (ρ) of aerosol particles, and its definitions can be expressed in terms of the particle mass
(mp), ρ, mobility diameter (Dm), vacuum aerodynamic diameter (Dva), and dynamic shape factor
(χ), as ρe

I = 6mp/(π·Dm
3), ρe

II = ρ/χ, and ρe
III = Dva/Dm. However, the theoretical foundation of

these three definitions of ρe is still poorly understood before their application. Here, we explore the
relationship between ρe and aerosol size through theoretical calculation. This study finds, for the first
time, that ρe

I and ρe
III inherently decrease with increasing size for aspherical particles with a fixed ρ

and χ. We further elucidate that these inherent decreasing tendencies are governed by χ, and the ratio
of the Cunningham Slip Correction Factor of the volume-equivalent diameter to that of the mobility
diameter (Cc(Dve)/Cc(Dm)), but not by ρ. Taking the variable χ into consideration, the relationships of
ρe

I and ρe
III to particle size become more complicated, which suggests that the values of ρe

I and ρe
III

have little indication of the size-resolved physicochemical properties of particles. On the contrary,
ρe

II is independent on size for fixed χ and ρ, which indicates that the change in ρe
II with size can

better indicate the change in morphology and the transformation of the chemical compositions of
particles. Our new insights into the essence of three ρes provide an accurate and crucial theoretical
foundation for their application.

Keywords: effective density; dynamic shape factor; chemical composition; size

1. Introduction

Atmospheric particles play an important role in air quality, human health, and
global climate change, which strongly depend on their chemical and physical proper-
ties [1,2]. Effective density (ρe), one of the physical quantities, has been widely adopted
in the characterization of the properties of aerosols as an alternative measure of density
(ρ) [3,4]. ρe can serve as a link between the important characteristics of aerosol particles,
such as volume-equivalent diameter (Dve) and aerodynamic diameter (Da) (presented in
Appendix A—Table A1) [5], and as a tracer for new particle formation [6,7] and the at-
mospheric ageing processes [8]. Moreover, ρe can also provide an insight into particle
morphology [9].

Due to differences in measurement methods, three effective densities are defined in
atmospheric science, which are systematically reviewed in the work of DeCarlo, et al. [10].
The first definition (ρe

I) describes ρe as the ratio of the particle mass (mp) to the apparent
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volume, calculated assuming a spherical particle with a diameter equal to the measured
mobility diameter (Dm) (presented in Appendix A—Table A1) [10]:

ρI
e =

6mp

πDm3 (1)

where mp is equal to 1/6 π·ρ·Dve
3. Dm is related to Dve, as shown in Equation (2):

Dm

Cc(Dm)
=

Dve

Cc(Dve)
χ (2)

where χ is the dynamic shape factor and Cc(D) represents the Cunningham Slip Correction
Factor, which is calculated by Equation (3):

Cc(D) = 1 +
λ

D

(
A + B· exp

(
C·D

λ

))
(3)

where λ is the mean free path of the gas molecules, and A, B and C are empirically deter-
mined constants specific to the analysis system. Substituting Equation (2) into Equation (1)
results in the final form of ρe

I, as shown in Equation (4):

ρI
e =

ρ

χ3 ·
(

Cc(Dve)

Cc(Dm)

)3
(4)

The second definition (ρe
II) is the ratio of ρ to χ [11]:

ρI I
e =

ρ

χ
(5)

The third definition (ρe
III) is the ratio of vacuum aerodynamic diameter (Dva) (pre-

sented in Appendix A) and Dm:

ρI I I
e =

Dva

Dm
ρ0 (6)

where ρ0 represents the standard density of 1.0 g/cm3 [10]. Dva also depends on Dve:

Dva =
ρ

ρ0

Dve

χ
(7)

Combining the Equations (2), (6), and (7) obtains the final form of ρe
III, as shown in

Equation (8) [12].

ρI I I
e =

Cc(Dve)

χ2·Cc(Dm)
ρ (8)

For spherical particles, three ρes are equal to their ρ. For aspherical particles, the three
definitions of ρe should not yield the same numerical values, because they capture slightly
different particle properties [10].

Based on the three definitions of effective density, copious studies have measured the
values of aerosol effective density using different methods [13]. Hitherto, ρe

I is the most
widely used definition in atmospheric science, because it can be measured using a variety of
simple methods [13], such as the setup of a differential mobility analyzer (DMA), centrifugal
particle mass analyzer (CPMA), condensation particle counter (CPC) [14], and DMA single-
particle soot photometer (SP2) [15]. Although ρe

III can be measured using the tandem
setup of a DMA—mass spectrometer [16] and the parallel setup of a scanning mobility
particle spectrometer (SMPS) and aerosol mass spectrometer (AMS) [17], there are not
many studies using the values of this definition to characterize aerosol properties [18–20].
Worse than ρe

III, until recently, there was no method to measure the value of ρe
II of an

aspherical particle. However, Peng et al. filled this gap by developing a new method
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of combining an aerodynamic aerosol classifier (AAC) with single-particle aerosol mass
spectrometry (SPAMS) [21]. By using the established methods, previous studies measured
the size-resolved ρe to indicate the change in morphology and/or the transformation of the
chemical compositions of particles. Some studies reported ρe decreasing with an increase
in particle size [22–27], while the other studies found ρe to be independent of [28] or
to increase [7] with particle size. These studies ascribed such discrepancies among the
particles with different sizes to different voids [24,26], χ [23,25], morphology [4], chemical
composition [8], and/or atmospheric processes [29,30]. However, the inherent relationship
between the three definitions of ρe and the particle size were not understood before their
application in these studies.

In this study, we focus on the theoretical calculation of ρe to probe the inherent
relationship between ρe and the particle size for the three definitions of ρe, and to explore
the factors resulting in their inherent relationship.

2. Materials and Methods

Table 1 presents the set values of ρ, χ, and Dm for Y and Z particles, which were used
as surrogate particles in this study. ρe

I, ρe
II and ρe

III for these particles, with a Dm of 40 nm,
80 nm, 150 nm, 250 nm, 350 nm, 450 nm, and 550 nm, were calculated using the values of ρ,
χ, and Cc(D). Although Zieger, et al. [31] found that the χ of NaCl depends on particle size,
which suggests that χ varies with particle size, we first assumed particles with a fixed χ
value in the calculation, to facilitate probing the essential relationship between the three ρes
and particle size. In this study, the effect of variable χ on the relationship between ρe and
size is discussed.

Table 1. Information (ρ, χ, and Dm) for calculating the three ρe for particles of Y and Z.

Particles ρ (g/cm3) χ Dm (nm)

Y

1.0
1.4
1.8
2.2
2.6
3.0
3.4

2.00

Z 1.80

1.05
1.10
1.20
1.60
2.00
2.50

40, 80, 150, 250, 350, 450, and 550

3. Results and Discussions

3.1. The Decrease in ρe
I and ρe

III with Particle Size for Aspherical Particles

Figure 1a,b presents the values of ρe
I and ρe

III for the Y and Z particles, respectively,
which show that ρe

I and ρe
III decrease as the size increases for aspherical particles with

fixed ρ and χ. This result highlights, for the first time, the correlation of ρe
I and ρe

III with
particle size through theoretical analysis. However, the inherent dependency of ρe

I and
ρe

III on particle size was not considered in previous studies [17,20,32–36]. This omission
raises concerns regarding the measurement technologies for ρe

I and ρe
III and the results of

the morphology, voids, and atmospheric processes of the particles.
We take a closer look at the studies that adopted ρe

I and ρe
III. Previous studies estab-

lished the methods of ρe
I through the measurement of Dm and Da, and of ρe

III through the
measurement of Dm and Dva. ρe

I and ρe
III were determined by fitting the size distributions

of Dm and Da in a narrow-overlap size range [32–35] or using the peak diameters of Dm
and Dva [17,20], respectively. If the studies applied these methods to measure the size dis-
tributions of the particles with a ρ of 1.8 g/cm3 and a χ of 2.5, it would result in one value
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to characterize ρe
I and ρe

III. However, this is inconsistent with the theoretical calculation in
this study, which finds that the effective density of these particles ranges from 0.43 g/cm3

at 40 nm to 0.22 g/cm3 at 550 nm for ρe
I, and from 0.45 g/cm3 at 40 nm to 0.36 g/cm3 at

550 nm for ρe
III, respectively (Figure 1b). This suggests that using specific values for ρe

I and
ρe

III to represent the whole measured size range needs to be reevaluated in future studies.
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Figure 1. (a) The size variations of ρe
I and ρe

III for the Y particles. The change in color from red to
grey represents the increase in density from 1.0 to 3.4 g/cm3; (b) The size variations of ρe

I and ρe
III

for the Z particles. The change in color from red to purple represents the increase in dynamic shape
factor from 1.05 to 2.50.

Park, et al. [22] found, for the first time, that the ρe
I of diesel particles decreases as

particle size increases. Since then, dozens of studies have shown that the ρe
I and ρe

III of the
primary particles, such as particles from vehicles [36,37] and biomass burning [19,38–40],
exhibited a similar trend with particle size. These studies attributed this phenomenon to
the increasing χ [23,25] and more voids [24,26] with a large Dm. However, we obtained
the size-resolved ρe

I and ρe
III for soot with fixed χ and found that the effective density

still decreases with the increasing particle size, even without the increase in the voids.
Therefore, it is somewhat arbitrary to conclude that larger particles have a larger χ and
more voids based only on the measurements of ρe

I and ρe
III with different particle sizes.

The values of ρe
I and ρe

III are generally used to indicate the aging process of particles
in the atmosphere [8,41–43]. The atmospheric aging processes would change the size of
the particles and, consequently, influence ρe

I and ρe
III, based on our theoretical calculation.

Therefore, the change in ρe
I and ρe

III due to aging processes might be biased if the essence
of ρe

I and ρe
III with particle size is not considered.

3.2. The Factors That Cause the Decrease in ρe
I and ρe

III with Particle Size

According to Equations (4) and (8), ρe
I and ρe

III are a function of ρ, χ, and Cc(Dve)/Cc(Dm),
so the three factors were evaluated for the decrease in ρe

I and ρe
III with particle size. ρ was

evaluated by Y particles with fixed χ but with the variable ρ. Figure 1a shows the variations
of ρe

I and ρe
III of the Y particles. The values of ρe

I and ρe
III decrease monotonically with

Dm, and ρe
I decreases more rapidly than ρe

III. Correspondingly, Figure 2a shows the ∆ρ
(ρe,40nm − ρe,550nm) and R ((ρe,40nm − ρe,550nm)/ρe,550nm) of ρe

I and ρe
III of the Y particles as
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a function of ρ. Obviously, ∆ρ is proportional to ρ and the slope of ρe
I is greater than that

of ρe
III, which is a result of the larger coefficient between ρe

I and ρ ((Cc(Dve)/Cc(Dm))3/χ3)
(as shown in Equation (4)) than between ρe

III and ρ (Cc(Dve)/Cc(Dm)/χ2) (as shown in
Equation (8)). In particular, ρe

I and ρe
III have constant R ((ρe,40nm − ρe,550nm)/ρe,550nm)

values of 68.0% and 18.9%, respectively. These findings lead to the conclusion that ρ
determines the values of ρe

I and ρe
III, but does not affect the relationship of ρe

I and ρe
III

with the particle size.

Atmosphere 2022, 13, x FOR PEER REVIEW 5 of 11 
 

 

monotonically with Dm, and ρeI decreases more rapidly than ρeIII. Correspondingly, Figure 
2a shows the Δρ (ρe,40nm − ρe,550nm) and R ((ρe,40nm − ρe,550nm)/ρe,550nm) of ρeI and ρeIII of the Y 
particles as a function of ρ. Obviously, Δρ is proportional to ρ and the slope of ρeI is greater 
than that of ρeIII, which is a result of the larger coefficient between ρeI and ρ 
((Cc(Dve)/Cc(Dm))3/χ3) (as shown in Equation (4)) than between ρeIII and ρ (Cc(Dve)/Cc(Dm)/χ2) 
(as shown in Equation (8)). In particular, ρeI and ρeIII have constant R ((ρe,40nm − 
ρe,550nm)/ρe,550nm) values of 68.0% and 18.9%, respectively. These findings lead to the 
conclusion that ρ determines the values of ρeI and ρeIII, but does not affect the relationship 
of ρeI and ρeIII with the particle size. 

To explore the effects of χ on the decrease in ρeI and ρeIII with particle size, the ρeI and 
ρeIII of the series of Z particles with a fixed ρ but the variable χ are calculated and presented 
in Figure 1b. For particles with one value of Dm, ρeI and ρeIII decrease with increasing χ. For 
χ > 1.00, ρeI and ρeIII decrease with increasing Dm. Figure 2b shows Δρ (ρe,40nm − ρe,550nm) and 
R (Δρ/ρe,550nm) of ρeI and ρeIII of the Z particles. Δρ increases from 0.07 to 0.26 g/cm3 for ρeI 
and from 0.02 to 0.10 g/cm3 for ρeIII, as χ increases from 1.05 to 1.60. Then, Δρ decreases 
from 0.26 g/cm3 to 0.21 g/cm3 for ρeI and from 0.10 g/cm3 to 0.09 g/cm3 for ρeIII, as χ increases 
from 1.60 to 2.50. Additionally, R increases from 4.2% to 92.1% for ρeI, and increases from 
1.4% to 24.3% for ρeIII, as χ increases from 1.05 to 2.50. This implies that χ plays a key role 
in the values of ρeI and ρeIII and their dependence on particle size. 

 
Figure 2. (a) Δρ (=ρe,40nm − ρe,550nm) and R (=Δρ/ρe,550nm) of ρeI and ρeIII for the Y particles with different 
ρ; (b) Δρ (=ρe,40nm − ρe,550nm) and R (=Δρ/ρe,550nm) of ρeI and ρeIII for the Z particles with different χ. Red 
and blue lines represent Δρ and R, respectively. 

Figure 2. (a) ∆ρ (=ρe,40nm − ρe,550nm) and R (=∆ρ/ρe,550nm) of ρe
I and ρe

III for the Y particles with
different ρ; (b) ∆ρ (=ρe,40nm − ρe,550nm) and R (=∆ρ/ρe,550nm) of ρe

I and ρe
III for the Z particles with

different χ. Red and blue lines represent ∆ρ and R, respectively.

To explore the effects of χ on the decrease in ρe
I and ρe

III with particle size, the ρe
I and

ρe
III of the series of Z particles with a fixed ρ but the variable χ are calculated and presented

in Figure 1b. For particles with one value of Dm, ρe
I and ρe

III decrease with increasing χ. For
χ > 1.00, ρe

I and ρe
III decrease with increasing Dm. Figure 2b shows ∆ρ (ρe,40nm − ρe,550nm)

and R (∆ρ/ρe,550nm) of ρe
I and ρe

III of the Z particles. ∆ρ increases from 0.07 to 0.26 g/cm3

for ρe
I and from 0.02 to 0.10 g/cm3 for ρe

III, as χ increases from 1.05 to 1.60. Then, ∆ρ
decreases from 0.26 g/cm3 to 0.21 g/cm3 for ρe

I and from 0.10 g/cm3 to 0.09 g/cm3 for
ρe

III, as χ increases from 1.60 to 2.50. Additionally, R increases from 4.2% to 92.1% for ρe
I,

and increases from 1.4% to 24.3% for ρe
III, as χ increases from 1.05 to 2.50. This implies that

χ plays a key role in the values of ρe
I and ρe

III and their dependence on particle size.
ρe

I and ρe
III for the aspherical particles with fixed ρ and χ, however, still depend on

Dm, suggesting that Cc(Dve)/Cc(Dm) is responsible for the dependency. Figure 3 shows
the relationship between Cc(Dve)/Cc(Dm) and particle size for the Z particles with a ρ of
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1.80 g/cm3 and a χ ranging from 1.05 to 2.50. It can be seen that Cc(Dve)/Cc(Dm) is greater
than 1 in the size range of 40–550 nm, and decreases slightly from 1.02 to 1.01 (0.9%), 1.05
to 1.02 (2.9%), and 1.09 to 1.04 (4.8%) for the particles with a χ of 1.05, 1.10, and 1.20,
respectively. The values of Cc(Dve)/Cc(Dm) have an evident downward trend, decreasing
from 1.25 to 1.11 (12.6%), 1.39 to 1.17 (18.8%), and 1.55 to 1.25 (24.0%) for the particles
with a χ of 1.60, 2.00 and 2.50, respectively. Obviously, when χ is larger, Cc(Dve)/Cc(Dm)
decreases more rapidly with Dm.
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Figure 3. The relationship between the Cc(Dve)/Cc(Dm) and Dm for the Z particles with fixed ρ of
1.80 g/cm3 and different χ values of 1.05, 1.10,1.20, 1.60, 2.00, and 2.50, which are represented by
different colors.

In this study, through the exploitation of the final forms of ρe
I and ρe

III (i.e., Equations (4)
and (8)), we discover that ρe

I is proportional to (Cc(Dve)/Cc(Dm))3, and ρe
III is proportional

to Cc(Dve)/Cc(Dm). Cc(Dve)/Cc(Dm) decreases as Dm increases (Figure 3), and therefore, ρe
I

and ρe
III also definitely decrease as Dm increases. The role of χ on Cc(Dve)/Cc(Dm) also

explains why χ determines the downward trends of ρe
I and ρe

III (Figure 2b). Furthermore,
the cube value of Cc(Dve)/Cc(Dm) is greater than itself because it is greater than 1, which
inevitably causes a faster downward trend of ρe

I with Dm than that of ρe
III. Generally, the

values of χ and Cc(Dve) are unknown when using effective density to substitute for density;
therefore, the downward trends of ρe

I and ρe
III cannot be corrected in their application.

ρe
I and ρe

III inherently decrease with the increasing size of aspherical particles, indicat-
ing that aerosols of one substance have a series of values of ρe

I and ρe
III, because aerosols

have a wide size distribution. For example, particles with a ρ of 1.80 g/cm3 and χ of 2.50
obtain ρe

I and ρe
III values of 0.43 g/cm3 and 0.45 g/cm3 at 40 nm, and of 0.22 g/cm3 and

0.36 g/cm3 at 550 nm, respectively. A series of values makes the physical quantities of ρe
I

and ρe
III undistinguishable and blurs their physical meaning, which is totally inconsistent

with the values of density.

3.3. The Independent Relationship between ρe
II and Particle Size

Figure 4 presents the ρe
II of Y and Z particles, showing that ρe

II only has one value
in the entire range of sizes and that it is independent of particle size. This independent
tendency is consistent with the characteristics of ρ. Therefore, it is more reasonable to
use ρe

II as the alternative measure of density. The relationship between ρe and size is
generally used to indicate the change in morphology and/or the transformation of the
chemical compositions of particles. According to the new understanding of the relationship
between the three effective densities and particle size from this study, Table 2 presents the
relationship between the trends of effective density with size, and that of χ and ρ with size.
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When ρe
I and ρe

III decrease with the increasing size of aspherical particles, they may be
determined by the increase or invariability of χ for particles with a fixed ρ, and the decrease
or the invariability of ρ for particles with a fixed χ. Even for the same physical quantity
(e.g., χ, ρ), the change could result in the same trend of ρe

I and ρe
III with the particle

size. In addition, it is worth noting that χ may change with particle size irregularly, [31]
which will render the relationship of ρe

I and ρe
III with size more complicated. The above

discussion suggests that the size-resolved ρe
I and ρe

III actually have no ability to indicate
the relationship of χ and ρ with size. On the contrary, the increase, invariability, and
decrease in ρe

II with the increasing size of aspherical particles specifically indicate the
decrease in χ and/or the increase in ρ, the invariability of χ and/or ρ, and the increase in χ
and/or the decrease in ρ, respectively. This comparison implies that ρe

II is a better indicator
for the change in morphology and the transformation of the chemical compositions of
particles. Therefore, it is recommended to apply ρe

II as an alternative measure of ρ in
studies involving particle sizes in atmospheric science.
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Figure 4. (a) The size-resolved ρe
II for the Y particles with ρ from 1.0 to 3.4 g/cm3, which are

represented by the change in line color from red to grey; (b) The size-resolved ρe
II for the Z particles

with a χ from 1.05 to 2.50, which are represented by the change in line color from red to purple.

Table 2. The trends of ρe
I, ρe

II, and ρe
III with size of aspherical particles as χ (a) and ρ (b) change.

The Trend of

(a) Fixed value of ρ χ ρe
I ρe

II ρe
III

Increasing Decreasing Decreasing Decreasing

Invariant Decreasing Invariant Decreasing
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Table 2. Cont.

Decreasing Invariant or
increasing Increasing Invariant or

increasing

(b) Fixed value of χ ρ ρe
I ρe

II ρe
III

Increasing Invariant or
increasing Increasing Invariant or

increasing

Invariant Decreasing Invariant Decreasing

Decreasing Decreasing Decreasing Decreasing

4. Conclusions

This study forms a comprehensive theoretical analysis for the three definitions of
effective density. ρe

II is found to be independent of particle size, while ρe
I and ρe

III decrease
as the size of aspherical particles increases; these are determined by χ and Cc(Dve)/Cc(Dm),
but not ρ, which suggests that the relationship between size and the definitions of ρe

I

and ρe
III gives little indication of the size-resolved physicochemical properties of the par-

ticle. Compared to ρe
I and ρe

III, the values of ρe
II are better for indicating the change in

morphology and the transformation of chemical compositions; thus, the definition of ρe
II

is recommended as a more proper alternative measure of ρ in studies involving particle
sizes in atmospheric science. These results lay a sound theoretical foundation for the three
effective densities, which will help with their accurate application in the future studies.
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Appendix A

Table A1. Introductions of the diameters used in this paper.

Symbol Definition Derivation Example of
Measurement Instrument

Da

Aerodynamic diameter is defined as
the diameter of a sphere with standard
density that settles at the same terminal
velocity as the particle of interest.

Da = Dve

√
ρpCc(Dve)

χ·ρ0·Cc(Da)

Aerodynamic Aerosol
Classifier (AAC)
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Table A1. Cont.

Dva

In the free-molecular regime, the
aerodynamic diameter is called the
vacuum aerodynamic diameter.

Dva =
ρp
ρ0

Dve
χ

Single-Particle Aerosol Mass
Spectrometry (SPAMS)

Dm

Mobility diameter is defined as the
diameter of a sphere with the same
migration velocity in a constant electric
field as the particle of interest.

Dm
Cc(Dm)

= Dve
Cc(Dve)

χ
Differential Mobility Analyzer
(DMA)

Dve

Volume-equivalent diameter is defined
as the diameter of a spherical particle of
the same volume as the particle under
consideration.

Dve =
3

√
6mp
πρp

AAC-SPAMS
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